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Exact time evolution of a classical harmonic-oscillator chain
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We investigate the dynamical behavior of a classical harmonic-oscillator chain with periodic and
fixed-end boundary conditions. The displacement and velocity autocorrelation functions are ob-
tained by a recurrence relations method. We show that the finite diffusion constant and the diver-
gence in the mean-square displacement of a tagged oscillator arise from the zero-frequency mode
present in the chain with periodic boundary conditions. For the chain with fixed-end boundary con-
ditions, the diffusion constant vanishes and there is no divergence in the mean-square displacement.
These results should hold for the harmonic-oscillator model in higher dimensions.

I. INTRODUCTION

Coupled-harmonic-oscillator models have long been
used in the study of lattice vibrations. These models can
be studied in one or more dimensions and in the three-
dimensional case can be thought of as the simplest ideali-
zation of a crystal lattice. The static properties of these
models have been the main object of investigation and ex-
act results for dispersion relations, density and normal
modes, and thermodynamical quantities are available in
the literature. '

The dynamical properties of these models, however,
have not been studied much. To our knowledge, there are
just a few papers on the time evolution of these systems,
notably by Ford et al. , and by Fox. These authors in-
vestigate the dynamics of classical linearly-coupled
harmonic-oscillator chains obeying periodic boundary
conditions. Fox finds that the velocity autocorrelation
function (u(t)u ) is given by

kgT
( u(t)v ) = Jo(2cot)

in the thermodynamic limit. This result yields a nonvan-
ishing diffusion constant for a tagged oscillator. This is
unexpected for there should be, as he notes, no diffusion
in such systems. In addition, as we shall see, the mean-
square displacement of an oscillator as calculated from
the solution due to Ford et al. is found to diverge. On
the other hand, Montroll obtained a finite value for the
mean-square displacement by using fixed-end boundary
conditions.

Our aim is to investigate the role of both periodic and
fixed-end boundary conditions in this model. We are par-
ticularly interested in clarifying the physical meaning of
the finite diffusion constant obtained by Fox, as well as in
the divergence of the mean-square displacement.

A major feature of the present work is the introduction
of the method of recurrence relations due to Lee in the
treatment of the dynamics of a classical system. The orig-
inal formulation of the method of recurrence relations
was established for quantum systems. The method has
been applied to the dynamic response in an electron gas
and in a spin system. We develop a classical version of

II. METHOD OF RECURRENCE RELATIONS

Let G represent a dynamical quantity of a classical
many-body system governed by a Hamiltonian H. The
time evolution of G can be expressed formally as

G(t)=e' G(0),
while L is the Liouville operator defined by

r

df BH dH t)f
aq, ap, aq, ap,

(2.1)

(2.2)

where q; and p; are, respectively, the canonical coordinate
and momentum of the ith particle in the system. The ex-
pression (2.1) can be given as an expansion in terms of a
complete orthogonal set jf„J,spanning a properly defined
Hilbert space S of dimension d + 1, as follows:

d
G(t)= g A (t)f„.

v=0
(2 3)

this method to obtain exact results for both the velocity
and displacement autocorrelation functions in coupled
harmonic chains.

Our paper is organized as follows. In Sec. II the re-
currence relations method for a classical system is
presented. In Sec. III this method is used to investigate
the dynamical behavior of a classical harmonic-oscillator
chain constrained to periodic boundary conditions. Both
the velocity and displacement correlation functions are
obtained. It is shown that the finite diffusion constant
obtained by Fox is due to the zero-frequency mode of
this system. This zero-frequency mode is also responsible
for the divergence in the mean-square displacement of a
tagged oscillator. In Sec. IV the case of a harmonic-
oscillator chain whose end points are kept fixed to rigid
walls is examined. Analytic expressions for the correla-
tion functions of this system is derived. It is shown that
the diffusion constant vanishes, and that the mean-square
displacement of an oscillator is finite. In Sec. V our re-
sults are discussed.
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The scalar product in S is defined as

(A,B)=—fd x e ~~A*B,1
(2.4)

This is the system studied by Ford et al. and by Fox.
The Hamiltonian (3.1) can be diagonalized by the intro-
duction of normal-mode coordinates Q and Pa through
the transformations

where )33 is the inverse temperature, Z—:fd x e ~ is
the classical partition function, and

d"x= gdq;dp; .

and

N/2 —1
i (2' /N)a

&Xm (3.3a)

f.+(=l-f.+~ f. )»0-
where

(f f)
(f.-) f

(2.5)

(2.6)

Clearly, this scalar product is positive definite.
By choosing fo=G(0), it follows from the above-

defined scalar product that the set If, I can be generated
by the recurrence relation (RR I):

N/2 —1

i (2' /N)ap
a

a= —N/2
(3.3b)

Q" =Q (3.4a)

Notice that the boundary conditions (3.2) are indeed satis-
fied and the set I(1/v X)e' ~~ '

I is orthogonal and
complete in a periodic domain of the oscillator labels j. It
follows that since qj and pj are real,

and
pQ p (3.4b)

f (=—o ~o=i . (2.7)
In terms of the normal-mode coordinates, the Hamil-

tonian (3.1) now reads
It also follows that the coefficients A (t) obey a second
recurrence relation (RR II):

N/2 —1

H = —, g (P*P +O'Q*Q ),
a= —N/2

(3.5)

6,+)A +)(t)= A(t)+A, )(—t), v) 0

where

dA„(t)
A,(t): —, A )

—=0.
dt

(2.8)

(2.9)

where'

0 =4~ sin
an

(3.6)

Thus the recurrence relations RR I and RR II enable one
to obtain the complete time behavior of the dynamical
quantity G(t). These recurrence relations are a classical
version of Lee's recurrence relations.

In the following sections we use this method to obtain
the velocity autocorrelation function as well as the dis-
placement autocorrelation function of a classical
harmonic-oscillator chain subject to periodic and fixed-
end boundary conditions.

and 0 are the normal-mode frequencies.
We are interested in correlation functions of the form

( A (t)A (0) ) =—fd x A(t)A (0)e
1

Z (3.7)

where 3 can be either the velocity of the jth oscillator
uJ =pJ/m or its displacement qJ. The correlation func-
tions (uJ(t)uJ(0)) and (qi(t)qJ(0)) can be cast in the fol-
lowing forms:

III. CLASSICAL HARMONIC-OSCILLATOR
CHAIN WITH PERIODIC BOUNDARY CONDITIONS

(u, (t)u, (0))= pe '" " '(P (t),P
a, a'

(3.8)

Consider a linear chain of N identical classical harmon-
ic oscillators of mass m coupled to each other. With no
loss of generality we take X to be an even number. The
Hamiltonian is given by

N/2 —1 N/2 —1

H = g pJ /2m+ g (k/2)(q~ —qJ+, )

j =—N/2 j=—N/2

( q. (t)q (0) ) g e t (2n/X)(a——a')(g (t) g
a, a'

Consider the dynamical quantity P (t). By using the
first recurrence relation (RR I) and making the following
choice for the basis vector fo:

(3.1)
where only nearest-neighbor couplings are taken into ac-
count, and k =men is the coupling constant. Let us im-

pose periodic boundary conditions such that

f,=P.(O) =P. ,

we obtain the next basis vector

f) LP = —Qag——

(3.10a)

(3.10b)
qj+N =qj (3.2a)

Here the Liouville operator is given by
r

pj+N pj (3.2b)

N/2 —1

a= —N/2

a
— ag.

2 a—0 Q (3.11)
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It can be readily seen that (fp,f p) = 1/P, and
(f~,f~)=Q /P. Then 5& ——(f&,f&)/(fp, fp)=Q . By tak-
ing these results into RR I, we obtain f2 ——0, which leads
to b,2

——0. Moreover, we find that f„=0for v) 2. Thus,
the Hilbert space for P~(t) is two dimensional, with basis
vectors fp and f~ given by Eqs. (3.10).

The above results together with the second recurrence
relation (RR II) yield the equations for A, (t),

k~ T & ~2 &—cos(Q~t)
(q, (t)q, (0)) =

Q
(3.20)

Equations (3.16) and (3.20) were first obtained by Ford
et al. by using another method.

In the thermodynamic limit, N~oo, Eqs. (3.16) and
(3.20) read

Q Ai(t)= —Ap(t), (3.12a) AT in
(uj(t)uj(0)) = J dx cos[Q(x)t] (3.21)

0= —A, (t)+A, (t), (3.12b) and

with initial conditions Ap(0) = 1 and A ~(0) =0. The solu-
tions of these equations are

Ap(t)=cos(Q t)

( ( ) (0) )
B J' d

cos[Q(x)t]
Q (x)

where

Q (x) =4co sin (mx) .

(3.22)

(3.23)

A &(t) = sin(Q t) .
1

Qa
(3.13b)

Thus the time evolution of P~(t) is determined to be

P~(t) =cos(Q t)P —Q sin(Q~t)Q

%'e then obtain the following scalar products:

(3.14)

Notice that these correlation functions do not depend on
the oscillator label j, reflecting the translational invariance
of the system.

Equation (3.21) can also be put into the form

( uj(t)uj ) = —I dy cos(2tot siny )

5
(P (t),P ~ )= ' cos(Q t) (3.15a)

k~T
Jp(2tot ),

m
(3.24)

(P (t),Q )=0. (3.15b)

By using the above results in Eq. (3.8), we obtain the
velocity autocorrelation function,

AT
(u, (t)uj(0)) = g cos(Q~t) . (3.16)

In order to evaluate the displacement autocorrelation
function, Eq. (3.9), we follow a similar procedure. Again,
by using RR I, we find that the dynamical Hilbert space
of Q (t) has just two dimensions, with basis vectors,

AT
D =I dt (uj(t)uj(0) ) =

2m'
(3.25)

This is contrary to the expectation that a system of oscil-
lators should not diffuse.

In order to clarify the meaning of this result, we consid-
er the more fundamental definition of the diffusion con-
stant

where Jp is the Bessel function of order zero. This ex-
pression was first derived by Fox. He noted that it leads
to a finite value for the diffusion constant given by the
Green-Kubo formula '

fp=Q (3.17a) D = lim —([qz(t) —qj(0)] )t~ oo 2t
(3.26)

Q (t)=cos(Q t)Q~+ sin(Q t)P1

a

We then obtain the following scalar product

(3.18)

(Q (t), Q ~ ) = '
2 cos(Q~t),

PQ
(3.19)

(3.17b)

The nontrivial 6 is given by hi ——Qa. This leads to a sys-
tem of equations for A, (t), which is identical to (3.12).
We finally obtain

By using Eq. (3.20) in the above expression we obtain

1 2k~ T &~2—& sin (Q~t/2)D= lim 2f~oo t Xm ~n Q

If we take the thermodynamic limit first, we find
r

1 2kaT '~~ sin [Q(x)t/2]D= lim dx
t ~ t m —&&2 Q2(x)

'trkaT '~ . sin [Q(x)t/2]dx lim
2m —~&& t ~ n.t[Q(x)/2]

(3.27)

which when used together with Eq. (3.19) yields the dis-
placement autocorrelation function,

17k~ T 1/2 Q(x )dx 5
2m 2

(3.28)
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1/2D= y J dx
l

5(x —x; )

dQ(x)
i&

(3.29)

where x; are the zeros of Q(x). In this case,

x;=0,+1,+2, . . . .

where 5 is the Dirac 5 function. The above expression can
be written as

1

(4 3) j/2

(3.34)

The autocorrelation functions at short times are given by

Notice that by using Eq. (3.33) in Eq. (3.26), we see that
the diffusion constant approaches its finite value (3.25) as

r

D= lim
k~T 1— cos(2cot m/—4)

t~ oo 2m CO t 3/2

Notice that only x;=0 contributes to the integral. This
corresponds to the mode with zero frequency, which is the
mode with full translational symmetry. This contribution
from the zero-frequency mode yields the finite diffusion
constant,

and

k~T
( u, (t)u, (0) & = (1—~'t'), (3.35)

(3.36)
1/2 $(x )D= dx

m —1/'2 2m'
k~T
2m co

which is the same as Eq. (3.25). The existence of the
zero-frequency mode, resulting in a finite diffusion con-
stant, is evidently due to the periodic boundary conditions
used. Presumably if we use fixed boundary conditions,
that is, the end points of the harmonic-oscillator chain
fixed to rigid walls, the diffusion constant would vanish.
This will be shown in Sec. IV.

We shall now give the final expression for the displace-
ment autocorrelation function after the integral in Eq.
(3.26) is done. The result is

( qj(t)qj(0) &
—(qj (0) &

kgT
t g ttJ2„+)(2cot)+J2„+3(2cot)], (3.30)2m' p

where (qj (0) & is given by Eq. (3.31).

IV. HARMONIC-OSCILLATOR CHAIN
WITH FIXED ENDS

Consider the following harmonic-oscillator chain Ham-
iltonian

N+1 N
H = g p /2m+ g (k/2)(qj —qj~()

j=0j=0
(4.1)

in which the end oscillators are fixed to external rigid
walls, such that

and

qp =IN+1=0 (4.2a)

PO =EN+1=0 (4.2b)

This Hamiltonian can be diagonalized by the linear
transformation

kgT
(q,'&= lim I

2&pl co
(3.31)

where J„are the Bessel functions of order n. The mean-
square displacement of the jth oscillator oj.= (qj &

—(qj. & = (qj & diverges as

771
I'i =

s=I

N

v'(N + 1)m
1/2

g g, sin

KJS

&+1

KJS

%+1

(4.3a)

(4.3b)

This divergence is a result of the translational invariance.
of the system imposed by the periodic boundary condi-
tions.

We conclude this section by presenting the asymptotic
forms of the autocorrelation functions. The velocity and
the displacement autocorrelation functions for large times
are given, respectively, by

H = g g, /2+ g (Q, g, )/2, (4.4)
s=1 s=1

where the normal-mode frequencies are given by

where g, and g, are the normal-mode coordinates. In
terms of these new coordinates our Hamiltonian becomes

N N

ka T cos(2cot —m. /4)
2(m.m co)'

(3.32)

4k. 2 ~S
m 2(%+1) (4.5)

and

( q, (t)q, (o) &
—(q,'(0) &

r

1 cos(2tot ~/4)—
t 1—

2m~ (4~to3)'/2

The velocity and displacement autocorrelation func-
tions are given, respectively, by

( uj(t)uj (0) & = 1
sin sin

7TJS . 7TJS

m(%+1) „~, %+1 %+1

as t —+oo . (3.33) x(g, (t),g, ) (4.6)
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and

~js . mjs

m (++1)„, , &+1 ~+1q t q (0) sin sin

The correlation functions (4.6) and (4.7) can then be
evaluated:

~jS( uJ(t)uj(0) }=
m (%+1), , %+1g sin cos(A, t),

where

x(g, (t),g, }, (4.7)

aI1d

(4.14)

aI1d

(g, (t),g, )=—fd Xe ~ g, (t)g, ,

(q, (t), rl, ) =— d "Xe ~Hq, (t)r), ,s & s Z

Z= fd~Xe t'H-,

(4.8)

(4.9)

(4.10)

cos(A, t)

0,
(4.15)

In the thermodynamic limit the above expressions become

k
( vj. (t)vJ(0) ) = —f dy sin (yj)

d"X= +dq, dg, .
s=1

(4.11)
a11d

&& cos[2cot sin(y/2)], (4.16)

g, (t) =g, cos(Q, t) —q, A, sin(A, t) (4.12)

and

By applying the recurrence relations method, we deter-
mine the time evolution of g, (t) and g, (t). The explicit
results for these quantities are, respectively,

k~T i
( qj (t)qj (0) }=

sin (yj)cos[2cot sin(y/2)]f dy 4' sin (y/2)

where j=1,2, . . . , and co=(k/m)' . The integrals can
be expressed in terms of Bessel functions, yielding

g, (t) =g, cos(Q, t)+ sin(Q, t) .0, (4.13) kgT
( uj (t)Ui (0) ) = [Jp(2')t) —J41(2cgt ) ]2Pl

(4.18)

and

kg T
(q, (t) q(0))=, j—,g J„2+( co2t)+J,„+3(2cot) J,„+4J+,(2cot)—J,„+4,+,(2~t)—

2%i 6) 2fPl M

+ J2 +4J+2(2~t)
4j
cut

(4.19)

Notice that these correlation functions now depend on the
oscillator label j, which gives its location relative to the
ends. This reflects the absence of translational symmetry
of the system owing to the fixed-end boundary conditions
used. As a result, there is no zero-frequency mode, as can
also be seen from Eq. (4.5).

When t becomes very large (taboo), Eqs. (4.18) and
(4.19) assume the following asymptotic forms:

2kB Tj sin(2' t n /4)—
(uj(t)v (0))—

m(~co )' t

(4.20)

On the other hand, for short times ( t~0), the correlation
functions (4.18) and (4.19) are given by

and

k~T
( u, (t)u, (0) ) =- (1 co't ), —

207

k~T
&q, (t)q, (0))=,(j ~ t /2)

2m Qj

(4.22)

(4.23)

The mean-square displacement of the jth oscillator can
be obtained by setting t =0 in Eq. (4.19) [or in Eq. (4.23)],

—kB TJ cos(2tot +n /4)
( 7)in t3r2

(4.21)

k~T
0

27tl CO

(4.24)

This linear dependence on j was first derived by Montroll
in the high-temperature expansion of his quantum-
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mechanical calculation.
A straightforward calculation of the diffusion constant

by the Green-Kubo formula ' yields

kgT
DJ= 11m 2 J

2M t
(4.25)

V. CONCLUSION

which is physically more reasonable than the previous
case of a finite diffusion constant.

that the finite diffusion constant and the divergent mean
square displacement of a tagged oscillator found in the
literature are due to the zero-frequency mode present in
periodic boundary condition solutions. By using fixed-
end boundary conditions, we have shown that the dif-
fusion is indeed zero and that the mean-square displace-
ment does not diverge. Although these conclusions have
been obtained for one-dimensional chains, we expect that
they should hold for the harmonic-oscillator model in
higher dimensions. We also observe that these autocorre-
lation functions do not decay exponentially. '

We have examined a classical harmonic-oscillator chain
with nearest-neighbor interactions using both periodic and
fixed-end boundary conditions. The exact dynamical
behavior was determined by the method of recurrence re-
lations. Explicit results for both the velocity and displace-
ment autocorrelation functions were obtained. We find
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