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The dynamical behavior of a two-level system in an intense frequency-modulated field is obtained
without recourse to the weak-modulation assumption. Solutions to the optical Bloch equations are
expressed in terms of continued fractions involving 2&&2 matrices. Such matrix-continued fractions
are numerically evaluated to obtain a wide variety of absorption and fluorescence spectra in

frequency-modulated fields. Results in various special cases involving combinations of weak fields,
weak modulation, strong modulation, and strong fields are given. Analytical results for weak fields
but with an arbitrary degree of modulation are also presented. The spectra exhibit additional reso-
nances for strong modulation. The main resonance shifts and broadens considerably due to strong
modulation and saturation effects.

I. INTRODUCTION (2.1)

Frequency modulation (FM) spectroscopy has become a
very standard tool in ultrahigh-resolution spectros-
copy. ' Its chief advantage at large modulation frequen-
cies lies in its ability ' to produce signals free from low-
frequency noise and thus the resonance profiles can be
studied with good signal-to-noise ratio. The work so far
in this area has been done under the assumption that the
modulation index is very low so that only the signals to
the leading order in modulation have been calculated.
From the point of view of comparing experimental line
shapes with theoretical shapes it is important to know the
combined effect of strong modulation and of saturation
on the frequency-modulated signals. This is studied in de-
tail in this paper. The organization of this paper is as fol-
lows. In Sec. II, we rewrite Bloch equations by
transforming them to a new frame rotating with the in-
stantaneous frequency of the field. The solution of the
transformed Bloch equations is obtained in terms of the
matrix-continued fractions. In Sec. III, the absorption
spectra are calculated, whereas Sec. IV calculates the
fluorescence spectra in FM fields. The numerical results
are presented for saturating as well as nonsaturating
fields. No specific assumption on the strength of the
modulation is made. The effect of increasing modulation
is to enhance the strength of the signals in weak FM
fields. Analytical results in this case are presented. The
effect of the strong fields and strong modulation is to lead
to many new additional resonances in the spectra. The
main peak shows remarkable broadening and shift as the
modulation index M increases.

II. SOLUTIONS OF OPTICAL BLOCH EQUATIONS
AS MATRIX-CONTINUED FRACTIONS

We consider a two-level atom with states
~

1) and
~

2)
having the energy separation %coo. The atom interacts
with an intense electromagnetic field whose frequency is
modulated in time. The electric field of the radiation can
be represented as

where coI is the laser frequency and

(b( t) =M sin(Qt) (2.2)

with M and 0, being the. modulation index and modula-
tion frequency, respectively. We present the two-level
atom by the Pauli operators S+, S and S'. The atom-
field interaction in the dipole approximation can be writ-
ten as

where

+ i [cu)t+p(t)] — i [co(t+p(t)]+S e (2.3)

g = —d 8'/A' (2.4)

and d being the dipole matrix element, which is assumed
to be real. In this representation, the optical Bloch equa-
tions describing the dynamics of the atom can be written
as

~ + 1(S )= icoo
T2

(s+) —2ig
'"+' (s')

r

(S ) = i coo —(S —) +2ige
' "' + (S'), (2.S)

T2

-+, +, —I'mI t —ip(t)S =(S je
+ice(i+i/(t)

s =(s'),
(2.6)

(s ) =(~ (s'))n, ige—"' (—s+)
I |~It+p(t)],

+ige

where q is the equilibrium value of the atomic population
(S'). The relaxation times T) and T2 represent the de-
cay of the population and the dipole moment, respective-
ly. The angular bracket ( . . ) represents the ensemble
average. Going over to the rotating frame by the
transformation
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we get the dynamical equations for slowly varying quanti-
ties

we get the equation

n y„+bBoyn+) +bBoy. )=—S„pro (2.14)
X=A (t)X+I,

where

1
i 6 — i@(—t)

T2

0

—2lg

1i b ——+ip(t) 2ig
T2

(2.7)
where

1
Pg

—a —iA —in'

n

an

(2.15)
fl

—a +iA —in'

—lg lg
1 0

Bo 0 —1
(2.16)

S, I=
S

0
0

g/T)

(2.8)

(2.9)

with
—1

a„=2g in A—2 - 1

Ti

Lo = —2lg'g

iMA
2

(2.17)

and

)M( t) =P(t) =MA cos(Qt ) 6= cop —co) (2.10)

It is thus seen that frequency modulation of the laser field
adds an extra detuning factor which varies in time. Be-
cause of this, the exact solution of Eq. (2.7) has not been
so far obtained. Solutions are known ' for weak modu-
lation, but the field can be of arbitrary intensity. Here we
present the solution which is valid for arbitrary strength
of the field and for arbitrary values of the modulation in-
dex.

For this purpose we use the Fourier decomposition

P„=(B()) 'A„and ()) „=Z„(B()) 'r() .

This gives us the equation for Z„

P„Z„+bZ„+)+bZ„)——5n oI .

We further define

(2.18)

(2.19)

X„=Z„(Z„)) (2.20)

and obtain from (2.19) the recursion relation for n &0,

P„+bX„+,+b(X„) '=0 (2.21)

We now present the solution of (2.14) in terms of the
matrix-continued fraction. For this purpose we define

(g) —inQte 2.11
and hence

where for each value of n, g(") is a column matrix. The
equations of motion for P(") are now given by

.(n) 1 („) iMQ („+))

X„= b(P„+bX„—+)) ', n&0 .

This can be written for Y „=(X „) ' in the form

Y „=—b(P „)+bY „))

(2.22)

(2.23)

)Mn q(n ) ) 2. q(n)
2

(2.12a)
Equation (2.19) yields, for n =0, the expression

Z() ——[P()+bX) +b(X() ) '] (2.24)
~ (n) 1 ( ) iMB („+~)i h, +in fl — gz +— gz

T2 2

iMQ, („)) „. , („) (2.12b)
(X()) '= b(P ) +bY —

) ) (2.25)

The matrix (Xp ') can be obtained from Eq. (2.21) with
n= —1,

~ (n)
QI — in 6— P3"' ig g)"' +ig Pq" ' +I3—5„p

T]
(2.12c)

q(n) (2.13)

We find that Eqs. (2.12) couple g'"' with g(" +—". In the
steady state (g(")=0), on eliminating P3"' and using

(n)
1

Equations (2.22)—(2.25) give us Zp and hence we can cal-
culate Z),Zz, . . . from Eq. (2.20). This in turn can be
used to obtain g'"'. It may be noted here that the matrix-
continued fraction involves P„'s which are 2&2 matrices.
We have not used any approximation (except the
rotating-wave approximation) in deriving Eqs. (2.22)—
(2.25) and hence the results are valid for arbitrary strength
of the laser field and modulation. The continued frac-
tions [Eqs. (2.22) and (2.23)] which shall be used for fur-
ther study in this paper are of the form
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Pi+
2 + p

and F

P 3+ P 4+. . .

(2.26)

where P=M Q /4. This shows that X) and I' ) are odd
functions of M as P„'s are M independent. Hence Z0,
given by Eq. (2.24), is an even function of M. Given Z0,
Z) can be obtained from Eqs. (2.20) and (2.24):

Z 1 =+1Z0,
which is seen to be an odd function of M. With the help
of these equations we will derive the expressions for the
fluorescence and absorption spectra of a two-level system
in frequency-modulated fields.

III. ABSORPTION SPECTRA
IN FREQUENCY-MODULATED BEAMS

In this section we show how the formulation of Sec. II
can be used to obtain absorption spectra in FM fields of

I

-+ ico&t+ip(t)p=dS e +c.c. (3.1)

On using the Fourier decomposition (2.11), the polariza-
tion becomes

{g) icdtt+iy(t) ittnt-p= d, e +c.c. (3.2)

The rate of absorption of energy from the FM field can be
calculated by using (3.2) and the rate at which fields do
work. " An algebraic calculation shows that

arbitrary intensity and modulation index. The atomic po-
larization is, by definition,

p=d(S+ )+c.c. ,

which, on using Eq. (2.6), can be written as

dt dt
=E. =2gfm(Imp'( '+2gficoi g [(Imp')"' —Imps"')cos(nQt) —(Re/~("' —Re1(z"')sin(nQt)], (3.3)

where g is given by Eq. (2.4). In obtaining (3.3) small
correction ter ms have been ignored by assuming
cot &&MQ, Q. Equation (3.3) shows that the absorption
rates contain components varying sinusoidally at all har-
monics of the modulation frequency Q. The d.c. com-
ponent proportional to Imp') ' also depends on the modu-
lation frequency. In what follows, we will only be in-
terested in the components at 0:

A, ( —Q)=A, (Q) . (3.8b)

y(tt)( g) y(tt)(g)

y( )( g) q( )(g)

(3.9a)

(3.9b)

The behavior of g')"' and Pz"' with b can easily be proved
using the two equations in (2.14) and (3.7) and is found to
be

where

dt
=2g Ac@i[A,cos(Qt)+A, sin(Qt)],

for odd values of n and
(3.4)

y(tt)( g) q(tt)(g)

y(tt)( g) y(tt)(g)

A, = Imp(, "—lmq(, ", (3.5)

A, =Ref& ' —Re/')" . (3.6)

g')" and gz" can be obtained from expressions (2.20) and
(2.22)—(2.25). On using Eqs. (2.11), (2.26), and (2.27), the
symmetry properties of g'("' and 1(t2"' as a function of Q
are found to be

(3.10a)

(3.10b)

q(tt)( Q ) [y(tt)( Q ) ]e

4'"'( —Q) = —[4)"'«)]'
for odd values of n and

(3.7a)

(3.7b)

A, ( —Q)= —A, (Q), (3.8a)

(3.7c)

(3.7d)

for even values of n. These relations lead to the following
for the in-phase and quadrature components:

for even values of n In view . of (3.9); we find the follow-
ing symmetry property of A, and A, :

A, ( —5)= —A, (h),

A, ( —b, )= —A, (b, ) .
(3.1 1)

We next present the results for A, and A, obtained from
the numerical evaluation of the matrix-continued frac-
tions of Sec. II. For numerical check, we have compared
the results for weak modulation (M ~& 1) with the results
obtained earlier. We consider the two cases correspond-
ing to the weak and strong fields separately.

A. Weak field and arbitrary modulation

When the field is weak, some of the typical absorption
spectra are shown in Fig. 1. One finds absorption or
dispersion structure centered at Q=h. As M increases,
the signals no longer remain linear in M. In the weak-
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1
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I

times.

tion spectra as a function of the modulation frequency as
well as the detuning. The in-phase components (quadra-
ture components) are predominantly absorption (disper-
sion) type. The spectra of Figs. 2—5 show that as the
modulation index increases, additional resonant structures
start appearing. For example, for weak M, one has the
structures at

(4g 2 +g2 )
1 /2

As M increases, the structures corresponding to subhar-
monics of this value, i.e., for

1
(4 2+ g2) 1/2

start appearing. This can be understood from the struc-
ture of the FM field (2.1) which can be written as

E(t)= 8' g J„(M)e ' +c.c. (3.17)

Thus the radiation field is a superposition of fields with
frequencies co1 +n 0 and with intensities 8'J„(M)

~

Thus as M increases, the components co~+nQ for few low
n values start becoming strong and hence the resonances
corresponding to the subharmonics

(4 2+ g2)1/2
n

start showing up. This value of 0 corresponds to the van-
ishing of the determinant of the matrix P„defined by
(2.18). It may also be seen from Fig. 3 that the main peak
A.=(4g +b, )'/ shows considerable "power broadening"
and shifts as the modulation index increases. ' For low

0.2

01

05

As As

-01

-0.5 '

50 100 150

FIG. 4. The quadrature component A, as a function of Q for
different degrees of modulation and for strong fields. Other pa-
rameters are as in Fig. 2.

-02

FICx. 5. Same as in Fig. 4, except that now the detuning is
varied; other parameters are same as in Fig. 3.
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values of the modulation the width of the main peak in
A, (b) can be approximately obtained even for strong
fields from the zero of the determinant I') (Q & 2g) and is
found to be

003

2
1/2

1 4gI—
T2 0 1 — 1—2g T2

0
(.

0

IV. FLUORESCENCE SPECTRA
IN FREQUENCY-MODULATED FIELDS

I (t) =p»(t) = —,
' + (S'(t) ) .

On using (2.11),Eq. (4.1) reduces to
+ oo

+ y q(n)einnt

(4.1)

(4.2)

which on using )/i3"'* ——t/)3
'"' reduces to

In this section we use the formulation of Sec. II to ob-
tain the structure of the fluorescence spectra ' ' in FM
beams with arbitrary degree of modulation. The fluores-
cence I(t) produced by our two-level system is propor-
tional to the population in the excited state, which in turn
can be expressed in terms of (S'(t) ), y(n)( g) y(n)(g)

for odd n and

)/t'"'( —&)= [g'"'(&)]*,

f3"'( —b ) =1ft3"'( & )

(4.5)

(4.6)

for even n. On using (4.5) and (4.6) in (4.3) we find the re-
sults

—0.03

FIG. 7. The in-phase component I, of fluorescence as a func-
tion of modulation frequency for strong fields g =50, 6=10;
curves are labeled by the value of M.

I(t)= —, +2Re1()3 '+2 g
[Re1(t3"'cos(nest)

n=1
I, ( —0)= —I, (A), I, ( —0)=+I,(Q),
I, ( —b)= I,(b), I, ( —6—)= I,(b) . —

(4.7)

(4.8)

+ Im)lti3"'sin(n At ) ] . (4.3)

A =(0) —6 )tg t&—(1) (1) (1) ~ ~

T1
(4.4)

The symmetry properties of I, and I, under the change in
sign of t(). and 0 can be found from (4.4), (3.7), and (3.9):

10 x 25.

20.

15-

10-
I /g, I /p

As before we will deal only with the component oscillat-
ing at Q. Thus the in-phase component (quadrature com-
ponent) I,(I, ) will be equal Ref(3"(Img3"). The function
(/)3" can be obtained from (2.12c) in terms of 1tI", (/iz",
which already have been evaluated

The results of numerical calculations on fluorescence are
presented separately in the two cases. The numerical pro-
gram has been checked against the known analytical re-
sults in the case of weak modulation.

A. Weak field and arbitrary modulation

For weak fields and increasing degree of modulation,
the fluorescence spectra are shown in Fig. 6. The spectra
show more or less similar behavior as M increases except
that the nonlinearities in M start setting in. The in-phase
component has dispersionlike structure. The computed
spectra can be understood from the analytical results.
The function S'(t) can be calculated to second order in g
from the solutions already given in Sec. III. On using
(4.4), (3.14), (3.15), and a number of simplifications one
can show that

00S

05
00t

-05-

-1 5-

FIG. 6. The Auorescence spectra in modulated fields as a
function of modulation frequency for weak fields g=0. 1 and
for 4= 1.0. Different curves are for varying degrees of modula-
tion.

—0.0t,

—0 08-

FIG. 8. I, as a function of detuning 5 for fixed 0=60 and
g =25.
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FIG. 9. The quadrature component I, of Auorescence as a
function of 0 for parameters same as in Fig. 7. The inset shows
the result for weak modulation.

FIG. 10. I, as a function of 5 for fixed 0=60, g=25.
Curves have been drawn on different scales. The label "&&10""
on a curve indicates that the curve has been amplified 10" times.

I, =+4g g

I, = —4g g

+Q gJ„(M)

gJ„(M)
T2

+(b, —nQ)

+(b, —nA)

2Q(h nQ—)J„' (M) + J„(M)
MT) T2

—1
2An

( )
2(b, —nA)

MT2 " T

(4.9)

(4.10)

The numerical results of Fig. 6 are consistent with the
above analytical results. Unlike the absorption spectra,
the fluorescence, in phase component, say, has, in general,
both absorption and dispersion structure depending on the
parameters of the system.

B. Strong field and strong modulation

The results obtained from the numerical evaluation of
the matrix-continued fraction of Sec. II are shown in Figs.
7—10. Both 0 and 6 scan are given. The in-phase com-
ponents (quadrature components) have the dispersion (ab-
sorption) structure. The characteristics of the fluores-
cence spectra are very similar to those of the absorption
spectra of Sec. III. We, for example, find the appearance
of new resonances corresponding to n 0 =4g +b, as
the degree of modulation increases. The power broaden-
ing and shift of the main peak with increase in M is also
to be noticed. The similarities of fluorescence and absorp-
tion spectra can be understood from Eq. (4.4). For large
modulation frequencies O && 1/T&, we have

(4.1 1)

and hence from (3.4) and (4.3) we find the relation be-
tween absorption and fluorescence spectra in modulated
beams,

I, (b, )=——A, (b, ),

I,(b)= —A, (h) .
(4.12)

The numerical results shown in Figs. 3, 5, 8, and 10 are in
confirmation with (4.12).
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