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A method for exact solution of the stationary holographic degenerate four-wave mixing in reflec-
tion geometry in photorefractive media is presented. The effects of pump depletion and light ab-
sorption in the nonlinear dynamic medium are rigorously taken into account. Numerical steps in
the procedure are reduced to the solution of one simple nonlinear first-order differential equation, or
are absent altogether when the equation is linearized, or for the case of no absorption. The method
of solution is applicable to other wave-mixing geometries as well.

I. INTRODUCTION

Recent progress made in experiments on real-time
holography and four-wave mixing' (FWM) in reflection
or transmission geometry placed a more urgent need for
solutions of the theories of wave mixing in which pump
depletion and light absorption in the nonlinear medium
are accounted for. Purely numerical accounts or ac-
counts with undepleted pumps' ' have been available for
some time, but there are very few completely analytic
treatments. ' The closest in relevance to the work re-
ported here appears to be that of Cronin-Golomb et al. ,
who solved analytically (and by a different method) the
degenerate FWM in transmission and reflection geometry
without absorption. In one of his recent articles, Ja states
that it seems impossible to obtain an analytic solution to
the system of nonlinear coupled-wave equations for the
degenerate FWM when considering either light absorption
or different types of grating. We believe that we have ob-
tained such a solution to the problem.

The standard reflection geometry configuration for
FWM is depicted in Fig. 1. Two pump waves A& and A2
impinge on a dynamic nonlinear medium situated in be-
tween the planes z =0 and z =d from thetopposite sides.
Because of the nonlinear coupling of waves in the medi-
um, a signal wave As incident from the left causes gen-
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eration of the counter-propagating phase-conjugated wave
A4. Reflection gratings are being formed between the sig-
nal wave A3 and the pump A2, and the other pump is dif-
fracted off the grating into the reconstruction A4. The al-
ternative possibility of the signal making predominant
grating with the pump A l corresponds to the transmis-
sion geometry of FWM. Variation of the waves is
described by a set of nonlinear coupled-wave equations.

There exist two similar models, and two similar sets of
nonlinear coupled-wave equations describing the degen-
erate FWM. In one of the models ' the intensities of the
waves are used as the dependent variables; in the other
the complex wave amplitudes are used. In consistency
with our previous work on two-wave mixing in reflection
geometry' we use intensities as the variables. Also, we
will be concerned with the stationary energy transfer and
generation of the phase-conjugated wave, and not with the
phase transfer. In this case the nonlinear coupled-wave
equations in slowly varying amplitude approximation for
FWM in reflection geometry are of the forms
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FIG. 1. Four-wave-mixing configuration in a reflection
geometry. A& and A2 are the pump waves, A3 is the signal
wave, and 2& the phase-conjugated wave generated in the medi-
um.

where Il,I2,I3,I4 represent the beam intensities,
Ip ——I&+I2+I3+I4 is the total intensity, and the prime
denotes the derivative with respect to z. Further, o. is the
linear intensity absorption coefficient, and g is the effec-
tive wave-coupling constant, assumed to be real. Thus we
assume a 7r/2 phase shift between the interference fringes
and the index grating, so that the theory in this form ap-
plies to the physically and experimentally interesting case
of photorefractive media. The upper sign in Eqs. (1.1) ap-
plies when g &0, the lower when g &0. We will consider
the case g &O. Note that the system of equations (1.1) is
concerned only with the fundamental components of the
phase grating. ' The corresponding boundary condi-

31 3169 1985 The American Physical Society



3170 MILIVOJ R. BELIC 31

II. ANALYSIS OF THE EQUATIONS
WITHOUT ABSORPTION

It is convenient to proceed awhile with the general case
a&0, and at a certain point switch to the case a=O.
First, new dependent variables are introduced:
u ) ——I) +I4, v )

——I) —I4, u2 ——I2+I3 v2 —I2 I3 In
terms of these variables and two more auxiliary functions
f ] ——u ] —U] and fz

——u z
—U z, Eqs. (1.1) get the form
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The functions f, and fz obey their own differential equa-
tions, naturally not independent of Eqs. (2.1):
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With another change of dependent variables,
U] ——u2+u], U2 ——u2 —u], V] ——v2 —v$, V2 ——v2+v], and
a new set of auxiliary functions F] fz+f„Fz fz f„—— ———
a further simplification is achieved. Equations (2.1) and
(2.2) become
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tions are given at two end points, that is I, (0), Iz(d),
I3(0), and I4(d) are known.

The physics and processes occurring in FWM and real-
time (dynamic) holography are described at length else-
where, ' ' and will not be of major concern here. In Ref.
5 Ja considered different computational methods for solu-
tion of the system (1.1), and obtained various numerical
solutions (which we will use for comparison later). The
main result of this paper is a procedure for analytic solu-
tion of the system of equations (1.1) with or without ab-
sorption, and for different types of grating. The paper is
organized in the following way. Section II deals with the
procedure for solution of Eqs. (1.1) when no absorption is
present. In Sec. III the procedure is generalized to ac-
count for the absorption. The generalization requires nu-
merical integration of a simple first-order differential
equation, and some manipulation of implicitly given func-
tions. All the numerical steps in this paper are performed
on a Texas Instruments TI 59 handheld calculator. In
Sec. IV we present results and compare them with the nu-
merical two-point shooting method of Ref. 5.
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We rewrite Eqs. (2.8)—(2.11) for convenience in the fol-
lowing form:
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with the obvious notation. Then the intensities are given
by

coshx A 3 —A sinhx

A
&
——B coshy, A4 ——B sinhy,

where x and y obey

x —y = Y=cosh
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and a =[A cosh(2Y)+B ]/2D, b =A sinh(2Y)/2D .
This completes the writing of the solution for the case
a =0.

The connection of the prescribed two-point boundary
values with the values of the constants A, B,C,f» used
thus far in description of the intensities is most easily es-
tablished by evaluation of the missing boundary values
I)d, I2p, I3d I4p in terms of the given ones I&p

= 1,
I2d ——C2, I3p ——C3, and I4d ——0. This is achieved by solv-
ing the following system of four algebraic equations:

2 2A2p+A3d =C2+C (2.16a)

where E=2+I](d)Cz and A; =~I;. The remaining
three equations (for V], Vz, and Fz) should either give
two extra relations among the intensities, or sufficient in-
formation about some auxiliary functions which would al-
low unique determination of the intensities. The first of
the two strategies will be followed in the case a=0, the
second in the case a&0. Indeed, if a=O, equations for
V~ and V2 are easily integrated, to yield

U2F)
F) ———gF), F2 ———g

Ui
(2.4)

and three of these equations are integrated without diffi-
culty:
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obtained when boundary conditions are applied to Eqs.
(2.12). Here A2O=QI2(0), etc. The solution is given in
the form

A &d
——cosg, A &o ——sing,

A zo
——+C2+ C3cosl7 A 3d +Cq+ C3sinr),

where

1+C3+ C2e
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and the intensities are uniquely determined by Eqs. (2.13).
This completes the analysis of the case o.=O. In Fig. 4
the analytic solution a=O is compared with the numerical
solution of Ref. 5. As expected, no noticeable difference
is evident. In Ref. 8 Cronin-Golomb et al. also reported
an analytic solution to the degenerate FWM in reAection
geometry without absorption, obtained by a different
method. However, a comparison is difficult to establish,
since in their solution the procedure for connecting the
constants of integration with the prescribed boundary
values is not given.

In the quadratic equation for cotg we have retained the al-

ways positive solution. Then the unknown constants
A,B,C,fd are given in terms of the known ones:

tion in the form of sinp=F&/2GH and cosp=E/2GH,
respectively, where p =A, +p. The completeness is
achieved when the equation for F2 is brought into con-
sideration. In terms of the quantities just introduced one
obtains

q'= —gEF& e ~ tanhu, (3.5)

where q =A, —p. When integrated this equation yields

E gE
q = qd — v+ Ud — e Ue ~dg, (3.6)

with U =u —az. Thus the determination of the intensities
as given by Eqs. (3.4) requires solution of a first-order dif-
ferential equation, Eq. (3.1); evaluation of an integral, Eq.
(3.6); and two relations among the four intensities, Eqs.
(2.8) and (2.9). The numerical solution of Eq. (3.1) is sim-
ple enough to be performed on a TI 59 handheld calcula-
tor. In actual computations we solved the system of equa-
tions

u'=g sin p tanhu +a, (3.7a)

q' = ——sin2p tanhu
2
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where p =tan 'F&/E. The initial values are given at
z =d, and the integration is performed backwards to
z =0. Some of the outputs are provided in Fig. 2.

According to Eqs. (3.4) the intensities are given with

III. THE GENERAL CASE a&0

For treatment of the general case we have to go back to
Eqs. (2.3) and (2.4). Actually two relations among four
intensities are already known [Eqs. (2.8) and (2.9)], and
the additional information is obtained when U& is
represented as e ~ coshu, and correspondingly V& as
e& sinhu. Then P = —,

' ln(E +F ~ ), and u is found to satis-
fy the following differential equation:

I =—e~+"sin (3.8d)

u' —gF)e ~ tanhu =o. .

In terms of the intensities we have
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Ap+A4 ———e +"=H
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00

Together with Eqs. (2.8) and (2.9) a system of four equa-
tions is formed. However, this system is not closed, as
can be seen if a solution of the form

-05
0.0 Z(cm) 02

A ~
——G cosA, , A3 ——G sinA, ,

A2 ——H cosp, A4 ——H sinp

(3.4a)
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is assumed. Then Eqs. (3.2) and (3.3) are satisfied identi-
cally, while Eqs. (2.8) and (2.9) provide the same informa-

FIG. 2. Functions u (z), q(z), and y(z), needed for specifica-
tion of the intensities, and corresponding to the examples con-
sidered in Sec. IV. The points indicated atop the curves u(z)
and q(z} are obtained from the analytic solution of the linear-
ized Eqs. (3.7).
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Therefore, the intensities are given in terms of the four
quantities P,p, u, q. The first two of the four, e4' and p,
are connected with E and F& by the polar-rectangular
coordinate transformation, and thus are equivalent to
them. u is the solution of a simple differential equation,
and q a simple functional of u. In actual calculation of
these quantities the greatest problem presented the choice
of the correct initial values at z=d. The comparison
with the all-numerical approach of Ja (Ref. 5) is depicted
in Fig. S. We postpone the discussion until the next sec-
tion on results.

The problem of matching boundary conditions is now
more involved, but still tractable. In our treatment it is
assumed that I~~ (defining E), fd (defining F& ), and ud
and qd (being the initial values for the differential equa-
tions) are known. Our philosophy is similar to what has
been done for the case a=0. We determine the missing
boundary values Po,po, uo, qo at z =0 in terms of the given
ones at z=d, and then using the split boundary condi-
tions for intensities find the correct corresponding com-
bination of Pd, pd, ud, qd. Thus looking at Eqs. (3.8) at
z =0 and z =d one finds

Pp —uo ——ln2(1+ C3 ),
p~+ ud = ln2C2,

(3.9a)

(3.9b)

po+9'o
tan

2
=QC, , (3.9c)

pd=9'd . (3.9d)

On the other hand, from the definition of p and P it is

tanpo ——e tanpd,gd

No=Ad+ 2»g,
(3.10a)

(3.10b)

where

1+e g tan pd

1+tan pd
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——0.392),

and qo(qq) (dashed lines, for different values of ud). These
functions figure in the analysis of boundary conditions for the
analytic procedure.
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From the numerical integration the functional dependence
uo(u~) and qo(qd) is also known. In Fig. 3 we display
these functions. Note that qo is also parametrically

C2
ud +uo(ud ) = ln + —, in/(qd )1+C, (3.12)

The point of intersection of these two curves on the plane
(ud, qd) defines the appropriate choice for ud and qd.
Solution of Eqs. (3.11) and (3.12) is estimated graphically,
and iterated for greater accuracy. For a realistic range of
parameters and boundary values (as, for example, con-
sidered in Ref. 5) the solution is unique. Equations (3.9b)
and (3.9d) then yield the values of Pd and pd. In this
manner all the relevant quantities Pd,pd, ud, qd used in
description of the intensities are evaluated in terms of the
prescribed boundary values I/Q I2d I3Q I4d.

IV. RESULTS

In this section our results are summarized and com-
pared with the numerical results of Ja. For the case of
no absorption the intensities are given by

I) ——I]d cosh y, I4 ——I~d sinh y,
I2 ——(C2 I3d) cosh (y+ F)—,

I3 ( C2 I3d ) sinh (y + 1')

(4. la)

(4.1b)

(4.1c)

~here Y=cosh '[C2/(C2 —I3d)]', and y is given by
Eq. (2.15). The missing end-values for intensities are
determined from Eqs. (2.17):

I~d=cos g, I3d (C2+C3)s—in g, (4.2)

where cot/ and tang are given by Eqs. (2.18) and (2.19).
Using the values g =6 cm ', d=0.2 cm, C2 ——1, and

C3 ——0.6 (in units of I&o), which correspond to an example
considered in Ref. 5, we obtain /=0. 3502, g=0.3088,
I&d =0.8823, I3d ——0. 1478, Y =0.4053, and y as a func-
tion of z is depicted in Fig. 2. In Fig. 4 the calculated
values for the intensities are plotted against the computed
curves of Ja, taken from Fig. 2 in Ref. 5. As expected, the
agreement is complete. In order to check the numerics of
Sec. III we have also solved the case a=0 at few z points
by the method of Sec. III. These points are also displayed
in Fig. 4.

For the case with absorption, the intensities are given

by Eqs. (3.8). Four z-dependent functions P,p, u, q are
needed for specification of the intensities. The evaluation
of these functions requires the knowledge of four one-side
boundary values, which in turn have to be determined
from the two-sided boundary conditions, as described in

0

dependent on u~, as can be seen from Fig. 3. Actually,
from Eq. (3.6) it ls qo=qd+s(ud), where s stands for a
shift. Equation (3.9c) then, by the use of Eqs. (3.9d) and
(3.10a), turns into a quadratic equation for tanqd.

e "tanqd + tan(qd +s)

2+C,
[1—e "tan(qd ) tan(qd+s)] (3.11)

1 —C3

which defines an implicitly given function qd(ud). Like-
wise uo is parametrically dependent on qd, and a com-
bination of Eqs. (3.9a) and (3.10b) leads to an equation for
ud(q~):
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FIG. 5. Comparison of the analytic solution with absorption
and the numerical solution of Ref. 5. The curves are taken from
Fig. 2 in Ref. S, and the points indicated are obtained by the
method of Sec. III, Eqs. (3.8).

FIG. 4. Comparison of the analytic results without absorp-
tion with the numerical results of Ref. 5. The curves are taken
from Fig. 2 in Ref. 5, and the points indicated are obtained by
the analytic procedure described in this paper: the circles by. the
method of Sec. II, and the triangles by the method of Sec. III.

Sec. III. So, going backwards in Sec. III, we first solve
Eqs. (3.11) and (3.12) for the values of the parameters as
in the previous example, and for a =3 cm ', to find
ud ——0.271 and q~ ——0.392 approximately. Using the
value of ud one finds P~ =0.422, and also pd

——qq ——0.392.
Thus f~ ———0.539 and E= 1.41, and all the necessary ini-
tial information is available. Now we are in position to
solve differential equations (3.1) and (3.5) [the curves u (z)
and q (z) are plotted in Fig. 2], to calculate the intensities,
and to compare them with the numerical output of Ref. 5.
This is accomplished in Fig. 5.

We note that the function u (z) is smooth and monoto-
nous in behavior, and rather small for realistic values of
the parameters (in our example u varies between —0.3
and 0.3 over the whole range of z). Thus the differential
equation for u can be linearized with little error, and
solved exactly The so.lution is of the form

u =ude

1 —e" —Ee ln
n p„—p ~ E+e~ +&d

g

(4.3)

The whole procedure is now exact, free of computations,
and reduced to manipulation of algebraic equations and
implicitly given functions. In Fig. 2 we provide for com-

parison the exact solution of the linearized equation for u
as well.

The whole treatment of degenerate FWM in reflection
geometry as given in this paper is easily adopted and ap-
plied to other geometries, for example to the forward
FWM, where all four waves propagate generally in the
same direction, and impinge on the nonlinear medium
from one side, or to the degenerate FWM in transmission
geometry, as reported in Ref. 11. The method is also
applicable to other wave-mixing processes, for example to
the degenerate two-wave mixing in reflection geometry,
as is established in Ref. 10.

In conclusion, we propose a procedure for exact, analyt-
ic solution of a model of FWM in reflection geometry for
photorefractive media when the absorption in the non-
linear medium is taken into account, and depletion of the
pumps allowed for. The numerical steps in the procedure
are reduced to a minimum, or absent altogether (when
there is no absorption, or when the equation for u is
linearized). The method is applicable equally well to oth-
er types of grating or wave-mixing geometries.
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