Comparison of measured and calculated Stark broadening parameters for neutral-helium lines

M. S. Dimitrijević

Institute of Physics, P.O. Box 57, 11001 Beograd, Yugoslavia

S. Sahal-Bréchot Observatoire de Paris, 92190 Meudon, France (Received 27 February 1984)

Stark broadening parameters for neutral-helium lines obtained using a semiclassical perturbation formalism are compared with critically selected experimental data. Our data are also compared with the results of Benett and Griem as well as with the semiclassical convergent calculations of Bassalo, Cattani, and Walder.

I. INTRODUCTION

Recently, we have calculated¹ electron and proton impact linewidths and line shifts of 56 neutral-He lines in the ultraviolet, visible, and infrared regions of the spectrum using a semiclassical perturbation formalism.^{2,3} The version of semiclassical approach used in our calculations differs in several respects from the other large-scale calculations⁴⁻⁷ of neutral-He lines. Since He is a simple atomic system and since many experimental Stark broadening data are available for He lines,^{8,9} the data we obtained provide an opportunity for testing various approximations included in the semiclassical perturbation formalism. Our data as well as the results of Benett and Griem⁴ and semiclassical convergent calculations of Bassalo et al.7 are compared here with the critically selected^{8,9} experimental data10-22 in order to test various sets of assumptions involved in different approaches.

II. THEORY

We calculated electron-impact broadening parameters of isolated neutral He lines using the semiclassical perturbation formalism.^{2,3} The relations for (full) half width (w) and shift (d) in the framework of the abovementioned approach are

$$w = N \int_0^\infty v f(v) dv \left[\sum_{j \neq i} \sigma_{ij}(v) + \sum_{j' \neq f} \sigma_{fj'}(v) + \sigma_{el} \right], \quad (1)$$

$$d = N \int_0^\infty v f(v) \, dv \, \int_{R_3}^{R_d} 2\pi \rho \sin(2\phi_p) d\rho \,. \tag{2}$$

The inelastic cross section $\sigma_{ij}(v)$ can be expressed by an integration over the impact parameter of the transition probabilities P_{ij} as

$$\sum_{j \neq i} \sigma_{ij}(v) = \frac{1}{2} \pi R_1^2 + \int_{R_1}^{R_d} 2\pi \rho \, d\rho \sum_{j \neq i} P_{ij}(\rho, v) \,. \tag{3}$$

Using the adiabatic approximation, the elastic cross section is

$$\sigma_{\rm el} = 2\pi R_2^2 + \int_{R_2}^{R_d} 8\pi\rho \, d\rho \sin^2\delta \,, \tag{4}$$

$$\delta = (\phi_p^2 + \phi_q^2)^{1/2} ,$$
(5)

$$\phi_p = \sum_{j \neq i} \phi_{ij} - \sum_{j' \neq f} \phi_{fj'} \; .$$

Here, *i* and *f* denote, respectively, the initial and final levels and *j* and *j'* the corresponding perturbing levels. The phase shifts ϕ_p and ϕ_q , due respectively to the polarization ($\sim r^{-4}$) and to the quadrupole potential ($\sim r^{-3}$), are given in Ref. 2 (Sec. 3, Chap. 2).

All of the cutoffs (R_1, R_2, R_3, R_d) are described in Ref. 3 (Sec. 1, Chap. 3). We recall here that we have "symmetrized" the inelastic cross section by replacing v^2 by its modified value due to collisions, i.e., $v^2 - (\hbar \omega_{jj'}/m)$, where $\hbar \omega_{ij'}$ is the threshold energy.

In terms of the S matrix for a collision of a single electron with the atom, one has

$$\sum_{j,j'\neq j} (P_{jj'} + P_{jj}) = 2\{1 - S_i S_f^{-1}\}_{av}, \qquad (6)$$

where the curly brackets $\{ \}_{av}$ indicate an angular average. Griem *et al.*⁴ as well as Sahal-Bréchot^{2,3} adopted a perturbative method based on the series expansion of the *S*matrix elements. Griem *et al.*⁴ neglected the elastic term P_{jj} and took into account elastic collisions via the strong collision term. The low cutoff is determined by the condition⁴

$$\{1 - S_i S_f^{-1}\}_{av} \approx (\frac{3}{4})^{3/2}$$

or

$$\sum_{i,j'\neq j} (P_{jj'} + P_{jj}) \approx 1.3$$
 ,

while in Refs. 2 and 3 the lower cutoff for inelastic collisions (R_1) is determined from the condition $\sum_{j'\neq j} P_{jj'} = \frac{1}{2}$ and the corresponding one for elastic collisions (R_2) from the condition $P_{jj} = 2$.

The "convergent approach" is based on the analogy between the Dyson-series and Taylor-series expansion of e^x . In this case the divergence for small impact parameters

<u>31</u> 316

does not exist and lower cutoffs are not needed. This approach, developed by Vainshtein and Sobel'man²³ in a two-level approximation, was applied with some modifications by Dyne and O'Mara²⁴ and, recently, in the many-level approximation by Cattani, Yamamoto, Bassalo, and Walder^{7,25,26} to calculate Stark broadening parameters of neutral-helium lines. In Refs. 1–3 ions had been treated in the impact approximation. To take the ion contribution into account, here we use the approach developed by Griem *et al.*⁴ and Griem,²⁷ due to its simple applicability to different kinds of perturbing ions. In terms of the parameters A and R,^{4,27} total width and shift are given by

$$W_{\text{tot}} = [1 + 1.75A(1 - 0.75R)]w$$
,

 $d_{\rm tot} = d \pm 2.0 A (1 - 0.75 R) w$.

The sign in the shift equation is equal to that of the low-velocity limit of d.

III. COMPARISON OF MEASURED AND CALCULATED VALUES

Our results¹ as well as the calculations of Benett and Griem⁶ and Bassalo *et al.*,⁷ are compared with the critically selected^{8,9} experimental data.¹⁰⁻²² The criteria for selection of experimental papers were as follows:^{8,9} (a) an independent and accurate determination of the plasma electron density N_e , (b) a reasonably accurate determination of the electron temperature, (c) a discussion of other interfering broadening mechanisms and appropriate ex-

TABLE I.	Key data	on experiments.
----------	----------	-----------------

			Method of me	easurement
Author	Year	Plasma source	Electron density	Temperature
Wulff (Ref. 10)	1958	Low-pressure pulsed arc	Inglis-Teller limit and composition data	HeII to HeI line intensity ratio
Berg <i>et al.</i> (Ref. 11)	1962	Electric T tube	Absolute hydrogen plus helium continuum intensity	HeII to HeI line intensity ratio
Bötticher <i>et al.</i> (Ref. 12)	1963	Wall-stabilized arc	Absolute intensities of HeI lines	Absolute intensities of He I lines
Lincke (Ref. 13)	1964	Electric T tube	H_{α} , H_{β} , H_{γ} , 3889-Å He I line profiles and absolute hydrogen plus helium continuum intensity	Hydrogen line to continuum intensity ratio
Greig <i>et al.</i> (Ref. 14) Greig and Jones	1968 1970	Electric T tube	$\mathbf{H}_{\boldsymbol{eta}}$	H_{β} to continuum intensity ratio
(Ref. 15)				
Kusch (Ref. 16)	1971	Pulsed arc	$\mathbf{H}_{\boldsymbol{eta}}$	H_{β} to continuum intensity ratio
Morris and Cooper (Ref. 17)	1973	Plasma jet	Stark widths of H _β and He _I 5016- and 4921-Å lines	Absolute intensities of HeII lines
Einfeld and Sauerbrey (Ref. 18)	1975	Low-pressure pulsed arc	Absolute intensity of the He continuum radiation at 5300 Å	Absolute intensity of HeI 5016-Å and HeII 4686-Å line
Chiang et al. (Ref. 19)	1977	T tube	Michelson-type interferometer at 6328 Å	H_{β} line to continuum intensity ratio
Solwitsch and Kusch (Ref. 20)	1979	Low-pressure pulsed discharge	Michelson-type interferometer at 5145 and 6471 Å	Absolute intensity of HeII 3203- and 4686-Å lines
Kelleher (Ref. 21)	1981	Wall-stabilized arc	H_{β} Stark width	Absolute intensity of HeI lines
Gauthier et al. (Ref. 22)	1981	CO ₂ laser produced plasma	He I 3889-Å Stark linewidth	Absolute intensity of He I 3889- and 6678-Å lines

. ف	
iem	
5	
put	
ät 8	
ene	
. В	
V.BC	
al.	
et	
alo	
lass	
ć, E	
^{BCV}	
Ŕ	
ults;	
rest	
'n	
8, O	
DSI	
11	
les.	
ı lir	
iun	
hel	
ral-	
eut	
le n	
mos	
o	
ns f	
idtl	
fw	
hal	
ted	
ula	
alc	
Jd C	
) aı	
W, "	
q ()	
ure	
eas	
Ē	
0 u	
riso	
ıpaı	
Qui	
ΕI	
BLJ	
TA	
-	1

ition	(Å)	temperature (K)	Electron density $(10^{16} \mathrm{cm}^{-3})$	$W_m/W_{\rm DSB}$	$W_m/W_{\rm BCW}$	W_m/W_{BG}	Accuracy	Ref.
bo	5015.68	30 000	3.2	0.84	0.78	0.72	B	10
		24 000	16.5	1.01	0.97	0.86	B	11
		15 600-16 900	1.0-2.0	1.33-1.11	1.20 - 0.99	1.13 - 0.94	U	12
		22 700	9.3	1.01	0.91	0.86	В	13
		25 000 and 23 000	2.7 and 1.7	1.42 and 1.38	1.28 and 1.23	1.20 and 1.17	C	15
		18 000-26 000	0.8-4.6	1.96-2.19	1.76 - 1.99	1.66 - 1.86	D	16
		38 000	2.6-3.6	1.11 - 1.09	1.05-1.03	0.99-0.97	В	18
		17400	10.5 and 12.6	1.20 and 1.04	1.05 and 1.02	1.01 and 0.88	V	19
		20 000	6.7 and 7.7	1.07 and 1.13	0.95 and 1.00	0.91 and 0.96	B	20
		20 900	1.03	1.09	1.10	0.92	B^+	21
$^{1}P^{o}$	3964.73	20,900	1.03	1.14	1.01	0.91	B^+	21
1S	7281.35	20,900	1.03	1.25	1.10	0.96	B^+	21
s ¹ S	5047.74	30 000	3.2	1.05	0.88	0.78	B	10
		14 50016 900	0.5-2.0	1.84-1.26	1.64 - 1.09	0.98-0.60	U V	12
		20 900	1.03	1.20	1.06	0.92	B^+	21
H^1D	6678.15	20 900	1.03	1.25	1.26	1.11	B^+	21
		20 000	10-160	1.13 - 0.47	1.07-0.50	1.010.48	U	22
$d_1 p$	4387.9	14 500-15 100	0.5-0.75	0.74-0.92	0.57-0.90	0.49-0.52	C C	12
$^{3}P^{o}$	3888.65	30 000	3.2	1.08	1.04	0.87	B	10
		26 000	15	1.36	1.30	1.11	В	11
		18 000-26 000	0.8-4.6	2.06—2.33	1.91-2.22	1.64-1.88	D	16
		20 000	6.7-11.4	1.20-1.35	1.12-1.26	0.96-1.08	B	20
		20 900	1.03	1.16	1.09	0.92	B^+	21
3P°	3187.74	29 000	15	1.23	1.18	1.00	B	11
		20 000	6.7-11.4	1.15-1.18	1.05-1.07	0.92 - 0.95	B	20
		20 900	1.03	1.18	1.08	0.94	- B +	21
${}^{3}P^{o}$	2945.10	40 000	1.2	1.16	1.07	0.98	Ú	23
· -		20 900	1.03	1.12	1.01	0.89	B^+	21
S ₂	7065.19	20 900	1.03	1.14	1.02	0.90	B+	21
³ S	4713.15	30 000	32	1.05	0.97	0.85	B	10
		20 000	13	1.33	1.16	1.02	В	11
		22 700	9.3	1.22	1.04	0.91	B	13
		20 900	1.03	1.24	1.06	0.93	B+	21
S ²	4120.82	30 000	3.2	1.02	0.76	0.77	В	10
		14 500-16 900	0.5-2.0	1.92 - 1.19	1.45-0.89	1.39-0.89	Ċ	12
ç		20 900	1.03	1.23	0.92	0.91	B +	21
<i>d</i> , <i>l</i>	5875.62	20 900	1.03	1.18	1.39	1.00	B^+	21

<u>31</u>

<u>31</u>

COMPARISON OF MEASURED AND CALCULATED STARK

IABLEIII	. Comparison of Wavelenoth	measured and calculated	Electron density		B, OUL LESUIS, d BCW, J	Jassalu et ut., uBG, DG		
Transition		(K)	$(10^{16} \text{ cm}^{-3})$	$d_m/d_{\rm DSB}$	$d_m/d_{\rm BCW}$	$d_m/d_{\rm BG}$	Accuracy	Ref.
25 1S-30 1P°	5015.68	24 000	16.5	1.05	1.23	0.98	В	11
- J		15 60016 900	1.0 - 2.0	0.79-0.92	0.66-0.76	0.69 - 0.80	C	12
		22 700	9.3	0.70	0.60	0.66	B	13
		10 000-16 000	0.6-2.3	1.61-1.00	1.39 - 0.83	1.26 - 0.87	B	17
		20 900	1.03	1.29	1.23	1.17	B	21
$2s {}^{1}S - 4p {}^{1}P^{o}$	3964.73	20,900	1.03	1.16	1.10	0.96	B	21
$2p ^{1}P^{0} - 3s ^{1}S$	7281.35	20,900	1.03	1.05	1.31	1.19	B	21
$2p^{1}P^{0}-4s^{1}S$	5047.74	14 500-16 900	0.5-2.0	0.85-0.83	0.99-0.96	0.58-0.50	C	, 12
· · · · · · · · · · · · · · · · · · ·		20,900	1.0-1.03	1.10	1.31	1.20	B	21
$2p^{1}p^{0}-3d^{1}D$	6678.15	20,900	1.03	1.27	1.87	1.22	B	21
		20 000	10-49	0.28-0.30	0.32 - 0.37	0.56-0.58	C	22
$2n^{1}P^{0}-5d^{1}D$	4387.9	14 500-15 100	0.5-0.75	0.088-0.11 ^a	$0.072 - 0.11^{a}$	$0.059-0.061^{a}$	C	12
$2^{S}{}^{3}S-2^{D}{}^{3}P^{O}$	3888.65	26 000	15	1.27	1.82	1.27	В	11
		14 500-18 000	0.5-3.5	1.89-0.97	2.48 - 1.28	1.91 - 0.99	Ŋ	12
		10 000-16 000	0.6-2.3	1.43-1.27	1.81-1.66	1.44-1.25	В	17
		20 900	1.03	1.31	1.82	1.37	В	21
•		20 000	10-160	0.91-0.44	0.80-0.43	0.66-0.33	C	22
$2s^{3}S - 4p^{3}P^{o}$	3187.74	29 000	15	1.18	1.74	1.19	B	11
J		20,900	1.03	1.24	1.52	1.28	В	21
$2s^{3}S - 5p^{3}P^{0}$	2945.10	20,900	1.03	1.25	1.59	1.17	В	21
$2p^{3}P^{0}-3s^{3}S$	7065.19	20 900	1.03	1.09	1.31	1.22	B	21
$2^{1}{}^{3}P^{0}-4s^{3}S$	4713.15	20 000	13	0.85	1.12	0.93	В	11
J		22 700	9.3	0.88	1.02	0.96	B	13
		10 000-16 000	0.6-2.3	1.72 - 1.08	1.98 - 1.26	1.44-1.19	B	17
		20,900	1.03	1.04	1.25	1.18	B	21
$2p^{3}P^{0}-5s^{3}S$	4120.82	14 500-16 900	0.5-2.0	1.21-0.84	1.15-0.79	1.25 - 0.86	C	12
		20 900	1.03	1.02	1.03	1.10	B	21
$2p^{3}P^{o}-3d^{3}D$	5875.62	20900	1.03	2.57	0.76	1.81	В	21
^a Not taken in averagin	lg.							

TABLE IV. Average accuracy of different theoretical methods compared to Stark width and shift experimental data for helium lines. The results in parentheses are obtained by excluding the $2p^{3}D-3d^{3}D$ line which exhibits a strong unexplained difference between d_{m} and the calculated shift (especially for d_{DSB} and d_{BG}).

	All experiments included	Experiments with C and D accuracy excluded
$(W_m/W_{\rm DSB})_{\rm av}$	1.17±0.04	1.17±0.02
$(W_m/W_{\rm BCW})_{\rm av}$	1.07 ± 0.04	1.07 ± 0.04
$(W_m/W_{BG})_{av}$	0.92 ± 0.04	0.93 ± 0.02
$(d_m/d_{\rm DSB})_{\rm av}$	1.20 ± 0.13	1.13 ± 0.03
	(1.07 ± 0.04)	
$(d_m/d_{\rm BCW})_{\rm av}$	1.23 ± 0.08	1.34 ± 0.09
	(1.27±0.07)	
$(d_m/d_{\rm BG})_{\rm av}$	1.14 ± 0.07	1.14 ± 0.03
	(1.07±0.04)	

perimental problems. Total uncertainties (in electron density and Stark width or shift measurements) are subdivided into four ranges and coded by letters.^{8,9} The letters represent the following uncertainties: A, within 15%; B,

- ¹M. S. Dimitrijević and S. Sahal-Bréchot, J. Quant. Spectrosc. Radiat. Transfer 31, 301 (1984).
- ²S. Sahal-Bréchot, Astron. Astrophys. 1, 91 (1969).
- ³S. Sahal-Bréchot, Astron. Astrophys. 2, 322 (1969).
- ⁴H. R. Griem, M. Baranger, A. C. Kolb, and G. Oertel, Phys. Rev. 125, 177 (1962).
- ⁵J. Cooper and G. K. Oertel, Phys. Rev. 180, 286 (1969).
- 6S. Benett and H. R. Griem, University of Maryland Technical Report No. 71-097, College Park, Maryland, 1971 (unpublished). (See also Ref. 27.)
- ⁷J. M. Bassalo, M. Cattani, and V. S. Walder, J. Quant. Spectrosc. Radiat. Transfer 28, 75 (1982).
- ⁸N. Konjević and J. R. Roberts, J. Phys. Chem. Ref. Data 5, 209 (1976).
- ⁹N. Konjević, M. S. Dimitrijević, and W. L. Wiese, J. Phys. Chem. Ref. Data (in press).
- ¹⁰H. Wulff, Z. Phys. 150, 614 (1958).
- ¹¹H. F. Berg, A. W. Ali, R. Lincke, and H. R. Griem, Phys. Rev. 125, 199 (1962).
- ¹²W. Bötticher, O. Roder, and K. H. Wobig, Z. Phys. 175, 480 (1963).
- ¹³R. Lincke, Ph.D. thesis, University of Maryland, 1964.
- ¹⁴J. R. Greig, C. P. Lim, G. A. Moo-Yong, G. Palumbo, and H.

within 30%; C, within 50%; D, larger than 50%. Further differentiations are made by singling out slightly better pieces of data among similar ones by assigning a plus sign (+) to indicate the first choice.^{8,9} Key data from selected experiments are given in Table I. Comparisons between various calculations and experimental data are given in Tables II and III for widths and shifts, respectively.

The averaging is first performed within a multiplet and then the obtained values are averaged over the number of multiplets. The average values of the ratios of measured to calculated linewidths and line shifts are presented in Table IV.

The calculations of Bassalo *et al.*⁷ and of Benett and Griem⁶ give, on the average, the better agreement with linewidth measurements than the present calculations, while the results of Benett and Griem⁶ and the present calculations are in better agreement with experimental shifts. Since the assumed uncertainty of the semiclassical approach is within $20\%^{27}$ and the typical uncertainties of experimental data are within 30%, one can conclude that all three variants of the semiclassical approach are successful in the calculation of the Stark broadening parameters.

R. Griem, Phys. Rev. 172, 148 (1968).

- ¹⁵J. R. Greig and L. A. Jones, Phys. Rev. A 1, 1261 (1970).
- ¹⁶H. J. Kusch, Z. Naturforsch. Teil A 26, 1970 (1971).
- ¹⁷R. N. Morris and J. Cooper, Can. J. Phys. 51, 1746 (1973).
- ¹⁸D. Einfeld and G. Sauerbrey, Z. Naturforsch. Teil A 31, 310 (1975) and private communication.
- ¹⁹W. T. Chiang, D. P. Murphy, Y. G. Chen, and H. R. Griem, Z. Naturforsch. Teil A **32**, 818 (1977).
- ²⁰H. Solwitsch and H. J. Kusch, Z. Naturforsch. Teil A 34, 300 (1979).
- ²¹D. E. Kelleher, J. Quant. Spectrosc. Radiat. Transfer 25, 191 (1981).
- ²²J. C. Gauthier, J. P. Geindre, C. Goldbach, N. Grandjouan, A. Mazure, and G. Nollez, J. Phys. B 14, 2099 (1981).
- ²³L. A. Vainshtein and I. I. Sobel'man, Opt. Spectrosc. 6, 279 (1959).
- ²⁴R. J. Dyne and B. J. O'Mara, Astron. Astrophys. 18, 363 (1972).
- ²⁵M. Cattani, Phys. Lett. 38A, 147 (1972).
- ²⁶Y. Yamamoto and M. Cattani, J. Quant. Spectrosc. Radiat. Transfer 20, 271 (1978).
- ²⁷H. R. Griem, *Spectral Line Broadening by Plasmas* (Academic, New York, 1974).