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Deviations from Kleinman symmetry measured for several simple atoms and molecules
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Deviations from Kleinman symmetry for the second hyperpolarizability tensors of some simple
atoms and molecules (He, Ar, Kr, Xe, CH4, CF4, SF6, Hp, D2, Np, Op, CO2, C2H6, CHF3, and CpH4)
have been measured down to the 0.1% level of accuracy at several frequencies far below the first
strong electronic resonance, by means of dc-electric-field —induced second-harmonic generation
(ESHG). The results of the experiment are discussed within the framework of several models. The
observed Kleinman-symmetry deviations are small compared to the electronic dispersion, and ap-
pear to be dominated by electronic rather than vibrational contributions. However, vibrations are
shown to play a role in the case of H2„and the results observed for H2 and D2 differ significantly.
The observed deviation for He is relatively large and should provide a sensitive test of ab initio cal-
culations.

I. INTRODUCTION

Nonlinear optics has become a well-established means
of studying the properties of matter. ' Nonlinear optical
processes are mediated by the nonlinear susceptibilities,
which in general are tensors whose components are a
function of the frequencies of the applied fields. The
nonlinear susceptibilities are subject to a number of sym-
metries dependent upon the nature of the experiment and
the underlying symmetry of the system. " Some time ago,
in an attempt to elucidate the nature of the mechanism
chiefly responsible for second-harmonic generation in ion-
ic crystals, it was proposed by Kleinman that high-
frequency electronic processes lying well above the optical
frequencies employed (co —10 cm ') could be well
represented by nonlinear susceptibilities totally symmetric
in their spatial indices. This is now referred to as
Kleinman's conjecture ' or Kleinman symmetry. How-
ever, for ionic processes lying below the optical frequen-
cies employed, such a symmetry was deemed inappropri-
ate. Therefore, by studying the symmetry properties of
the nonlinear susceptibility tensor it was suggested that
the dominant contributing mechanism could be identified.

Accurate tests of Kleinman's conjecture in solids have
proven difficult, although some results are available. ' In
gases the most accurate test so far reported has been made
in inert-gas systems. " These measurements, made at
A, =694.3 nm, showed no significant departure from
Kleinman symmetry at the l%%uo level of accuracy. Since
there can only be electronic processes operative in such
systems, the results give a measure of the validity of the
conjecture. However, measurements of comparable accu-
racy made for some molecules indicate small deviations
from Kleinman symmetry. ' ' It can be asked whether
the. analog of Kleinman's original program, when applied
to gaseous media, might not prove a sensitive means of
distinguishing between vibrational and electronic contri-
butions to nonlinear processes in molecules.

In the following section we will review the theory and
establish notation. In Sec. III we give details of the dc-

electric-field —induced second-harmonic generation
(ESHG) experiment used to test for departures from
Kleinman symmetry down to the 0.1% level for a variety
of atoms and molecules at several wavelengths. In Sec. IV
we present the results of the experiment and in Sec. V we
discuss the results within the framework of several models
and calculate the vibrational contribution in H2. Finally
in Sec. VI we summarize the essential conclusions.

Pt(2co) = ,' X,'qg( ( 2to; to, c—o,0)EJ(co)E—k (to)Et (0), (2)

where EJ.(to) is now the jth component (in the laboratory
frame) of the macroscopic applied field, P;(2co) is the in-
duced macroscopic polarization oscillating at 2', and X' '

is the third-order nonlinear susceptibility, which for a gas

II. THEORY

In our experiment we are concerned with the process of
electric-field —induced second-harmonic generation
(ESHG) in gases for which, following the notation of Bo-
gaard and Orr, we have

p (2co) = —,y prs( 2to;to, to, O)Ep(t—o)Er(to)Es(0),

where Ep(to) is the 13 spatial component in the molecular
frame of the applied field oscillating at frequency co,

p (2co) is the a component of the induced dipole moment,
and yaprs ( —2 ; cocOo), a fourth-rank Cartesian tensor,
is the second hyperpolarizability tensor. Summation over
repeated indices is implied.

The hyperpolarizabilities possess a number of symme-
try properties. '"' ' ' Kleinman symmetry is the as-
sumption that the hyperpolarizabilities are invariant
under any permutation of their spatial indices. Since this
invariance can be shown to be exact in the static limit, '
and therefore in the limit of zero dispersion, it is tempting
to apply Kleinman symmetry more generally, especially
since doing so results in a significant reduction in the
number of independent components of the hyperpolariza-
bilities.

The macroscopic analog of Eq. (1) is
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is related to y by

y(3) &pl &y& (3)

where p is the number density of the molecules and the
angular brackets signify an isotropic average. I
represents the local-field correction factor, which in fact
may be neglected for our purposes.

Since g' ' is an isotropic tensor, it has at most only
three independent elements, ' and we may write'

the exact result R(0)=3. If we assume that Kleinman
symmetry is generally valid, the immediate consequence is
that R(co)=3 for all co. So by measuring R(co) we study
departures from Kleinman symmetry.

It should be noted that in the special case of third-
harmonic generation intrinsic permutation symmetry
guarantees that

X~ ( —3CO; CO, CO, CO ) /X~X~ ( —3CO; CO, CO, CO ) =3

X~( —2CO; CO, CO, 0 ) = +~X~ ( —2CO; CO, CO, 0 )

+X~~ ( —2CO; CO, CO, 0 )

+X~~( —2CO;CO, CO, O) . (4)

for all co.
The explicit relationship (for ESHG) between our

chosen components of 7' ' and the underlying microscop-
ic hyperpolarizabilities, of which they are orientational
averages, is given by '

A further simplification is possible. It follows from the
definition of the hyperpolarizabilities (and their macro-
scopic analog) that we may, without loss of generality,
construct them so as to be invariant under a simultaneous
interchange of the field frequency arguments together
with their corresponding spatial indices, but not including
the polarization frequency and its spatial index. " Follow-
ing Butcher we will refer to this as intrinsic permutation
symmetry. For ESHG intrinsic permutation symmetry
reduces the number of independent components of
X,jk~( —2co;co, co, O) to two.

Let us define"

R(CO) =X' '
( —2CO;CO, CO, O)/X' ', ( —2CO;CO, CO, O) .

Intrinsic permutation symmetry applied to Eq. (4) yields

X = (p/90)(2y g-„„+yg„„g),
(3)

(3)

where repeated Greek indices are summed over. From
this it is possible to see directly that if Kleinman symme-
try holds microscopically, then R(co) =3, and conversely
that deviations from 3 imply that Kleinman symmetry is
being violated at the microscopic level. For a closed-shell
atom the averaging process is superfluous and there are
only two independent components of y as well as of X' '.

An explicit quantum-mechanical expression for y, ap-
propriate when damping may be ignored, and suitable for
use even in the static limit, has been derived by Orr and
Ward' and is given here:

y~prs( co~;co),co—2, co3) =( I/fi ) g
P m, np (+g)

m, n (&g)

&g IV I
~&&m lusl ~&&~ lur IS'&4 II pl g &

(COmg CO )(C—O« —COi —CO2)(Cog —COi)

&glc l~&&~ leslg&&glc l~&&~ feplg&
(~~, —~.)(~« —~i)(~«+~2)

where g~ implies a summation over all of the terms gen-
erated by permuting the frequencies with their associated
spatial subscripts, ~ =co~+co2+co3, and p is the a com-
ponent of the electric dipole moment operator.

For field frequencies below the lowest resonant frequen-
cy of the system we may perform a power series expan-
sion about the origin, writing an expression of the form

y( —2co;CO, co, O)=y(0;0, 0,0)(l+rco +sco + .. ) (10)

for each of the components of y. The absence of odd-
powered terms comes about because y( —co;co~, co2,

co3) —}(co co[ co2 co3), as may be seen by explicitly
writing out the permutations in the expression. In fact
this is a general property of the hyperpolarizabilities in
the absence of damping. The form of the expansion will
survive the averaging procedure, so that we may write"

R(CO)=3(1+aCO +bCO + . )

for the monatomic gases, where the lowest excited state is
well above our second-harmonic frequency in all cases
considered. Indeed, to the extent that vibrational contri-

I

butions may be ignored, the same should hold true for the
molecules. This point will be discussed in greater detail
below.

III. EXPERIMENTAL PROCEDURE

The experimental apparatus is simi1ar to that previously
described by Shelton and Buckingham. A cw laser beam
is weakly focused through a gas sample subjected to a
static electric field. The static field breaks the symmetry
of the system, permitting the coherent generation of
frequency-doubled photons. The process is intrinsically
weak, but the signal is enhanced by means of periodic
phase matching. This is accomplished by the use of an
array of electrodes which is designed so as to reverse the
polarity of the electric field every coherence length
l, =m. /(2k„—k2„), where k„ is the wave vector at fre-
quency m in the gas. The resulting periodic phase shift in
the generated second harmonic serves to periodically can-
cel the accumulating phase shift due to normal dispersion,
thus allowing the continued growth of the signal
throughout the length of the sample. The coherence
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length of the gas is adjusted to match the fixed spacing of
the electrodes by varying the density of the gas until peak
signal is achieved.

A schematic diagram of the experimental apparatus is
shown in Fig. 1. The laser is either a cw argon-ion laser
operating at 488.0 or 514.5 nm, or a dye laser pumped by
the argon-ion laser and operating at 590.0 nm. The laser
output is typically 1 W. The beam is redirected and its
polarization is rotated by mirrors. Then a well-defined
horizontal linear polarization state of the laser beam is
selected by a Gian-laser prism polarizer. This is followed
by a Soleil-Babinet compensator (Special Optics model
No. 8-400) employed as a polarization rotating device. A
filter eliminates unwanted second-harmonic light generat-
ed in the crystal quartz elements of the compensator. The
beam is weakly focused, with confocal parameter about 20
cm, at the center of the electrode array (150 pairs of wires,
1.59 mm diameter and 2.69 mm center-to-center spacing,
giving a horizontal field). Weak focusing is dictated by
the requirement that the laser beam pass unobstructed
through the long and narrow gap between the electrodes.
Phase matching for this array typically occurs at a gas
pressure of about 1 atm (T=22 C), except for helium (a
low-dispersion medium) where the pressure is of order 100
atm. The applied field is typically 3 kV/mm, adjusted to
be safely below breakdown. After transmission through
the array and sample cell, the beam is recollimated and
sent through a double prism spectrometer which elim-
inates most of the visible fundamental while passing the
ultraviolet second harmonic. The Brewster angle dispers-
ing prisms pass light polarized in the horizontal plane
with negligible attenuation. A final filter eliminates the
residual fundamental. The second harmonic is detected
by photon counting with an uncooled EMI model No.
9893QB/350 photomultiplier tube. The dark count rate is
about 1 Hz and this is usually the only background. The
background is eliminated by modulating the high voltage
applied to the electrodes with a square wave at 10 Hz and
subtracting the voltage-off counts from the voltage-on
counts. The signal is typically 1000 Hz when the pump
polarization is parallel to the static field (range 50—30000

Hz).
When the fundamental beam is polarized either parallel

or perpendicular to the static field direction, the measured
second-harmonic signals are

or

S~~ CC [X~(—2';ci), co, O)]

SI ' oc [X,( —2';co, co, O)]

(12)

(13)

respectively. In either case the second-harmonic beam
will be polarized parallel to the static electric field.
Therefore, the desired ratio, R,h„,——7, /7 „„is in prin-
ciple simply determined by measuring R,„~,=(S~~ /SJ )'
since all extraneous experimental factors, such as the
detection efficiency and polarization selectivity of the
spectrometer, cancel out. In practice this is not necessari-
ly so, and the main experimental problem is to track down
and eliminate the various sources of systematic errors. A
brief discussion follows for each of the important
systematic-error sources.

The first requirement is that one prepare the fundamen-
tal beam in either of two accurately perpendicular linear
polarization states. A Soleil-Babinet compensator in a
fixed orientation (optic axis at m/4 rad from the input po-
larization direction) was used to rotate the fundamental
beam polarization by varying the compensator retardation
in increments of A, /2. The output polarization states were
tested using a second prism polarizer and found to be
linearly polarized (extinction ratio r ~ 3 ~ 10 ) and accu-
rately orthogonal (to within 1 mrad), contributing a negli-
gible error to R. In order that the polarization state of
the laser beam not be degraded before entering the sample,
care was taken to reduce the strain birefringence of the
windows of the gas cell. The windows were supported on
optically flat mounts at normal incidence to the beam.
With only the first window in place, r was measured to be
& 3)& 10,while with both windows in place and cycling
the cell to 120 atm, the extinction ratio stayed below
2&10 . Modeling the input window as a wave plate
with arbitrary orientation and a small phase retardation, it

DYE LASER ARGON- I ON LASER
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FIG. 1. Schematic diagram of the experimental apparatus showing the laser beam polarization optics, the sample cell in which the
modulated ESHG beam is produced, the double Brewster angle prism spectrometer which separates the second-harmonic beam, and
the electronics for synchronous photon counting. The case where the optical field polarization is parallel to the static field is illustrat-
ed. Further details are given in the text.
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may be shown that the fractional increase in the measured
value of R is 2r, where r is the extinction ratio (the coeffi-
cient is weakly dependent on the polarization selectivity of
the spectrometer and R —3 has been assumed). The
birefringence of the optics following the input window
contributes only to higher order and may be neglected.
Thus, the worst-case error due to window birefringence is
& 0.05% (barring fortuitous cancellation effects).

It is necessary to align one of the polarization states
parallel to the static field direction. Let the signal gen-
erated by the fundamental polarized at 0 from the hor-
izontal be denoted as S~. If the static electric field devi-
ates from the horizontal direction by a small angle 5, then
(assuming R = 3)

SD/S /2=R (1—45 ),
S /3/S /3 —(1—55) .

(14)

(15)

To set the electric field direction accurately parallel to the
horizontal optical polarization, the cell was rotated so as
to make S /3 —S /3 It was straightforward to reduce 6
to less than 5 mrad, such that resulting error in R, being
quadratic in 6, was negligible. The polarization selectivity
of the spectrometer weakly affects the coefficients of the
above expressions, but has no significant effect on the ac-
curacy of the alignment which may be obtained.

In the process of preparing the fundamental beam in
the desired polarization states, its intensity and direction
should not be altered. By passing the input beam through
the fixed plates of the compensator first and then through
the movable wedge, for the ideal compensator it follows
that the angles between the polarization vectors and the
optic axes of the plates will be constants for each interface
of every plate, for each retardation setting used (0, —,

'
A, ,

and IA,). In this case, there will be no polarization depen-
dence of the compensator transmission. Direct measure-
ment shows no significant polarization dependence of the
transmitted intensity (EI/I &10 ). Furthermore, there
will be no polarization-dependent steering of the beam in
the ideal case. The residual polarization-dependent beam
steering, between 0 or 1A, and —,

'
A, retardation, was mea-

sured to be 8+2 prad. This beam steering of the funda-
mental and the colinearly generated second-harmonic
beams will lead to large systematic errors in R ( & 1%) if
the second-harmonic beam is partially blocked. Careful
alignment and sufficiently large collimating apertures in
the spectrometer are essential to ensure unobstructed pas-
sage of the second-harmonic beam.

So far only geometric factors have been considered.
The measured value of R is also sensitive to the detection
nonlinearity due to dead time since S

~ ~

' and Sz ' differ
by nearly an order of magnitude. The dead-time correc-
tion for the photon-counting system was made negligible
by using fast electronics (pulse pair resolution 15 ns).
High-purity gases were used in the experiments, though
sample purity was in fact only a minor consideration.
Since R -3 (within 10%) for all the gases studied, the ef-
fect of as much as 1% of impurities would usually be
negligible. The overall stability of the apparatus was such
that the measurement precision was usually limited by
photon-counting statistics.

The final systematic-error source which was discovered
arises if there is even a small amount of extraneous
coherent second harmonic, generated outside the sample,
which may interfere with the desired signal. As the
quartz elements of the compensator generate such a spuri-
ous signal, a filter is used to reduce its intensity to a small
fraction of the photomultiplier dark count rate, and
modulation coupled with synchronous detection is used to
subtract out the residual background intensity. However,
because this residual background is coherent, the observed
signal will be given by

S,b, ~ (Es+2EsEbcosg+Eb), (16)

where E, and Eb are the signal and background wave am-
'plitudes and P is the relative phase shift between the two
waves. In order that the cross term in the above expres-
sion be negligible (relative size & 10 ) we require that
(Eb/E, ) &10 . Given the typical signal Sj =100 Hz,
this indicates that a coherent background intensity of
10 Hz will result in a significant systematic error. Such
a small intensity is ordinarily undetectable. Fortunately,
the amplitude of the ESHG wave E, is proportional to
the applied static field and changes sign when the static
field does. Reversing the polarity of the static field will
change the sign of the cross term in S,b, . Averaging re-
sults obtained before and after reversing the static field
polarity will cancel out the background interference term.
The interference term is clearly observed by reducing the
attenuation of the presample filter and may in the future
be exploited as a means of raising a very weak signal
above the background to allow its shot noise limited
detection.

IV. RESULTS

The results obtained for 15 atoms and molecules at
three different wavelengths are displayed in Table I and
Fig. 2, grouped according to molecular symmetry. The
quoted accuracy is a factor of 10 better than the best pre-
vious results. "' Our results (extrapolated to 694.3 nm)
are consistent with the previous results. The values of R
were obtained from between 3 and 15 separate runs (each
involving several measurements of S~~ and Sz for positive
and negative polarity of the cell voltage). The results for
Xe, which were obtained at only two wavelengths, are
possibly less reliable due to a slight modification of the
experimental procedure.

Especially careful measurements were made for He and
Ar in order that the frequency dependence of R(co) for
these atoms could serve as a check for systematic errors (a
change in the fundamental frequency necessitates changes
in most of the operating parameters of the experiment).
Since both the fundamental and second-harmonic fre-
quencies involved are far below any resonance in these
systems, R (co) must be a smooth function which extrapo-
lates to 3 in the static limit. Our results bear this out and
are consistent with the total systematic errors being less
than 0.1%. The errors which we have reported are statist-
ical estimates.

The main features of the data are the following. The
measured deviations from R =3 (Kleinman symmetry)
are less than 2%%uo, except for the diatomic molecules where
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TABLE I. Measured deviations from Kleinman symmetry, which appear as deviations from 3 of the
ratio R =g' '

( —2';co, co, 0)/g' ', ( —2';co, cu, 0).

Molecule

He
Ar
Kr
Xe
CHg
CF4
SF,
H2
D2
N2
02
CO2
C2H6
CHF b

C2H4

Point group

Sphere

Td

C3v

Elements'
w w/o

10

15

590.0 nm

2.967(3)
2.999(3)
3.003(10)

2.982(5)
2.995(13)
3.002(7)
2.890(4)
2.909(6)
2.951(5)
3.126(10)
3.014(9)
3.004(7)
2.949(7)
2.957(7)

R
Wavelength
514.5 nm

2.952(3)
2.999(3)
3.019(3)
3.034(13)
2.977(4)
2.995(4)
3.012(4)
2.867(2)
2.881(3)
2.945(3)
3.195(3)
3.025(5)
3.006(3)
2.940(4)
2.949(4)

488.0 nm

2.949(3)
3.000(6)
3.018(6)
3.043(19)
2.976(5)
2.999(5)
3.012(6)
2.858(3)
2.872(4)
2.942(4)
3.244(6)
3.034(7)
3.013(5)
2.925(4)
2.940(6)

'The number of independent components of y for ESHG, with or without Kleinman symmetry. ' '

bFor CHF3 both P and y contribute in a temperature-dependent fashion (Refs. 3, 18, and 20); the mea-
surements were made at 22'C.

the deviations fall within the range +8%. A one-
parameter fit of the form R(co)=3[1+2(co/coo) ] is an
adequate description of the data, except for the diatomic
molecules where a two-parameter fit of the form
R(co)=3[1+2(co/coo) +8(co/coo) ] is required [see Eq.
(11)]. Part of the reason for this difference may simply be
that the deviations for the diatomics are much larger
compared to the experimental uncertainties, thereby un-
rnasking departures from the simpler fitting function
which may also be present but unresolved for the other
systems. The slope of the line fitting R(co) versus co for
the atoms He, Ar, Kr, and Xe follows a regular progres-
sion with increasing size of the atom [Fig. 2(a)]. The
spherical-top molecules CH4, CF4, and SF6 follow the
same progression [Fig. 2(b)]. The values of R(co) for H2
and D2 are significantly different [Fig. 2(c)].

Two of the molecules studied should be treated as spe-
cial cases: 02 and CHF3. The exceptionally large devia-
tions observed for 02 may be related to the collision-
induced triplet~singlet vibronic transitions which fall on.
either side of each of the laser frequencies employed.
While these transitions are not dipole allowed, they have
been observed in absorption and may be important here.
Further measurements should resolve this question. On
the other hand, CHF3 has a permanent dipole moment
p' ' which is partially oriented in the static field allowing
the dominant contribution to the nonlinear susceptibility
to come from the nonvanishing first hyperpolarizability P
of the molecule. The nonlinear susceptibility, which now
includes contributions from components of p' ' and P, is
still a fourth-rank tensor and the general results given
above continue to hold. ' ' In any case, nothing parti-
cularily distinctive occurs for CHF3 with regard to Klein-
man symmetry.

Vibrational resonances will occur at frequencies below
the laser frequencies in this experiment, so for the mole-
cules the behavior of R(co) near co=0 will not be as sim-

To see whether a simplified model might adequately ac-
count for the general features of the experimental results
we considered two simple models where the dispersion of
X' ' is described in terms of a single effective resonance
frequency for the system. In what follows, the effective
resonance frequency of each system, ioo, is selected to give
the best fit of the linear susceptibility to an approximate
expression of the form X(co) ~ [1+(co/coo) ] .

Owyoung' has modeled isotropic systems with a classi-
cal anharmonic oscillator containing a single resonant fre-
quency and with an anharmonic term which leaves the
model suitably invariant under all symmetry transforma-
tions. The result is

~ijkl( iocr~io1~~2~~3) ~ ~(~cr)~(iol )+(~2)~(~3)

+ ('5ij'ski +~~k~jl +~il'5jk ) (17)

Note the similarity to Miller's rule. This leads to
X' '( —2';co, co, O) ~ [1+6(io/ioo) ]. Since Kleinman
symmetry is automatically satisfied by this model, it is
not suitable for investigating the deviations which occur.

A more sophisticated model is given by Ward et al."
and is based on a means of estimating the dispersion in
X' '( —3';co,co, co) due to Dawes. By making an effec-
tive frequency approximation in the formal expression for
the hyperpolarizability [Eq. (9)] and using some exact sum
rules, they obtain the result

X~( —2';co, co, O) =X~(0;0,0,0)[ 1+10(io/coo)

+63(co/coo) + . ] .
(18)

pie as the fitted curves suggest. This point will be dis-
cussed in greater detail below.

V. DISCUSSION



3150 VICTOR MIZRAHI AND D. P. SHELTON 31

306 —
(o)

3.04—

3.02

3.00

2.98

2.98

2.96-

2.96

(c) // 3.02 — (d)

3, 10— 2.983

3.00
2.96

2.92-

I

I xlo
I

2xIO 3xlo 4x IO

[cu(cm ')]
I xlo 2x IO

I

5x 10

I

4xlo

FIG. 2. Experimentally measured values of the ratio R(co) =P' ', /p' ', are plotted as functions of co . Deviations from Kleinman
symmetry correspond to deviations from R(co) =3 (the dashed horizontal line). The results have been grouped into the following
classes: (a) inert gas atoms, (b) spherical top molecules, (c) linear molecules, and (d) nonspherical top molecules. The data are well

described by straight lines constrained to pass through R(0)=3, except for the diatomic molecules H2, Nz, and 02, which require a
two-parameter fit (the fitting functions and parameters are given in Table II). The deviations from Kleinman symmetry fall in the
same range for all the systems studied, except the diatomic molecules where the deviations are about four times larger [note the dif-
ferent vertical scale in (c}].

This may be compared with the results of an ab initio cal-
culation for He, thought to be good to about 1%. The
ab initio results for He are adequately represented at low
frequencies by

X' '
( —2ro;co, ro, 0)=X' ' (0;0,0,0)[1+12(ro/roc) ] . (19)

For H2 one may combine the zero-frequency result of an
ab initio calculation with the result of a measurement at
A, =514.5 nm, to estimate the dispersion as
[1+ll(co/coo) ]. Thus, the model appears adequate to

describe the dispersion of X' ' in the frequency range be-
ing considered [(co/coo) -0.02].

Taking their calculation further to include X~„Bigio
and Ward give the result"

R(co)=3[1+—'(co/ro ) + ] (20)

In order to compare this result with our measurements,
we have fitted the experimental data with a function of
the same form, but with an adjustable parameter A re-
placing the coefficient + —', . of the model. The failure of
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the model is apparent upon inspection of Table II. The
coefficient A is seen to have either sign, with the largest
deviations being negative, in clear disagreement with the
model. Furthermore, even the largest coefficients are only
half as large as predicted by the model, and most of the
coefficients are less than —,', as large.

The simple models are unable to account for either the
size or the observed diversity in the deviations from
Kleinman symmetry for individual systems. The problem
is that there is an almost exact cancellation of the disper-
sion coefficients of X~ and X~, [which appear in the ra-
tio R(ro)], so that the deviations from Kleinman symme-
try can be 2 orders of magnitude smaller than the disper-
sion of the individual components of X' '. Calculation of
Kleinman-symmetry deviations therefore requires much
greater accuracy than that needed for the calculation of
the dispersion of the individual components. Indeed the
deviations as expressed through the formal expressions
[Eq. (9)] appear to arise from a delicate interplay between
terms, as dispersion upsets the balance which exists at
co=0. It seems essential to include detailed information
about the system to obtain adequate results. For these
reasons the large and accurately measured deviations for
He, H2, and D2 should provide an important test of
ab initio calculations for these systems.

The small deviation of the ratio R(co) from 3 has a
clear-cut microscopic interpretation for the atoms —all the
tensor components scale together to a very good approxi-
mation in the presence of dispersion. For the molecular
gases one can in principle measure only two observables,
and, as may be seen from Table I, there are always more
than two independent microscopic components. In this
case, the small size of the observed deviations tells one
only that those components which were degenerate at
su=0 will remain nearly so in the presence of dispersion.
There is a further complication in the case of the mole-

TABLE II. Measured dispersion coefficients for deviations
from Kleinman symmetry. The data of Table I has been fitted
(weighted least squares) to a one-parameter function of the form
& (co)=3[1+3 (co/coo) ], except for the diatomic molecules
where an additional term B(co/cop) is required (see Fig. 2).

Molecule

He
Ar
Kr
Xe
CH4
CF4
SF6
H2
D2
N2

O2
CO2
C2H6
CHF3
C2H4

Ct)p

(10 cm ')

206
138
120
101
115
159
167
113
138
126
119
127
115
143
96

—1.73+0.07
—0.02+0.04
+0.23+0.03
+0.32+0.09
—0.27+0.03
—0.08+0.07
+0.26+0.08
—2.04+0. 19
—1.98+0.03
—1.22+0.32
+0.28 +0.42
+0.38+0.06
+0.09+0.03
—1.16+0.04
—0.43 +0.02

+18.3+6.3

+ 18.3+12.6
+80.4+ 17.6

'Single effective resonance frequency, from refractive index data
of Ref. 30.

cules. Vibrational resonances will occur at frequencies
below the incident frequency, while the dispersion expres-
sions we have given are based on the assumption that one
is far below a11 resonances. We will explore the conse-
quences of these vibrational resonances in the case of H2.

First we rewrite the formal expression for y p&~ so as to
explicitly display both the electronic and vibrational de-
grees of freedom. For a homonuclear diatomic molecule
the only nonvanishing dipole matrix elements are those
where the electronic quantum number changes, so the ex-
pression becomes

1'~pys( —~~'~1 ~2 ~3)

& novo I p I
e1U1 & & e1U1

I ps I
e2U2 & & e2U2

I py I ~3U3 & & e3U3
I pp I novo &=(I/A' )

(~e&u1, eouo ~a)(~e2v2, eouo ~1 ~2)(~e3v3, cavo ~1)

& eoUo
I P I

e1U1 & &e1"1
I Ps I

eoUo & & eoUo
I Py I

e2U2 & & e2U2
I Pp I

eoUo &

e),e2 (+eO) v1, v2 (~e1v1,eouo rOcr)(~e2v2, eouo ~1)(~e2v2, eouO+~O2)

e~, e3 (+eP) v], U3 U2 (9 UP)

& novo I p I
e1U1 & & e1"1

I ps I
eoU2 & & eoU2

I py I
e3U3 & & e3U3

I p p I
novo &

(roe1v1, cavo roe )(roeou2, eovo ~l ro2)(o1e3v3, cavo ro1 )
(21)

where e is an electronic quantum number and U is a vibra-
tional quantum number. An explicit representation of the
matrix elements would now include an integration over
the internuclear coordinate. The first and last terms of
this expression correspond to the first term of Eq. (9).
The first two terms contain contributions coming only

from excited electronic manifolds and will be far below
resonance for both the fundamental and the second har-
monic of the incident light for a molecule such as H2. It
is only through the last term that the excited vibrational
states of the ground electronic manifold can contribute.
Were the fundamental to coincide with a vibrational over-
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tone then only this term would display resonant behavior,
analogous to that observed in CARS spectroscopy. '
The first two terms taken together will be rather loosely
referred to as the electronic contribution and the last term
as the vibrational contribution, where y =y""+y"' .

Our aim is to gauge the relative importance of the vi-
brational contribution. Considering only the last term we
note that only the middle factor in the denominator of
this term can be resonant. In the first and last factors the

field frequencies are always well below resonance regard-
less of the permutations considered. Hence we will ignore
optical frequencies when they occur in the first or last
factors in the denominator, which amounts to ignoring
dispersion in the nonresonant parts of this term. This is
the key approximatiori, which becomes exact in the static
limit. Explicitly writing out the permutations we have,
for example,

p~ ( —2co; co, co, 0)

=(1/A) g (ao„)'
u (&p) CO„p —CO CO p+ CO

+ +
cov p

—2'
1

cov p+ 2'
(22)

where now eau p ——cue u. e „,and

aL =(2/R)
(coup

I pc I
e~u~ ) t e~u~

I p~ I
eou2)

e& (&eO) u&
~e

&
u&, eovo

(23)

is essentially the static limit of the transition polarizability appearing in Raman spectroscopy.
In total there are seven independent components of y pcs( —2co;co, co, O) for a homonuclear diatomic molecule. After

making use of Eqs. (7) and (8), the two independent components of P' ' for the gas are given by

X '"'
( 2co;co,c—o,O)= g (P/90'') [3(ap, ) +8(ap, ) +4ap", ao, ]

v (&p) (COU p
—Co )

4~v, p+ [ z «o. )'+4«o".)'+2ao.ao, ]
v p 4~

4cOV pX~",' ( 2co;co, co, O—) = g (P/90fi) [(ap, ) +(ap"„) —2ap, ap, ] 2
v (&p) (co„p—co )

4cOV p+ [-'(ao. )'+ 3(ao. )'+4ao. ao. ]
(co„p—4co )

(24)

(25)

where we have taken advantage of the symmetry of the
molecule to set e '=a "=0, n =a and where a and
a""are calculated in the principal axis system of the mole-
cule. In the static limit (where our result is exact) the
vibrational term itself obeys the condition R „b
=X' " /X' „", ~3 as co~0. This is true term by term in
the sum over vibrational levels u and, since R(0)= 3, must
be true for the electronic background as well. Further-
more, a similar calculation for the process of third-
harmonic generation yields R„.b ——3 for all co, in agree-
ment with Eq. (6), indicating that our approximation re-
tains the essential features of the problem

Consider first the v=0~v=1 transition. Ford and
Browne have. made an ab initio calculation for H2, from
which we may extract the values of ap& and np&. Al-
though their results are averaged over the rotational levels
at 300 K, whereas our expression would properly require
the averaging to be done after the insertion of the a, the
difference is unimportant as the u are slowly varying over
the well-populated rotational levels. Also, their results are

X' '"' =( —4. 1X10 C rn J )p/6,
X"'""=(—5.6~10 "C'm' J ')p/6.

(26)

(27)

We have not included the contributions from higher vi-
brational overtones. The next largest contribution will
come from the u =0—+v =2 transition. Its size may be es-
timated by using the available results from an ab initio
calculation for the isotropically averaged (aL). Since
the u =0~v =2 susceptibility will be related to the
v =0—+v = 1 susceptibility by a factor of order
((ap2) /(ap~ ) ) =0.01, and the higher overtones give even
smaller contributions, one may safely ignore them.

strictly for the Q branch (b,J=0) transitions. There also
exist b J=+2 transitions which we will ignore as they are
much weaker. Inserting the values a&~ ——1.89 & 10
C m J ' and az&

——8.83&10 C m J ' and using
co& p ——4155 cm ' for the fundamental vibrational frequen-
cy of H2,

' at co=19430 cm ' (corresponding to A, =514.5
nm) we obtain
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X~(0;0,0,0)=(4.31 X 10 C m J )p/6 . (29)

Since their calculation includes vibrations only by averag-
ing y over internuclear coordinates of the vibronic ground
state, the overtones of the ground electronic manifold are
not included. Therefore the above value may be identi-
fied with our X' '"".

By choosing the simplest form for the dispersion of
we obtain

X~(0;0,0,0)(1+ace )+X~(—2';co, co, O)
R(co)=

—,'X""(0;0,0,0)(1+bco )+X"',( —2';co, co, O)

(30)

The above results may be compared with the experi-
mentally measured value for X~( —2';co, co, O) at
A, =514.5 nm for H

X' ' =(5.71+0.06&&10 C m J )p/6 (28)

(the experimental uncertainty is dominated by the uncer-
tainly of the He ab initio calculation used for calibration).
Further, from the ab initio calculation of Jaszunski and
Roos one may (by isotropically averaging) derive the
zero frequency value of

From our calculated values of X' '"'", the ab initio result
for X~(0;0,0,0), the measured value of X~ at A. =514.5
nm, and the measured value of R (co) at A, =514.5 nm, this
expression allows us to predict R(co) for any other fre-
quency. The results are shown in Fig. 3, along with the
curve obtained by setting 7' '" =0 in the above expres-
sion. In view of the approximations made, the agreement
with the experimental values is satisfactory. The effect of
the vibrational resonance at 4155 cm ' is to reduce the
value of R(co) in the region of our measurements, and at
A, =514.5 nrn this model predicts that the resonance con-
tributes about 10% of the total deviation. It has been sug-
gested that vibrational contributions to ESHG in the visi-
ble are insignificant. Our results are in accord with this
assessment for X' ', but R(co) is such a sensitive function
of the relative dispersion in the different components of
X' ' that we cannot, in our case, dismiss the role of vibra-
tions. Furthermore, our calculations indicate that X~"
contributes about 20%%uo of the total X' ' for Hq at co=0.
[This follows from Eqs. (24) and (29).]

The deviations from Kleinman symmetry for Hz and
Dq differ by about 10%, and one may ask whether this
difference is accounted for by vibrational resonances.
While we do not have sufficient information to model Dz

3.00 ~

2.98—

2.96—

2.94—

2.92—
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20—

IO—
3 0—
0

-10—
I I I

5000
a)(cm ~)

2.90—

2.88—

2.86—

2.84
I xlO 2KIO

-I 2
~(cm )

5x IO 4xfO

FICx. 3. Measured and calculated R {co)vs co are compared for H&. - The solid curve includes both the electronic and the vibrational
resonance contributions, while the dashed curve shows the calculated results when the vibrational contribution is switched off. The
calculation has been constrained to match the experimental R(co) at one point {A,=514.5 nm). In the frequency range of the experi-
mental measurements the effect of the vibrational resonances is to shift the curve by a small amount with little change in shape, while

at lower frequencies the vibrations dominate. The inset shows the calculated R {co)in the region of the u =O~u =1 vibrational tran-
sition of Hz. The two peaks correspond to one- and two-photon resonance terms (the peak frequencies are shifted up by 51 and 232
cm from coo& and coo&/2). The large downward excursion in the main figure corresponds to the high-frequency tail of the resonances
shown in the inset. The second overtone (Au =2) is negligible for frequencies more than a few hundred cm from resonance, and

higher overtones are negligible outside even smaller ranges.
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as we have modeled H2, it seems likely that the first over-
tone for D2 is of comparable strength to that of Hz. In
that case, the vibrational shifts in A(co) will be about the
same for H2 and D2. If so, then the 10% difference in the
deviations of H2 and D2 must come largely from differ-
ences in their electronic terms. In fact what we have
called the electronic term contains some of the vibrational
nature of the molecule as expressed through the matrix
elements, whose explicit representation requires an in-
tegration over the internuclear coordinates. For this
reason even the linear polarizabilities of H2 and D2 differ
by about 1/o. ' On the other hand, the low-lying vibra-
tional resonances play no role in the linear polarizability
for a homonuclear. diatomic molecule.

Finally, we note that although a link has been made in
the literature between the Born-Oppenheimer approxima-
tion and Kleinman symmetry, our results, in particular
for the inert gases, do not bear this out;

VI. CONCLUSION

The frequency dependence of the observed deviations
from Kleinman symmetry is in qualitative agreement with
that expected on general grounds, but simple models can-
not account for the deviations in a quantitative fashion.
The measured deviations should provide a sensitive test of
the accuracy of ab initio calculations, especially for the
simplest systems (He, H2, and D2). In the frequency re-
gion studied the deviations appear to be mainly electronic
in origin. At lower frequencies, and at co =0 in particular,
our calculations indicate that vibrations will make a sub-
stantial contribution to the total hyperpolarizability of a
molecule.
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