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We present a theory that describes how one strong classical wave and one or two weak quantum-

mechanical waves interact in a nonlinear two-level medium. The analysis is applicable to several

popular problems with and without cavities. In particular, the theory treats laser and optical bista-

bility instabilities, predicting when the instabilities grow from spontaneous emission. The theory is a
multimode extension of Scully-Lamb theory that derives the equations that describe population pul-

sations, combination tones, mode locking, resonance fluorescence, Rayleigh scattering, and phase
conjugation with quantum-mechanical fields. Hence the theory both presents new results on insta-

bilities and phase conjugation, and also unifies the treatment of a variety of phenomena in the con-

text of Lamb theory. The present paper (first of the series) presents the basic formalism, leaving

most applications to subsequent papers in this series. The following paper presents equivalent

derivations based on a purely operator formalism.

I. INTRODUCTION

A basic question in laser physics is, can side modes
build up in the presence of a single cw oscillating mode,
that is, is single-mode operation stable? This question has
been studied since the early 1960's. In fact multimode
operation was easily found to occur in lasers with inho-
mogeneous broadening and/or standing waves, since dif-
ferent cavity modes interact at least in part with different
groups of atoms. ' Predictions also were made that a suf-
ficiently intense single mode of a homogeneously
broadened unidirectional ring laser or an optical bista-
bility (OB) cavity leads to multimode operation. Two
kinds of laser instabilities could occur, one for which
three frequencies would grow with distinct wavelengths
(multiwave-length instability) and one for which induced
anomalous dispersion allows three frequencies to corre-
spond to the same wavelength. Haken showed the
single-wave length instability could be chaotic, while Gra-
ham showed the multiwavelength case could be chaotic.
Hendow and Sargent' showed that these instabilities are
due to the dynamic Stark effect or equivalently, to popu-
lation pulsations. The population pulsations induced by
the multimode field scatter energy from the intense mode
into side modes. This produces the side-mode gain that
causes single-frequency operation to be unstable. One-
and two-side-mode gain and/or absorption coefficients
have been derived by a number of peop1e. " ' Casper-
son' predicted and observed a single-wavelength instabili-
ty in the inhomogeneously broadened Xe laser, where he
attributed the induced anomalous dispersion to spectral
hole burning. Hendow and Sargent' showed that popula-
tion pulsations can be equally important. Later work has
shown how to treat these instabilities including detuning
of the large mode. The Casperson instability is readily ob-

served, ' ' and yields the first all-optica1 generator of
chaos. '

In spite of the fact that the buildup of side modes relies
on spontaneous emission to occur, virtually a11 theories of
these effects have been semiclassical. Lugiato and co-
workers have discussed fluorescence spectra for a single
mode in a cavity using a quantized field, but did not con-
sider side modes. Reid and Walls have treated quantized
signal and conjugate waves in degenerate four-wave mix-
ing. ' The present paper gives a detailed derivation of the
first fully quantal theory that gave equations predicting
that the side modes build up from spontaneous emission,
and that gave the general coefficients for the quantized
coupled-mode equations in four-wave mixing. From
studying the three-peaked spectrum induced by a strong
field in resonance fluorescence, one would expect that the
spontaneous emission spectrum for laser side modes
would also have Rabi sidebands resulting from the Rabi
modulation of the upper-level population. This is the
case, but the spectrum is substantially altered due to
four-wave mixing in the medium.

Our theory is a multimode extension of the Scully-
Lamb theory of the laser and derives the quantized-field
version of the population pulsations and combination
tones introduced in Lamb's semiclassical laser theory. It
gives the basis for a fully quantal discussion of phase con-
jugation, and shows how mode-locking concepts can be
incorporated into the single-mode Scully-Lamb theory.
Aspects of the theory reduce to the two-mode, three-level
problem treated by Singh and Zubairy. The two-mode
special case also provides a new way of describing reso-
nance fluorescence and resonant Rayleigh scattering.

A parallel calculation using purely operator formalism
is presented by Stenholm et a/. in the following paper.
The semiclassical absorption coefficient and single-side-
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mode coefficients are well known in the literature. Since
the present paper derives for the first time the correspond-
ing two-side-mode case needed for cavity instabilities and
phase conjugation, it is desirable to have an independent
calculation of these results. The purely operator formal-
ism has advantages in providing a well-defined recipe for
obtaining all terms to second order in the weak modes.
Background semiclassical calculations' are compared to
the present calculations in the course of the derivations.

Section II presents a three-level version of the single-
mode theory of Scully and Lamb in a form that is most
easily extended to the side-mode cases. Two of the levels
are involved in the laser transitions, and the third level is
connected to the others by level decays and pumps. This
model can reduce to the upper- to ground-state lower-level
problem usually considered in resonance fluorescence and
ruby lasers, and yet can also describe interactions with
two excited states. The single-atom coarse-grained time
rate of change used by Scully and Lamb is replaced by a
density matrix analysis more closely paralleling the semi-
classical theory.

Section III develops the basic analysis for the single-
side-mode laser case, reveahng the quantum form of the
population pulsations. It derives the equation of motion
for the side-mode photon number, recovering the serni-
classical gain coefficient and finding the spontaneous
emission term that leads to side-mode buildup. Section
IV reduces the formulas to two popular two-level configu-
rations: one with a ground lower state often used in laser
spectroscopy, and one with an excited lower state, typical-
ly found in lasers.

Section V introduces the second side mode, symmetri-
cally placed in frequency on the other side of the strong
mode. With the help of the strong mode, each side mode
induces population pulsations that influence the other side
mode in the form of quantum combination tones. We use
density-matrix equations of motion to find a reduced
side-mode density operator equation of motion, from
which various expectation values can be calculated. In
particular, we recover the semiclassical coupled-mode
equations for the complex electric-field amplitudes and
derive the equations of motion for the side-mode photon
numbers.

Explicit spectra predicted by the theory for resonance
fluorescence in cavities, laser side-mode buildup, and
phase conjugation have been given in Ref. 22, and more
detailed illustrations will be presented in subsequent pa-
pers.

II. SINGLE-MODE EQUATIONS OF MOTION

scribes the decay from level a to level b B. y setting

y, =yb ——0, we recover the two-level upper- to ground-
state problem. Although level decays from a and b to the
same level typically cannot both be electric-dipole al-
lowed, nonradiative processes can produce these decays.
More complicated level schemes do not change the form
of our equations, and lead only to somewhat more compli-
cated coefficients. In an interaction picture, our single-
mode Hamiltonian has the form (in rad/sec)

H = (a) —v)o, ~ [ga U(r )o t+ H.c.]
plus terms describing decay (resulting from Weisskopf-
Wigner and other relevant reservoir interactions). Here a
is the field-mode annihilation operator, Uz is the corre-
sponding spatial mode factor, o and o., are the atomic
spin-flip and probability-difference operators, e and v are
the atomic and field frequencies, respectively, and g is the
atom-field coupling constant.

The components of the atom-field density operator p
are given by p,„,„=(an

~ p ~

an ), etc. Using the density
operator equation of motion

p= i [H,p]—+
where the ellipsis represents the relaxation and pumping
terms, and we find the equations of motion of the com-
ponents to be

pan, an = ('Ya + I )Pan, an +Aapcn, cn

( & I an, bn + 1Pbn + 1an +C,.C. )

Pbn + l, bn+1 V bPbn+1, bn +1

+ I pan+1, an+1++bpcn+1, en+1

+ [ an bn + 1Pbn + lyan
' ]

Pan, bn+1 [Y+&(~ V)]pan, bn+1

+1~an, bn+1(Pan, an Pbn + l, bn+1) ~

Pcn, cn YaPan, an + YbPbn, bn (Aa +Ab )Pcn, cn

where Y is the dipole decay constant often written as
I/T2, and V,„b„+1——gUv'n + l. Note that while (3)—(6)
look semiclassical, they describe fully quantized transi-
tions between atom-field levels. In addition we have the
trace condition

RELD
TRANSITIONS

In this section, we derive the single-mode Scully-Lamb
theory equations in a form suitable for our multimode ex-
tensions. To be able to treat both upper- to ground-state
transitions as well as transitions between excited states, we
consider the three-level system depicted in Fig. 1 The
field modes of interest cause transitions between levels a
and b while level c acts as a reservoir connected to a and
b by level decays and pumps. y, and yb are the rates at
which levels a and b decay to level c, and A, and Ab are
the pumping rates from level c to levels a and b. I de-

FIG. 1. Three-level atomic-energy level scheme that treats
both purely excited-state interactions as well as upper- to
ground-lower-state interactions in a uniform way.
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Pnn =+Pan, an (7) steady-state solution of Eq. (6), we have

As in semiclassical Lamb theory and in Scully-Lamb
theory we suppose that the atoms react quickly compared
to variations in the mode amplitudes. Hence we can solve
Eqs. (3)—(6) in steady state by setting the time rates of
change equal to zero. We eliminate p,„,„ in Eq. (3) and
p,„+,,„+1 in Eq. (4) by using Eqs. (6) and (7) as follows.
Solving Eq. (7) for p,„,„and substituting pb„b„ from the

I-

Pen, cn Pnn Pan, an Pbn, bn

=pnn pan, an

+ [yapan an (Aa +Ab )Pcn cn ]/yb

3 bPnn Pan, an(yb ) a )

yb+A, +Ab
Similarly,

(8)

pan + l, an +1=pn +1,n + 1 pbn + l, bn +1 pen + l, cn +1

3 apan+l, an+1+ Ybpbn+l, bn+1
pn+1, n+1 pbn+ I,bn+1

(Aa +Ah )Pn+ in+1, Pbn+lbn+, 1(l b+Aa +Ah )

Xa+Aa+Ab
(9)

The steady-state solution to the dipole equation (5) is

Pan, bn+1 +an, bn+1 (~ V)(Pan, an Pbn+ 1,bn+1) ~

where the complex Lorentzian denominator

D(co v) =1/[y+i—(co —v)] .

(10)

Substituting Eqs. (8) and (10) into Eq. (3) and solving
for steady-state (p,„,„=0),we find

(n+1)R
( ) (12)pan, an pbn + l, bn + 1

2T1pa
pan, an +apnn

where the unsaturated probability of being in the upper
level

(A, +Ah)I +y, Ab
Nb —— , , (19)

y.y, +y.A, +y, A. +I (y, +A. +A, )
'

r(yb+A, +Ab)+A (y, —y )
Xb 7b+

y, +A, +Ab
(20)

Combining Eqs. (12) and (18), we find the probability
difference

&apnn —&bpn+ l, n+1P, Pb—
Substituting Eq. (21) into (10), we have the complex
electric-dipole term

(13)
y, yb+y, Ab+y, A, +r(yb+A, +A, )

'

the upper-level effective decay constant

pan, bn+1 +an, bn+la(CO
NaPnn —NbPn +

1+(n + l)R

(22)

A. (yb y. )—
Ta ='Va+I +

the rate constant

(14)
Substituting the equations of motion (2), (4), and (6)

into the time rate of change of Eq. (7), we find the single-
mode field equation of motion

R =4
~
gU

~

'Tl T2L(~ v), —

the probability difference decay time

1 1 1T =— +
2 y,

'
yb

(15)

(16)

and the dimensionless Lorentzian

L(co v)=y /[y +(co——v) ] . (17)

Similarly substituting Eqs. (9) and (10) into Eq. (4), we
find

TE
pnn =k —l Van, bn+lpbn+1, an

+ 1 ~an —l, bnPbn, an —I )+C (23)

Note that although this was derived for the three-level
scheme in Fig. 1, Eq. (23) is also valid for an arbitrary
number of reservoir levels like c. Inserting Eq. (22) and
including the standard /2vg loss terms used in Scully-
Lamb theory, ' we have

(n + 1)R NaPnn NbPn+ l, n+1
pnn 1+(n +1)R

pbn + 1,bn + 1 +bpn + 1,n + 1

(n +1)R+, Pan an Pbn+1, bn+1
1yb'

where

(18)

nR +aPn —1,n —1 +bPn, n

2T1 1+nR

V V+
2~ pn+ 1,n+1 2~ pnn (24)
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(n+1)R=nR =4n
~

gU
~

T, T21.2 I2L2, —— (25)

where L2 is a special case of the dimensionless Lorentzian

y2+ Q2
(26)

and b,„=co—v„. Combining Eqs. (25) and (21) with (12)
and tracing over the field index n, we have the semiclassi-
cal probabilities

I2L2 N, —Nb
pea =Na-

2Z.,y' 1+I2L,

1+I,L,
where the upper-level

I2L2f.= 1+
2T]yb

Similarly,

probability 'factor

I2L2
N,+,Nb.

2Ti 'Va

(27)

~bb (29)

where

Equation (24) reduces to the original Scully-Lamb
photon-number equation of motion if we set the upper- to
lower-level decay rate I =0 and Ab ——0, which give
Nb ——0. Equation (24) also describes upper- to lower-level
decay schemes, and with appropriate modification of the
N, and Nb factors, it describes other pumping and decay
schemes. To be consistent with our assumption that the
field varies little in the atomic lifetimes, the cavity loss
constant v/2Q must be small compared to atomic decay
constants or the fields must have reached a steady state.
Note that nonlinear dispersion is included in this equation
of motion and that the field amplitude is assumed to be
uniform throughout the cavity.

For use in the two- and three-mode interactions that
follow, the strong mode at frequency v2 is treated classi-
cally, that is, the difference between nz and n2+1 is ig-
nored. In this approximation, we need explicit values for
the semiclassical probabilities p„and pbb. To this end,
we set

the strong field frequency. v2,

H =(co v—~)o,
3

+ g[(vi —v2)a~aj+(gaJUJo +H c ).].
j=1

(32)

plus terms describing decay (resulting from Weisskopf-
Wigner and other relevant reservoir interactions). Here aj
is the annihilation operator for the jth field mode,
UJ = UJ(r) is the corresponding spatial mode factor, cr and
o, are the atomic spin-flip and probability-difference
operators, co and vj are the atomic and field frequencies,
respectively, and g is the atom-field coupling constant.
The rotating-wave approximation has been made. The
field modes have the distribution shown in Fig. 2. In this
section we consider one classical strong mode at frequency
v2 and one weak fully quantal side mode at frequency v~.
The two-level atom interacting with two fields involves at
least four atom-field levels. We limit the analysis to the
four in Fig. 3 by assuming the side mode at frequency v~

cannot by itself saturate the atomic response. As for the
semiclassical theories, "' ' the strong mode at fre-
quency v2 can be arbitrarily intense. Note that the unper-
turbed (undressed) atom-field states are used, rather than
dressed atoms. This leads to population pulsations rather
than to level splitting. Background semiclassical calcula-
tions to guide and compare with are reviewed by Sar-
gent. '

To derive the photon rate equation for mode 1, we need
the density matrix elements for the four levels in Fig. 3
along with the six off-diagonal elements connecting the
levels. The states depicted in Fig. 3 have been numeric-
ally labeled as shown for notational simplicity. For ex-
ample, the matrix element p» is equal to
(an&n2 p ~

bn&+ In2). The P4~ and ps& dipole terms and
the level probabilities pss and p» are easily found from
the semiclassical treatment, as demonstrated later. In ad-
dition, the four levels are coupled by relaxation and decay
processes to the lower level c. Just as in the single-mode
case we write equations of motion for the remaining ele-
ments using the standard density matrix equation of
motion (2), here with the Hamiltonian of Eq. (32) summed
from j =1 to j =2. This gives a-b elements

P» = —XbP»+ ~P55+ &bPe 10,c 10

I2L2 I2L2fb= N+ 1+, Nb
2T17b 2T13 a

(30)
+ [(iVsipis+i V4ipt4)+c. c.], (33)

Note that f, fb =N, Nb. In—this semiclassi—cal approx-
imation, the electric dipole element (22) becomes

N, —Nb
p~b =i V~bD(co v2)—

1+I2L.2
(31)

III. SINGLE-SIDE-MODE INTERACTION
WITH EXCITED-STATE ATOMS

In general our approach consists of using a reduced
three-mode atom-field density matrix in generalization of
the single-mode matrix in Sec. II. Our Hamiltonian (in
rad/sec) has the form, in an interaction picture rotating at

&ni&
I

V)

&n3&
l

V3 V

FIG. 2. Three-mode spectrum used for multiwave mixing
such as in laser and/or optical-bistability instability studies, sa-
turation spectroscopy, and phase conjugation.
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Q&=Ian, +1n,-1&

Vg

IS&4 an, n, &

Vg

Pcoo coo and P,01,10, resPectively, where for tyPograPhical
simplicity, we write c 01 for cn1,n2+ 1, and c 10 for
c,n1+ l, nz. These c level elements have the equations of
motion

l1 &=I bn, +1n a & I2&gbn, n~+1&
Pcoo, coo=raPss+3 bPb00, b00 (—Aa+Al, )Pcoocoo, (39)

pss= (r.—+ I')pss+Aapcoo coo

—[(iVslP1s+' VszPzs) +c.c.],
ps1 = (r—+i b 1)ps1+i V51(pss —p11)

+1P54V41 —/ V52P21

Ps4= —('Ya+ I + l ~)Ps4+ AaPcol, c 1o

l( V51p14 P51V14+ V52P24) ~

I

pz1 = (rb+1 ~—)p21+ I'p54+Abpcol, c 10

(34)

(35)

(36)

FIG. 3. Four-1evel atom-field energy-level scheme valid for
two-mode interactions. Extra levels enter with three modes as
shown in Fig. 4.

pcol, c 10 raP54+ Ybp21 (l ~+Aa +Ab )Pcol, c10 (40)

Note that this model does not use dressed states and
that the simultaneous solution of Eqs. (33)—(40) automati-
cally includes all possible ordering schemes of large and
small interactions. In this way the successive decays us-
ing dressed states as discussed by Smithers and Freed-
hoff ' are accounted for by our method.

The elements p54 and p21 correspond to the semiclassi-
cal population pulsations represented by d1 of Sec. 2.2 of
Ref. 16. They have the time dependence e' ', where
b, =vz —vl. The element p4z is a polarization at frequency
v3 induced by three (or more) photon processes involving
combinations of v1 and v2 interactions. It corresponds to
p3 in Sec. 2.2 in Ref. 16.

In addition to the equations of motion, we have the
general trace condition

+l(p25V51 V2sPs1+Pz4V41)

p24 ———(r —l53)p24 l V25p54—+lp21 V14 ~

where

(37)

(38)

pij, mn gpaij, amn
a

In particular for p„„+1.„+1„——p0110, we find

PP110=P54+P21+Pcpl, c 10 '

(41)

(42)
~n=~ &n ~

Vsl =gU1 &&1+1

Vsz gU2+nz——+ 1,

V41=gU2V &2 ~

These equations treat both modes quantum mechanically,
excePt for the 1 Pss, I P54, and ybP21 contributions to Eqs.
(33), (37), and (40), respectively. In these contributions we
explicitly ignore the difference between nz and nz+ 1, i.e.,
we treat the strong mode classically. In solving the equa-
tions we make this approximation uniformly throughout,
specifically setting V41 ——V52

——V2. Keeping mode 2
quantum mechanical up to this point allowed us to write
the equations of motion down correctly using Eq. (2). For
simplicity we set V1 ——V51.

Equations (34) and (36) are coupled to c level elements
l

Here the p54 contribution once again ignores the differ-
ence between n2 and n2+ 1. Similarly to the single-mode
case of Eq. (3), we combine the trace condition (42) with
the steady-state solution to Eq. (40) to eliminate p, o, „0in

Eq. (36). We find

Ybpol 10 ( Yb r )P54
Pc pl, c 10 ++

rapo»0+(rb Ya)p21

y~+A~+Ab+i 5
Substituting the first of these into Eq. (36) and solving for
steady state, we find

Aa r bpo 1 loDa
P54 ~

lD ( Vlp14 P51 V2 + V2P24)
yb+A, +Ah+i'

(43)
where the complex D,' factor is given by

yb+A +Ah+i'D'=
(yb+ih)(ra+id )+Aa(yb+i&)+Ab(r, +1'~)+(rb+Aa+Ab+1~)1

Similarly combining Eqs. (42) and (40) to eliminate p54 in Eq. (37), we find the steady-state solution

E(Aa +Ab + i ~)I'+3 a Ab]DbPo1 lo
P21=

y, +A, +Ah+i 6 +iDb EPzs V1 —VzPs1+Pz4Vz]

where

ya+ &.+&b+»
(rb+lk)( +rlk)+A (rb+l5)+Ab(r +lk)+(rb+A +Ab+la)r

(44)

(45)

(46)



31 QUANTUM THEORY OF MULTIWAVE MIXING. I. GENERAL FORMALISM 3117

The trace condition (41) also provides the equations of
motion for the two field quantities of interest, the proba-
bility of n1 photons, pn

—=p«, and the field coherence
function po»o. Differentiating Eq. (41) for poooo with
respect to time, and substituting Eqs. (33), (34), and (39),
we find

4

Pn& =P55+P11 I n& ~n& —1+P.00,.00

nl or n 1 + 1 photons. Specifically, we have

p55 =paapn,

f.
1

p11 1+I L Pn)+1 s

2 2

(50a)

(50b)

=[iVlPsi —i«iPsi) I.. ., il+c c (47)

This equation allows us to calculate the resonance fluores-
cence spectrum and the build up of a laser side mode from
quantum noise. All we need to find is the dipole element
psl. Note that although this was derived for the three-
level scheme in Fig. 1, it is valid for arbitrary pumping
and relaxation processes, that is, other levels to and from
which decays and pumping occur do not change the valid-
ity of Eq. (47). It is similar in form to the single-mode
equation of motion (23), but involves a more complicated
calculation.

Similarly taking the time rate of change of Eq. (42) and
substituting Eqs. (35), (36), and (40), we have the field
coherence po»o equation of motion

= i V2D2do (51a)

X —Xb
p41

——i V2D2
1+I2L2 Pn +1

=i V2D2do41, (51b)

where we set p„=—pn „ for typographical simplicity.

Similarly the dipole elements p41 and p52 are

N, —Xb
p52= l V2D2 Pn1+I,L,

P0110—P54+P21+Pc 01,c 10

= —1'apollo —l Vl (pl4 —'p25) (48)

where D2 is the v2 case of the complex Lorentzians

D„= 1

y+i(CO —Vn)
(52)

Here we have neglected the difference between n2 and
n2+1. As shown below, this result yields the elastic
(Rayleigh) portion of the scattering spectrum and like Eq.
(47) is independent of the relaxation and/or pumping
scheme. We solve this equation in steady state as

Vl V2D 2 (do4i —d os2 )
PO11O=-

l&
(53)

Substituting Eq. (51) into Eq. (49), we have the field
coherence function

1 Vl (p14 p25)
PO11O=—

l LX
(49)

We solve Eqs. (35) through (38) in steady state. Solving
first for the dipole moments in Eqs. (35) and (38), we have

where the dipole elements p14 and p25 are given by Eq.
(51). Here 6 typically has a size on the order of the atom-
ic decay constants which cause the atomic response to
equilibrate rapidly in comparison with the field transients.
As 5—+0, this approximation breaks down when the time
I/6 is comparable to the times over which the field
varies. For a steady-state atom-field interaction, this
leads to the delta-function spectrum associated with Ray-
leigh scattering as discussed following Eq. (67).

To solve the remaining equations, we note that the
weak side-mode field assumption means that V1 can only
appear to second order. This means that the probabilities
pss, p44, p22, and p» appearing in the equations of motion
can be factored into the corresponding semiclassical value
determined by the V2 interactions alone [p„or pbb from
Eqs. (29) and (30)], multiplied by the probability of having

p» —1Di( Vidosi+ V2d»4),

p24= —~D3 V2d1s4 ~

where from Eqs. (50)

(54)

(55)

d051 =pss —p»
1

fapnl fbpn1 +11+I,L,

d154 =P54 —P21 ~

(56)

(57)

Compare p» to p, in the semiclassical theory [Ref. 23 Eq.
(39)]. Similarly, p42 corresponds to p3 of Ref. 23 Eq (41)
As for Ref. 23 Eq. (45), we substitute these dipole ele-

ments into the upper-level population pulsation equation

(43) to find

+a) bDap0110
p54= . Da V2 [VlD2do41+—Dl(Vido51+ V2di54)+D3 V2dl54] ~

3 b+ a+ b+l
(58)

This is almost identical to Ref. 23 Eq. (45), but here the Vl s include factors like Qn 1 + I and the d, and d, include
different initial photon-number probabilities. Similarly,

[(A, +A +id, )I +y, A„]D„'p „
P21= ya+A, +Ah+i' +Db V2 [ViD2do52+D1( Vidosl + V2d 154)+D3 V2d 154] . (59)
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Subtracting Eq. (59) from (58), solving for dts4, and substituting Eq. (49) for pp»p, we have

154 P54 P21

Vt V2 [2TtF'dos&Dt + (D~ +Sit b )do4&Dz +(Db S—lt 5)dp52Dz ]

1+I2F' (D—t +D*3 )

(60)

where the complex dimensionless population pulsation factor

F'(b. ) = [D,'(5)+Db (6)],
2T]

and the scattering factor

S(b, ) = A, yb y, A—b —(A, +Ah+id)1
(y. +id)(yb+ih)+(y. +id)Ab+(yb+ib)A. +(y, +A. +A, ~id )I

Substituting Eq. (60) into Eq. (54), we find

(61)

(62)

Pst =tDt Vt dost—

D2
I2 —F'dps&D& + [(D,' +Sli h)do4t + (Db Sl—i b, )d ps2]

2 2T]

1+I,F' (D, +D*,—)

(63)

For the limit of upper to ground-state lower lev-el decay, Eq. (60) is almost the same as the semiclassical Eq. (46) of Ref.
23, except for the way the dp's enter (and the +n t + 1 factors in the V, 's),

i.,
= —(nl+1)[~15",—(81+&/2Q1)P. , +t]+nt[~1P., —t

—(81+&/2QI)I. , ]+c c

where the coefficients

(64)

A] ——
1+I2I.2

I2 [f,F'Dt +(N—,—Nb)D2 (Db S/t 6)/2T—t ]

1+1,F' (D, +D*,)— (65)

8) ——
1+I~L2

I2 [fbF'Dt (N—, Nb )D—2 (D,'+S/i—b, )/2Tt ]

1+I2F' (Dt +Ds )
2

(66)

and where v/Q& ——cavity loss for mode 1.
Equation (64) has a straightforward physical int rpretation. Each term can be understood in terms of the probabilities

that the atoms make transitions resulting in the e ission or absorption of a mode 1 photon. For example, (the absorp-
tion rate from an n t + 1 photon field + the cavity loss rate) && (the probability of n t + 1 photons) is given by

(8t+8t +v/Qt)(nt+1)p, , +t

The A~ coefficient is proportional to the population of level a and involves spontaneous and stimulated emissions,
whereas the 8t coefficient is proportional to the population of level b and involves absorptions. We are primarily in-

terested in the buildup of mode 1, which can be described by the average photon number (n t ) =g„ntIt„. Using Eq.

(64), we find the equation of motion

dt (nt ) = —~ t((n ~ )+(nt ))—(8t+v/2Qt)(n t )+(8&+v/2Q&)((n& ) —(n& )) +2, (( n)+2(n, )+1)+c.c.

=(At —8t —v/2Qt)(nt )+2&+c.c. (67)

In the limit v/2Q»&8t —At, the photon rate Eq. (67) reduces to d(nt)/dt= —v/2Qt(nt)+A&+cc. In steady

state, this gives the spontaneous emission spectrum (n, ) =(3&+3 t )Qt/v. For an upper to lower-level decay scheme
and large pump intensity, this leads to the standard three-peaked spectrum of resonance fluorescence. Note that the term
proportional to S/ih leads to a contribution proportional to i/b, +c.c. in Eq. (67). This gives the delta-function spec-
trum of resonant Rayleigh scattering.

Similarly, the two-mode coefficient A
&

—8t yields the standard semiclassical two-mode gain and/or absorption coeffi-
cient. "' For this fairly general three level scheme, we have
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g D((N, N—b)
A}—B}—— 1—

1+I,L,

I2 F—'(D)+Dp )

1+I2F' (D) +D3 )
2

(68)

IV. SIMPLE SINGLE-SIDE-MODE INTERACTION CASES

In considering absorptive optical bistability and resonance fluorescence, one usually treats transitions between the
ground state and some excited state. This case is described by setting y, =yb ——0, which gives T~ = 1/I . In this limit,

I D, =I D =F= —S=I /(I +id. ),
and N, =0, Nb ——1,f, =IzL2/2, fb ——1+f, . Hence the coefficients 2

&
and 8& reduce to

(69)

g2D

1+I,L,
I2L2

2

I2 F[D)I—2L2l2 D2 (1+—I /ih) l2]
2

1+I,F (D, +—D; )

Bi =
1+I2Lp

I2L2+
I2 F[(1+I2L2/2)D, +D2 (1—r/l 6)/2]

2

1+I2F (D)+D—3 )

(71)

These values agree with Mollow's results.
The excited-state laser limit considered in Ref. 22 is also of interest. This is given by the values

I =0; Aa~Ab ((ya~yb (72)

Here the pump constants are taken to be small compared to the decay constants since the rates y~ =A~„, and the
reservoir probability p„»p~ . These choices imply

)'a~ra Na~A~/ra

and

D~~(y~+i b )

(73)

for a=a, b, and f, and fb are given by Eqs. (28) and (30) without the primes. Furthermore the scattering term S is pro-
portional to A~/y~, leading to a contribution oc A„and hence can be neglected. This result agrees with Mollow s asser-
tion and Cooper and Ballagh's four-level-model results. In particular, this means that resonant Rayleigh scattering is
negligible from a laser with an excited lower state, although not from one with a ground lower state like ruby. With
these simplifications, Eqs. (70) and (71) reduce to

A} ——
1+I2L2

B}——
1+I2L2

I2 [FD)f, +(N, Nb )DbD2 /2T—)]

1+I2F (D(+D3 )—
I2 [FD,fb+(Nb —Ng)D, D2/2T(]

1+IpF (D)+D3)—

(74)

(75)

This agrees with the coefficients given in Ref. 22 provided we set Nb ——0.

V. THREE-MODE INTERACTIONS

When a third mode at frequency v3 is introduced, the
density matrix elements of Eqs. (36), (37), and (38) acquire
new contributions connecting with the states

~
0) =

~
bn&+ ln2 —ln3+1)

and

I»=—
I
an, n, +ln, —1)

as shown in Fig. 4. These are, in turn, coupled to the
states

6) =
I
an)+ ln2 —2n3+1)

and

~

3)=
~
bn$ng+2n3 1)
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I7&= lan, n, +1n,—1&

To I3& ) i

I4&= Ian, +1n,—

I
6&= I an, +1n2—2nl+1&

& )ToIo&
=I an, n, n, &

p31 Fbp31+ ~p74+ Abp&01 1 e1 10—l V37p71+ Lp34V41

(82)

V2 V2

P71 ( Y+ ~2)P71 l V73p31+ 1p74V41

P34 (Y 1~2)P34 1 V37P74+lp31V14

(83)

(84)

I 1&=I bn, +1n,n

TOIT& ~~
I3&=I bn, n, +2n, -1&

I bn1n2+1ne&

~ ~
TOI6&

IO&=l bni+1n2-1na+1&

Here p74 corresponds to p,„,„ in Eq. (3), p31 to pb„+»„+,
in Eq. (4), p71 to p,„b„+1 in Eq. (5), and p34 to pb +1,„.
p, 01 1,1 10 in Eq. (81) is eliminated similarly to the way
p,„,„ in Eq. (3) is [see Eqs. (6)—(8)]. The dipole equations
(83) and (84) have the steady-state solutions

FIG. 4. Eight-level atom-field energy level scheme valid for
one strong mode and two-weak side modes. This case treats
cavity side-mode instability problems and phase conjugation.

p34 lD2 V2 (P74 P31)

p71 ——lD2 V2(p74 p31)

(85)

(86)

With algebra similar to that reaching Eq. (21) for
pan, an pbn+1, bn+1, we IlnU

respectively. Again using the Hamiltonian of Eq. (32)
with the sum now over all three modes, we find p51, p11,
and p55 are the same and the remaining equations of
motion become

P54 ( j a +~+ l i )P54+ AaPcolo, c 100

P74 +aP01 —1, 1 —10 (P74 P31)—

a similar expression for p31, and the difference

X, —2Vb

P74P31g~~P011y110I+I2L 2

(87)

(88)

1 ( V51P14 P51V14+ V52P24)+ P50V04 (76)
Hence in Eqs. (77) and (78) we can substitute

p21 (Yb + ~)p21+ ~P54+ AbPcolocloo,

+l (p25 V51 —
V25p51+p24V41 ) —l V27p71 ~ (77)

p24 ( Y l 63)p24 l V25p54+ lp21 V14

+(lp20V04 1V27P74) ~ (78)

Polo, 100 ~polo, 100 Vl (P14 P25 ) V27P71+ V04P50

where V04 ——gU3+n3+1 and V27 gU3~nz. T——he corre-
sponding equation of motion for the scattering coherence
function p010 100 of Eq. (48) becomes

iD2 V2(Na Nb )—
P71 l I L,

P01 —1, 1 —10+ 2 2

faP01 —1, 1 —10

1+I212

(89)

(90)

iD2 V2(Na —Xb )
P000, 1 —21 ~+ 2 2

(91)

Similarly the matrix elements p20, p5b, p50, and P25 form
a closed set of coupled terms dependent on the field
coherence element pppp1 21. Solving the corresponding
equations of motion, we find

which gives

(79) fbP000, 1 —21
P20 (92)

1 Vl (p14 p25 ) + 1 V27P71 1 V04P50
P101,100�- =i� (80)

Equations (76), (77), and (78) have the steady-state value

Aa Ybpolo, 100Pa
p54=

yb+A, +Ah+i'
In these equations, p2p, p74, p5p, and p71 are multiplied by
the weak third-mode interaction energy, and hence they
can be calculated in steady state taking into account the
strong v2 mode alone. They are determined by a calcula-
tion very similar to that for the level populations p and
dipoles p14 and p25 above, and their steady-state values are
given by the single-mode values in Sec. I by one-to-one
correspondences. In particular, the p74 term belongs to a
closed set of four terms with the equations of motion

lD' (V1P14 Vzp—51+ V2p24 ——Vo4p5o),

[(A +At +'~)I +Y Ab]Dbpolo, looP21=
y, +A, +Ah+i'

+lDb ( Vlp25 V2p51+ V2p24 V27p71) ~

(93)

(94)

p74= —(3 a +P)p74+ AaPc01 1 c 1 10—l V73P34+1'P71 V14 P24 lD3 [ V2(P54 P21) + V27P74 V04P20)] (95)

(81) Combining these with Eq. (80) for p010 100, we have
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d 1 s4 =ps4 p—21,

i V2pstF'2T1 i (—D,'+S/ib, ) V1p, 4 i —(Db S—/i b ) V1p2s
d154

1+I2F (D1+D 3 )

—V2( V27p74 VQ4p2Q)D3F'2T1 + t (D,' +Sh b ) V04psp+ t (Db S—h b, ) V27p71+
1+I2F (D1+D3 )

2

Substituting values for the p,j, we have

~ F'2T1 dost D1+ (D~ +S /t b )dp41D2 + (Db S /—i b )d ps2D2
diS4= —~~ ~Z

1+I2F (D1+D3 )
2

V2 V27p01 1 1 1p F'2Tt f~D3 +(N~ Nb )(D—b S/id, )D2—

1+I2L2 1+I2F (D1+D3 )

V, V04PQQQ, 20 F'2T, f„D*, (Nb N, —)(D,'+—Shb, )D,
1+IpL 1+I2F

2
(D1+D3 )

Substituting Eq. (96) into (55) and (49) and tracing over n3, we find the mode 1 photon-number equation of motion

p. ,
= —(n1+1)[~tp. ,

—(&1+v/2Q 1 )p. , +1]+n 1 [~tp. , -1—(&1+&/2Q1)p. , )

gV n1+ (Cl~n3pol —1, 1 —10 Dt+ 3+ 1P000, 1 —21+

(96)

+y~nt(C1~n3P —11—1 0—10 D1+n3+ lp —100,0—21+0'c') ~ (97)

I

where the At and 81 coefficients are given by Eqs. (65) and (66), and the mode coupling coefficients C1 and D1 are
given by

Di ———
1+I2F (D1+D3 )

2

g D1U1 U3 V2 F'2TtD3fg+(N, —Nb)D2(Db —S/l 5)

I +I2F+(D1+D 3 )

g D, U1U3V2 F'2T, D3fb (N, Nb)—D2(D,'+—Shb. )

1+I2L2

(9g)

(99)

Note that for unidirectional equal-frequency operation,
the spatial factors U„ in the Vs cancel out, and we can
replace 4U1U3V2T1 T2 by I2 as for At and 81 If the.
mode frequencies differ, a phase mismatch occurs as in
the semiclassical case. Similarly for more general orienta-
tions, phase matching plays an important role. As dis-
cussed below, C~ —D~ yields the semiclassical coupling
coefficient in four-wave mixing.

We can write an operator equation that yields Eq. (97)
by noting the matrix elements

(n 1+1)p„,+1 ——g(000
I
atpa 1 I

000),

ntp„, t=X&000I a', pa, Iooo&,

ntp„, =g(000Iatta, p I
ooo) .

Inserting these into (97) and removing the traces over n3,
we find

+( nt1+)n 3pott»p=(000
I
aspa 1 I

000),
+(n 1 +1)(n3+1)pooo, 1 —21= (000

I pa 1a3 I
ooo&

V n 1n 3p —11—1,0—10 & 000
I
a ta 3p I

000 &

't/
n 1 ( n 3 + 1 )P —1pp, p —21 & 000

I
a 1pa 3 I

000 &

(n 1 + 1)P„=g (000
I pa 1 a 1 I

000),

p= —A, (pata 1
—a,pa, )

—(81+v/2Q1)(a tatp —a tpa1)

+D1(pa 3a 1
—a 1pa 3 )+C1(a ta 3p —a 3pa 1 )

+(same with 1—+3) +adjoint. (100)

Equation (100) yields the correct semiclassical coupled-
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E3*—(a 3p) = (g 3
—g3 —v/2Q3)E3 + (C3 —D3 )EI

(102)

These semiclassical equations require the choices pa Ia]
and a &a Ip in Eq. (100) rather than a I a Ip and pa &

a &,

respectively, alternate choices permitted by the diagonal
matrix element p„ in Eq. (97). Equations (101) and (102)

1

can be used for detuned (v2&co) instability studies' or in
phase conjugation. In semiclassical phase conjugation,
C& D& is—the coupling coefficient ia&, with the value
[from Eqs. (98) and (99)]

g Dl UI U3 I 2(+g +g ) + 27 I(D2+D3 )
LK] =-

1+I2L2 1+I +—(DI+D3)+'
2

(103)

Furthermore in the limit v2 ——n, Eq. (100) yields the
coupled photon-number rate equations

dt
(n~ ) =(A 8 —v/Q& )(n—, ) +(C D)(a &a3 —) +A,

(104)

d
dt

(a Ia3 ) =(3 8 —v/QI )—(a la 3 )

+(C D)(n ( ) +C—, (105)

mode equations for the mode amplitudes E& =(a& ) and
&3 ——(a3), namely

E, = (alp) =(A~ —8I —v/2QI )E~+(C& D—I )E3,
(101)

in extension of Eq. (67). The choice v2 ——co yields—3 3 8$ —B3 etc .Further we define A =A
~ +2 I,

etc. (ala3) is then real and is the quantum version of
Lamb's combination tone, responsible for three™mode
mode locking [compare EI times Eq. (10.48) of Ref. 1].
To lowest nonzero order in a2, it results from the four-
wave mixing process a~a3az, in which two pump (v2)
photons are annihilated and both a v& and a v3 photon are
created. The quantum statistics of four-wave mixing can
also be studied using Eq. (100). In a recent paper, Reid
and %'alls ' considered four-wave mixing with quantum
signal and conjugate waves for the degenerate case in
which v] ——v2 ——v3.

The present paper shows how one strong classical wave
and one or two weak quantal side waves interact in a non-
linear two-level medium. The derivation allows the waves
to propagate in arbitrary directions, and can be used to
treat noise in weak-signal phase conjugation, buildup from
quantum noise of side modes in lasers and optical bistabil-
ity, resonance fluorescence, Rayleigh scattering, and to
treat the effects of stimulated emission and phase conju-
gation on resonance fluorescence as might be found in
cavity configurations. Some applications to these prob-
lems is given in Ref. 22. Further applications will be
presented in subsequent papers.
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