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This paper introduces a new formalism for analyzing two-photon devices (e.g., parametric ampli-
fiers and phase-conjugate mirrors), in which photons in the output modes are created or destroyed
two at a time. The key property of a two-photon device is that it excites pairs of output modes in-
dependently. Thus our new formalism deals with two modes at a time; a continuum multimode
description can be built by integrating over independently excited pairs of modes. For a pair of
modes at frequencies Q+¢, we define (i) quadrature-phase amplitudes, which are complex-amplitude
operators for modulation at frequency € of waves “cos[ (¢ —x /c)]” and “‘sin[ Q(¢ —x /¢)]” and (ii)
two-mode squeezed states, which are the output states of an ideal two-photon device. The
quadrature-phase amplitudes and the two-mode squeezed states serve as the building blocks for our
formalism; their properties and their physical interpretation are extensively investigated.

I. INTRODUCTION AND OVERVIEW

In this and the accompanying paper we introduce a new
formalism for analyzing a particular class of nonlinear
optical devices—devices that we call two-photon devices.
The light produced by any optical system is an excitation
of various modes of the electromagnetic field; the defining
feature of a two-photon device is that its output light is
generated by the simultaneous emission of two photons
into two of the output modes. Examples of two-photon
devices include parametric amplifiers, where the simul-
taneously excited output modes are called the signal and
the idler, and phase-conjugate mirrors (four-wave mixers),
where the output modes are the transmitted and reflected
waves.

Two-photon devices can produce, in principle, special
states of the electromagnetic field called squeezed states!
or two-photon coherent states.”> Squeezed states>* have
manifestly nonclassical properties; they might find appli-
cation in low-noise optical communications®~’ and in
high-precision interferometric measurements.%° Experi-
ments to generate squeezed states and to investigate their
properties are now underway in several laboratories.!— 12

Two-photon. devices are to be contrasted with one-
photon devices, such as the laser, in which photons are
emitted into the output modes one at a time. The analyti-
cal tools of quantum optics were developed to describe
and analyze one-photon processes; thus they are designed
to analyze situations in which the modes of the elec-
tromagnetic field are excited independently. These tools
are, in general, not adequate for analyzing two-photon de-
vices, because a two-photon device excites modes in pairs,
instead of singly. This series of papers develops a new set
of analytical tools, which are suited to the description and
analysis of two-photon devices. A brief, preliminary ac-
count of our work can be found in Ref. 13.

To motivate our approach, we start by reviewing briefly
the formalism of one-photon optics. This review is
heuristic, with emphasis on the features that tailor the
formalism to the description of one-photon processes; in
particular, we treat the electromagnetic field classically,
ignoring its quantum-mechanical commutation relations.
Consider a beam of light produced by a one-photon de-
vice, and idealize the beam as a plane wave with a particu-
lar linear polarization. The electric field can be written as
the sum of positive- and negative-frequency parts:

E(x,t)=EM(x,t)+E 7 (x,1) , (1.1)

where

E('H(x,t)E fJ‘;_:‘:_E(w)e —iw(t—x/c) ,

(1.2)
ET=(ET) .

Here E(w) is the complex amplitude of the plane-wave
mode at (positive) frequency w, and the integration runs
over the bandwidth .# of interest. That the photons in the
beam are created one at a time means that the fluctuations
in the electric field are due to random emission of single
photons which have various frequencies and phases. As a

‘result, the fluctuations at different frequencies are in-

dependent, and the fluctuations at each frequency are dis-
tributed randomly in phase. The mathematical embodi-
ment of these two statements is

(AE(w)AE(0')) =0, (1.3a)

(AE@AE*(0) = 3-F (@2mdo—o'),  (13b)
where AE(w)=E(w)—(E(w)), & (w) is the flux spectral
density of the electric field fluctuations (dimensions of en-
ergy per area), and b is a units-dependent constant (e.g.,
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b=4r in cgs Gaussian units). In Egs. (1.3) and
throughout this first section, brackets denote a classical
statistical average. The noise produced by a one-photon
device is conveniently characterized by a single function
of frequency . (w), derived from the second moments of
the complex amplitudes. Equivalent to Eqgs. (1.3) is the
more compact statement that the electric field has time-
stationary (TS) noise; i.e., the variance of the electric field
is constant:

C 2 do
T{AE ) = [ 2% (w) (1.4)
[AE(x,t)=E(x,t)—(E(x,t))].

Implicit in this discussion of TS noise is the assump-
tion, made throughout this paper, that the noise is Gauss-
ian, so that second moments are sufficient to characterize
it. An important consequence of Gaussian TS noise,
which does not hold for TS noise in general, is that the
modes at different frequencies are statistically indepen-
dent [Egs. (1.3)]. The restriction to Gaussian noise will be
lifted in a future paper (paper III of this series), where the
relations among Gaussian noise, TS noise, and ‘statistically
independent modes will be considered.

The key property of a one-photon device is that its output
consists of independently excited modes with TS noise. In
terms of constructing a formalism, this property has two
crucial consequences, which can be thought of as the
cornerstones of one-photon optics: (i) one can deal with
one plane-wave mode at a time, building a continuum
multimode description by integrating over independently
excited single modes; (ii) the natural variable to charac-
terize the excitation of each mode is its complex ampli-
tude E(w).

One is now in a position to identify the fundamental
“building blocks” of one-photon optics. Specialize to a
single mode at frequency . The natural quantum-
mechanical operator for the mode is its annihilation
operator

a(w)E(Zch/bﬁw)’/zE(w) s (1.5)

which is just the mode’s complex amplitude rewritten in
“units” of square root of the number of quanta per root
Hz. (4, is an appropriate “quantization area” transverse
to the propagation direction.) The natural quantum states
for the mode are the coherent states'“—the states generat-
ed from the vacuum by an ideal one-photon process (e.g.,
a classical current distribution radiating into the vacuum).
The coherent states are eigenstates of the annihilation
operator; thus they have the sharpest complex amplitude
permitted by quantum mechanics. The formalism of
one-photon optics is founded firmly on the annihilation
operator as the fundamental operator and on the coherent
states as the fundamental quantum states.

Real one-photon devices do not exhibit ideal behavior.
Describing their nonideal behavior requires consideration
of the complicated interaction of the light with atomic
systems and of the effects of losses and their associated
fluctuations. One approach to analyzing the light pro-
duced by a real one-photon device is to derive an equation
for the evolution of the reduced density operator (quan-
tum state) of the electromagnetic field. This equation,

which is called the master equation, is generally a compli-
cated operator equation not directly amenable to analysis.
A powerful technique for rendering the master equation
more tractable is to convert it into an equivalent c-number
partial differential equation—a Fokker-Planck equa-
tion—for the evolution of a quasiprobability distribution
(QPD). A QPD is a rigorous and complete representation
of a density operator (i.e., it contains all the quantum
statistics associated with the density operator), but it re-
tains the appearance and some of the interpretation of a
classical probability distribution.

The definition and interpretation of the QPD’s used in
one-photon optics (“one-photon QPD’s”) are intimately
related to the use of the annihilation operator and the
coherent states as the fundamental building blocks.!>~17
More than one QPD is associated with a given quantum
state, each QPD corresponding to a different way of or-
dering the creation and annihilation operators. For a sin-
gle mode of the electromagnetic field, each one-photon
QPD is a function of a complex number u, which is a c-
number analog of the mode’s annihilation operator. The
expectation value of a suitably ordered product of creation
and annihilation operators is calculated using the ap-
propriate QPD as though it were a classical probability
distribution. The one-photon QPD’s are powerful tools
for analyzing real one-photon devices, but based as they
are on the annihilation operator and the coherent states,
they are tools designed specifically for one-photon pro-
cesses and are not necessarily suited to the analysis of
two-photon devices. For example, one of the most useful
and most used one-photon QPD’s is the Glauber-
Sudarshan P function,'®!>!* which reproduces the nor-
mally ordered statistics of a and aT; this QPD does not
exist as a well-behaved distribution for the squeezed states
that can be produced by two-photon devices.?

Our philosophy has been that a new task requires new
tools. The first step is to identify new operators and new
quantum states, which are suited to the description of
two-photon processes; this task is carried out exhaustively
in papers I and II of this series. The second step is to use
these operators and states to define “two-photon QPD’s”
that can be used to analyze real two-photon devices; this
task will be tackled in paper III.

To simplify the introduction of our formalism, consider
as an example a parametric amplifier, the prototype for
all two-photon devices. In a paramp an intense laser
beam at frequency 2Q-—the pump beam—illuminates a
suitable nonlinear medium. The nonlinearity couples the
pump beam to other modes of the electromagnetic field in
such a way that a pump photon at frequency 2} can be
annihilated to create “signal” and “idler” photons at fre-
quencies Q+e and, conversely, signal and idler photons
can be annihilated to create a pump photon. Thus the
light produced by a paramp consists of pairs of simul-
taneously emitted photons which excite pairs of modes
at frequencies Q=*e. In general, the modes in each
pair have correlated complex amplitudes [i.e.,
(AE(Q+€)AE(Q —¢€))=£0; cf. Eq. (1.3a)]. This fact tells
one immediately that the formalism of one-photon optics
must be abandoned; the correlations produced by two-
photon processes cannot be described in terms of indepen-
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dently excited single modes.

The electric field at the output of a paramp has the
same form as Eq. (1.1); the difference lies in the correla-
tion between the modes in each pair. It is useful to
rewrite the field by factoring out the time dependence at
frequency ). Define (real) quadrature phases E(x,?) and
E z(x,t ) by |

E(i)E%(El__EiEz)e:Fiﬂ('_x/C) ; (1.6)

E | +iE, is the complex amplitude of the electric field, de-
fined with respect to the carrier frequency Q. In terms of
the quadrature phases, the electric field is given by

E(x,t)=E,(x,t)cos[Q(t—x /c)]
+E,(x,t)sin[Q(t —x /¢c)] ;

thus, E; and E, describe modulation of waves
“cos[Q(t—x/c)]” and “sin[Q(f—x/c)].” The quadra-
ture phases can be written in terms of their Fourier com-
ponents:

(1.7)

E,(x,t)= fg;j—;[Em(f)e —ie(t—x/c)

+E;:,(6)ei€"_x/6)], m=12.

(1.8)

Here the integral runs over a suitable set % of (positive)
modulation frequencies €, and

E(e)=E(Q+¢€)+E*(Q—e€),
E,(e)=—iE(Q+¢€)+iE*(Q—e€) .

(1.9a)
(1.9b)

The Fourier component E,(e) [E,(€)] is a complex am-
plitude for modulation at frequency € of a wave
cos[Q(t—x /c)] (sin[Q(z—x/c)]). Now consider the
emission of a pair of photons at frequencies Qte. The
conventional view is that these photons excite a pair of
modes that are sidebands of the carrier frequency ; an
equally good alternative view is that they excite directly a
modulation at frequency € of a wave at frequency Q.
Roughly speaking, if the phases of the two photons are
such that E(Q+¢€)=E*(Q1—¢), then they excite E(e); if
the phases are such that E(Q+€)=—E*(QQ—e¢), then
they excite E,(€). Our message is that two-photon optics
should be formulated in a different language from one-
photon optics. In one-photon optics attention focuses on
the electric field E(x,t) and its Fourier components E(w);
emission of a photon excites a mode at a particular fre-
quency. In two-photon optics attention shifts to the
quadrature phases E(x,t) and E,(x,t) and their Fourier
components E|(€) and E,(€); emission of a pair of pho-
tons excites one of the quadrature phases at a particular
modulation frequency. '

With this new language in hand, the discussion of
natural variables for two-photon optics is just a transla-
tion of the preceding review of one-photon optics. The
fluctuations in the quadrature phases are due to random
emission of pairs of photons, which excite the quadrature
phases at various modulation frequencies with various
phases [phase in this context is the phase of the (complex)
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Fourier component E(€) or E,(€)]. As a result, the fluc-
tuations at different modulation frequencies are indepen-
dent, and the fluctuations at each modulation frequency
are distributed randomly in phase. This means that the
quadrature phases have time-stationary noise—a kind of
noise that we call time-stationary quadrature-phase
(TSQP) noise.'>?! For Gaussian noise the conditions for
TSQP noise are

(AE,(€)AE,(€')) =0, (1.10a)

(AE,,,(e)AE,‘,‘(e’)):%fm,,(e)ZﬂS(e—e’), (1.10b)

where m,n=1,2, AE,(e)=E, (e)—(E,(€)), and
L mn(€)=Fnm(€) is the flux spectral-density matrix for
the quadrature-phase fluctuations [dimensions of energy
per area; cf. Egs. (1.3)]. Equivalent to Egs. (1.10) is the
time independence of the covariance matrix of the quad-
rature phases:

c de
Eb—(AEm(x,t)AE,,(x,t))=f@;Re[fmn(f)]

(1.11)
[m,n=1,2; AE,(x,t)=E,(x,t)—(E,(x,t)); “Re”
denotes “the real part of”’]. Unlike TS noise, TSQP noise
allows the quadratures to carry different amounts of noise
(& 11%£F2), and it allows them to have a nonvanishing
time-stationary correlation [Re(.#1,)540]. This means
that the variance of the electric field is not, in general,
constant:

< 2
) ([AE(x,)]*)

_ [ de

= J 51+ n+(F - n)cos[20(t —x /c)]
27

+2Re(f12)sin[2ﬂ(t—x/c)]} (1.12)

[cf. Eq. (1.4)]. Equations (1.11) and (1.12) can be inter-
preted as saying that the fluctuations in the electric field
are not distributed randomly in phase, where phase is here
defined relative to frequency Q.

The key property of a two-photon device is that its output
consists of independently excited pairs of modes with TSQP
noise. This property is the reason that two-photon optics
is formulated more conveniently in terms of the quadra-
ture phases and their Fourier components than in terms of
the electric field and its Fourier components. The conse-
quences of this property, and the cornerstones of two-
photon optics, are the following: (i) one can deal with one
pair of modes, i.e., one modulation frequency, at a time,
building a continuum multimode description by integrat-
ing over independently excited pairs of modes; (ii) the
natural variables for each pair of modes are the Fourier
components E(€) and E,(e).

We can now identify the fundamental building blocks
for two-photon optics. Specialize to a pair of modes at
frequencies Qz+e. The natural quantum-mechanical
operators for the modes are the quadrature-phase ampli-
tudes a;(€) and a,(€),!>?! defined by
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172
©= |4 | E0
IE= 1 ha 1€
Q+ 172 172
_ | 2+e —€ toy
=10 ] a(Q+€)+ 20 ] a'(QY—e),
(1.13a)
()= | VZE()
arl €)= bHQ 2l€
o 172 1172
=i —ﬁ;ﬁ a(Qte)+i 256 al(Q—e)
(1.13b)

[Egs. (1.5) and (1.9)]. The quadrature-phase amplitudes
are simply rescaled versions of E(€) and E,(e)—rescaled
to be in units of square root of the number of quanta, re-
ferred to the carrier frequency Q, per root Hz. The natur-
al quantum states are the two-mode squeezed
states®!>2!__the states generated from (two-mode)
coherent states by an ideal two-photon device (e.g., an
ideal paramp, with undepleted classical pump and no
losses). The two-mode squeezed states have TSQP noise,
and they have, in general, unequal amounts of noise in the
two quadratures (. 1;5%.%5,). The present paper (paper I)
focuses on the properties and the significance of the
quadrature-phase amplitudes and the two-mode squeezed
states; the goal is to achieve a good physical understand-
ing of these fundamental entities. The accompanying pa-
per (paper II) develops a mathematical formalism suited
to manipulating the quadrature-phase amplitudes and the
two-mode squeezed states, and it uses the formalism to
write their properties in a compact form. With its em-
phasis on physical interpretation, this first paper omits
many mathematical details, which are filled in by paper
II.

These building blocks of two-photon optics have been
used to construct new two-photon quasiprobability distri-
butions.!”> More than one two-photon QPD is associated
with a given (two-mode) quantum state, each QPD corre-
sponding to a different way of ordering the quadrature-
phase amplitudes and their Hermitian conjugates. Since
the two-photon QPD’s are written in a language tailored
to the description of two-photon processes, we think they
will be valuable tools for analyzing nonideal behavior of
two-photon devices. A future paper (paper III) will
describe in detail the new operator orderings and the two-
photon QPD’s.

In this paper Sec. IT deals with a couple of minor nota-
tional issues; Sec. III reviews briefly the building blocks of
one-photon optics; Sec. IV introduces the quadrature-
phase amplitudes and the two-mode squeezed states, with
emphasis on the physical significance of the quadrature-

phase amplitudes; Sec. V considers in detail TSQP noise"

for the case of Gaussian noise; Sec. VI discusses uncer-
tainty principles for the quadrature-phase amplitudes; Sec.
VII lists important properties of the two-mode squeezed
states; finally, Sec. VIII specializes our work to the previ-
ously explored degenerate limit (€e=0). An appendix

treats uncertainty principles for non-Hermitian operators.
Throughout the remainder of this paper we use units with
fi=c=1.

II. NOTATIONAL ISSUES

For convenience we have adopted a notation that some-
times sacrifices precision for ease in use. To minimize
confusion that might arise from our preference for con-
venience, we consider here a couple of notational issues.

Throughout our discussion of two-photon optics, we
find that each physical quantity is most conveniently
represented by its operator in a particular picture. For ex-
ample, the creation and annihilation operators are most
conveniently written in the Schrodinger picture (SP); field
quantities, such as the electric field and the quadrature
phases, are most conveniently written in the usual interac-
tion picture (IP), in which all the free time dependence is
incorporated in the operators; and the quadrature-phase
amplitudes are most conveniently written in an interaction
picture that we call the modulation picture (MP), which
we define and discuss in Sec. IV. As a result, we have ac-
quired the habit of mixing in the same equation various
operators written in different pictures. This habit has the
potential to cause confusion, which we seek to avoid by
adhering strictly to the following procedure. For each
physical quantity, the corresponding operators in different
pictures are denoted differently. As each physical quanti-
ty is introduced in Secs. III and IV, we define its operator
in a particular picture by a picture-consistent equation,
i.e., an equation in which all operators are written in the
same picture. The operators corresponding to the same
physical quantity in other pictures are then defined as
they are needed. The appropriate picture for a picture-
consistent equation is indicated by writing SP, MP, or IP
in parentheses next to the equation; of course, a picture-
consistent equation retains the same form when all opera-
tors are transformed to another picture.

As an illustration of this procedure, consider a plane
electromagnetic wave with a particular linear polarization,
which propagates in the x direction. . In the SP the
creation and annihilation operators for the plane-wave
mode at frequency o are denoted by a'(w) and a(w); they
satisfy the continuum commutation relations

[a(co),aT(a)')]=2178(w—w’) . (2.1)
The electric field operator in the SP is given by
E(x)=E‘* (x)+E'")(x) (SP), (2.2a)
EM(x)= fom‘;—:(ba)/ZAq)l/za(w)e"“’x
=[Ex)]" (sP), (2.2b)

where E‘*)(x) and E‘~)(x) are the SP positive- and
negative-frequency parts of the field, 4, is a suitable
quantization area, and b is the units-dependent constant
introduced in Egs. (1.3). In the IP the electric field opera-
tor is given by
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E(x,t)=e " E(x)e " =EH (x,) +E N x,0),  (2.30)
E(+)(x,t)_ iHct (+)( Ye —iHct
172 —iw(t—x)
0 2 (b /2A) a(w)e
=[Ex,0] (2.3b)
[cf. Egs. (1.1), (1.2), and (1.5)], where
Hc_f -———a)af(a))a(co) ‘ (2.4)

is the free Hamiltonian for the continuum of modes, and
where we use the fact that the IP form of the annihilation
operator for a particular mode has the harmonic time

iHAt —iHt
dependence of the mode, ie., e Calw)e €
=a(w)e i,

A second notational issue concerns the way we use the
symbol A. In general, we use A to designate the differ-
ence between a quantity and its mean value. Thus, for a
quantum-mechanical operator R, AR is defined to be the
operator

AR=R—(R) . , 2.5)

For a Hermitian operator B this notation allows the vari-
ance (squared uncertainty) of B to be written as ((AB)?)
(=(B?)—(B)?); we always write the variance in this
form. For a general, possibly non-Hermitian operator R,
a fundamental quantity in our analysis is the mean-square
uncertainty in R, by which we mean the sum of the vari-
ances of the Hermman real and 1mag1nary parts of R
[Re(R)=+ (R +R ); Im(R)= ——t(R R )]. To define
and write the mean-square uncertainty compactly, we use
three shorthand notations: (i) for two operators R and S,
the subscript “sym” denotes a symmetrically ordered
product, i.e.,

(RS)gym=7(RS+SR) ; (2.6)

(ii) the expectation value of a symmetrically ordered prod-
. uct is written

((RS)sym ) =(RS Y gym ; 2.7
(iii) | AR |? denotes the operator
| AR |2=(AR ARy, =3 (AR ART+ARTAR). (2.8

These shorthands allow us to write the mean-square un-
certainty as

(|AR|?)=(ARAR") g n=(RR )ym— [(R)|%. (2.9)

For a Hermitian operator the mean-square uncertainty is
the variance; our notation is consistent because |AB |2
=(AB)?if B=B".

III. REVIEW OF ONE-PHOTON OPTICS

We turn now to a brief review of one-photon optics,
briefer even than the review in Sec. I, but rigorous
quantum-mechanically. Consider the light produced by a
one-photon device such as a laser. As is discussed in Sec.
I, one can specialize to a single (discrete) plane-wave mode

with frequency w; a continuum multimode description is
built by integrating over independently excited single
modes. The mode’s creatlon and annihilation operators in
the SP are denoted by a' and a, which satisfy the usual
(discrete) commutation relation

[a,a’]1=1. 3.1)

We introduce an “electric field operator” for the mode,
which is denoted in the SP by

E(x)=E*P(x)+E7)(x) (SP),
E(x)=(w0/2)"ae’*=[E~(x)]" (SP)

[cf. Egs. (2.2)]. In the IP the single-mode electric field
operator becomes

(3.2a)
(3.2b)

—iHgt _

E(x,t)=e"S'E(x)e Hx,)+Ex,0),  (3.32)
EM(x,t)=(w/2)%ae ~* ¥ = [ E)(x,1)] (3.3b)
[cf. Egs. (2.3)], where

Hy=wa'a (SP) (3.4)

is the free Hamiltonian for a single mode.

Our motivation for introducing the single-mode electric
field operators of Egs. (3.2) and (3.3) is that we want to be
able to calculate the statistics of fieldlike quantities associ-
ated with a single (discrete) plane-wave mode. The nor-
malization of the electric field for a single plane-wave
mode is somewhat arbitrary, so we have simply made a
convenient choice that leaves our results uncluttered by ir-
relevant constants. The ©!/? in Egs. (3.2b) and (3.3b) is
the obligatory factor of root frequency that accompanies
the annihilation operator [cf. Egs. (2.2b) and (2.3b)]; it
gives the single-mode electric field units of square root of
energy. The 27172 in Egs. (3.2b) and (3.3b) is chosen for
convenience.

The natural states for describing the output of a one-
photon device can be identified by considering the Hamil-
tonian for an ideal one-photon process:

H=Hg—ig*(t)ae'® +ig(t)a'e —i*' (SP). (3.5)

Here g(t)=g is an arbitrary complex function of time.
The interaction part of this Hamiltonian creates and de-
stroys photons one at a time; the process is ideal because it
is characterized by a c-number function g(z)e ~***, which
can be regarded as a classical generalized force acting on
the mode. The Hamiltonian (3.5) describes a classical
current distribution radiating into the mode of in-
terest.*1¢ The SP unitary evolution operator U (z,0) cor-
responding to the Hamiltonian (3.5) is'®?2

U(t,0)=e =0 "H5'p (4 )
iHgt

=e D (q,ye 10t ST (3.6a)
t
y=r(n)= [ gt (3.6b)
1. ! * * ’
h=7i [ (y'g—yghiar . (3.6¢)
In Eq. (3.6a)
D(a,u)=exp(ua’ —pu*a) 3.7)



is the (unitary) single-mode displacement operator,’* so
named because of the important property'*

DYa,p)aD(a,p)=a+u . (3.8)

The natural states for one-photon optics are those generat-
ed from the vacuum state |0) by an ideal one-photon
process. These states, which are called (single-mode)
coherent states,'* are defined by

| eon=Dl(a,u)|0) . (3.9)

A coherent state is an eigenstate of the annihilation opera-
tor with complex eigenvalue u:

a|p)eon=m |1 con (3.10)

[Eq. (3.8)]. The coherent states lie at the very core of
one-photon optics; their properties have been extensively
investigated.!*16

The natural variable for one-photon optics is the an-
nihilation operator a, which is simply a complex-
amplitude operator for the mode, written in units of
square root of the number of quanta. The reason the an-
nihilation operator is natural is that the states of interest
in one-photon optics have time-stationary (TS) noise. To
see what TS noise means, let the initial state of the mode
be the density operator p. The noise associated with an
arbitrary state p is completely characterized by the “noise
moments” of a and aT, where by noise moments we mean
moments of Aa=a —(a) and Aa’ [Eq. (2.5)]. In this pa-
per we consider only the lowest-order noise, which is
described by the second-order noise moments

((Aa)?)=tr[p(Aa)?]=(a?) —(a)?, (3.11a)
(|Aa|?) =tr[p(Aaha)gy]
=(aa ) ym—|(a)|?. (3.11b)
The state p has (second-moment) TS noise if
((Aa)*)=0 (3.12)

[cf. Egs. (1.3a) and (1.5)]; hence, for TS noise the lowest-
order noise is described completely by the mean-square
uncertainty { | Aa |?) [Eq. (2.9); cf. Egs. (1.3b) and (1.5)].
The physical content of Eq. (3.12) is that the noise in the
single mode is distributed randomly in phase; thus TS
noise can be characterized as random-phase noise or
phase-insensitive noise. An immediate consequence of
Eq. (3.12) is that the electric field has TS noise; i.e., if the
mode undergoes free evolution (Hamiltonian Hy), the
variance of the electric field (3.3a) is constant:

([AE(x,)P) =w( | Aa | %)

[cf. Eq. (1.4)].

It is useful to emphasize here why the annihilation
operator is the natural variable for describing TS noise.
Under free evolution (evolution operator e s %, the noise
moment ((Aa)?) acquires a harmonic time dependence
e 4% whereas the mean-square uncertainty { |Aa |2)
remains constant. The essence of TS noise is that the
time-dependent noise moment {(Aa)?) vanishes, so that
the lowest-order noise is described by the time-

(3.13)
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independent moment ( | Aa |?). These considerations are
the key to generalizing the notion of TS noise to noise mo-
ments of arbitrarily high order. The definition (3.12) con-
siders only the lowest-order noise moments, the justifica-
tion being an implicit assumption of Gaussian noise. The
general definition of TS noise, which will be given expli-
citly and discussed in paper III, requires that all the time-
dependent noise moments of a and a' vanish, so that the
noise is completely characterized by the time-independent
noise moments. This, then, is the reason the annihilation
operator is the natural variable for one-photon optics: the
TS noise produced by one-photon devices is completely
characterized by the time-independent noise moments of a
and a'.

The commutator [a,a'*]=1 enforces an uncertainty
principle,

(|Aa|?) >+ |([a,a"]) | =% .

[This and other uncertainty principles for non-Hermitian
operators are derived and discussed in the Appendix; see
Eq. (A9).] The lower limit in Eq. (3.14) is the half-
quantum of zero-point noise. A coherent state |u )., has
mean complex amplitude (a ) =g and has TS noise with
(| Aa |?)=+; it can be thought of as a classical excita-
tion of the mode contaminated by zero-point noise.

The fundamental building blocks for one-photon optics
are the annihilation operator and the coherent states. Al-
though the coherent states arise from a consideration of
ideal one-photon devices, they and the annihilation opera-
tor have been used to define quasiprobability distribu-
tions,'~1720 which are powerful tools for analyzing the
nonideal behavior of real one-photon devices. Quasi-
probability distributions will be considered in detail in a
future paper (paper III).

(3.14)

IV. BUILDING BLOCKS OF TWO-PHOTON OPTICS

Attention shifts now to a discussion of the natural vari-
ables and natural quantum states for two-photon optics.
As is made clear in Sec. I, one can analyze the light pro-
duced by a two-photon device by specializing to a pair of
(discrete) plane-wave modes with frequencies Q+e¢, where
Q is a carrier frequency and € <Q is a modulation fre-
quency; a continuum multimode description is built by in-
tegrating over independently excited pairs of modes (i.e.,
integrating over €). In optical applications it is always
true that € <<Q. The annihilation operators for the two
modes in the SP are denoted by a_ and a_; they satisfy
the usual (discrete) commutation relations

[a+,a,]=[a+,at]=0, (4.1a)
la,,atl=[a_,a’ 1=1. (4.1b)
The free Hamiltonian for the two modes is given by
H0=(9+e)a1a+ +(Q—eala_
=Hg+H, (SP), (4.2a)
Hy=Qa%a, +ala_) (sP), (4.2b)
Hy=elala, —ata_) (sP). (4.2¢)
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We find it useful to split H, into two commuting
pieces, Hr and H,; ([Hg,Hy;]=0), which are the key to
defining the pictures we use in our new formalism. In the
usual interaction picture (IP), all the free time dependence
is transferred from the states to the operators; the relation
between operators (including density operators) in the IP
and the SPis

Rlp(t)EeiHOtRSP(t)e_iHOt .

13(

(4.3)

The modulation picture’> (MP) is an interaction picture in
which the free time dependence at the carrier frequency Q
is transferred from the states to the operators, the states
retaining the remaining free time dependence at modula-
tion frequency e; operators in all three pictures are related
by

iHpt —iHpt —iH,t
Ryp(t)=e' R'Rgp(t)e  Rl=me M

Rip(t)e' ™" .

(4.4)

There is no reason why the two modes we consider need
be plane-wave modes with the same polarization propaga-
ting in the same direction. Nonetheless, we assume they
are so that we can introduce a “two-mode electric field
operator,” which in the IP is given by

E(x,t)=EF(x,t)+E " x,t) (IP), (4.5a)

E(+)(x’t)=2—l/2[(9+6)1/2a+e—i(ﬂ+€)(t——x)
+(Q_6)1/2a_e—i(Q—-e)(t~x)] , (4.5b)

E T, t)=[E P (x,0]" (4.5¢)

[cf. Egs. (3.3) and subsequent discussion].

A. Two-mode squeezed states

Consider now the Hamiltonian for an ideal two-photon
process:

H=Hy+ik(t)la,a_e 2@ _gT g1 2i0—-007 (gp) .
(4.6)

Here k(t) is an arbitrary real function of time. The in-
teraction part of this Hamiltonian creates or destroys a
pair of photons in the two modes simultaneously; the pro-
cess is ideal because it is characterized by a c-number
function k(#)e%¢=%)  For convenience we choose this
function to have a harmonic time dependence at frequen-
cy 2Q, with fixed phase but time-varying amplitude. The
Hamiltonian (4.6) describes, for example, an
parametric amplifier’>~2¢ with an undepleted classical
pump, which has stable frequency 2Q but whose ampli-
tude varies in time. The unitary evolution operator for
the Hamiltonian (4.6) is given by?%??

U(t,0)=e 'S(£,p)=S(E,p—Qt)e T @)

t
t=6n= [ x(thdr’ 4.8)
where
S(r.p)=exp[rla a_e~2%9—_qglal o%%)] 4.9)

is the (unitary) fwo-mode squeeze operator.'>?' The real
number r is called the squeeze factor. The most important

ideal
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property of the two-mode squeeze operator is that

S(r,@)asST(r,p)=a,coshr +-ateX®sinhr ,  (4.10)

a result which follows from Eq. (8.105) of Ref. 27.
To construct the natural states for two-photon optics,
onebegins with the two-mode coherent states'

[ttt Veon=Dl(a,,u )D(a_,u_)|0) (4.11)

[cf. Eq. (3.9)], which are eigenstates of @, and a_ with
eigenvalues u, and p_, respectively. Formally, a two-
mode coherent state is obtained by applying the two-mode
displacement operator'*

D(a,pu,)Dla_p_)=exp(pa’ —pu'a,

+u_al —pra_) (4.12)

to the vacuum state [cf. Eq. (3.7)]; physically, it could be
created from the vacuum by an ideal one-photon process
for each of the two modes. The natural states for two-
photon optics are those generated from two-mode
coherent states by the ideal two-photon process (4.6). Be-
fore defining these states, it is useful to define operators
that we call squeezed annihilation operators. In the SP
these operators have explicit time dependence and are de-
fined by

ai(r,qo;t)se_iHRtS(r,<p)aJ_FST(r,(p)eiHRt
:aiem’coshr—f—a;e_imez"‘Psinhr (SP) (4.13)
[Eq. (4.10)]; in the MP [Eq. (4.4)] the squeezed annihila-
tion operators are constant and are given by
ai(r,tp)Eai(r,cp;O)=S(r,(p)a¢ST(r,<p)
—a coshr +a e2#sinhr . (4.14)

The natural states for two-photon optics are the two-mode
squeezed states,®'>?! which are defined by

I‘I'La+"ll'a_>(”¢)ES(r’¢)) |:u’a+’:u'zz_ >coh ,
=S(r"p)D(a+’H’a+)D(a—nua_) [ 0) .
(4.15)

We label these states by the complex eigenvalues of
ai(r,@):

ai(r,@) )ﬂa+’#a_ >(r,<p):.u‘ai |Au‘a+nua_ >(r,¢p) (4.16)

[Egs. (4.14) and (3.10)]. Using Eq. (4.10), one can write
the two-mode squeezed states in the form

| sba_dirg=Dlai,u)D(a_,u_)S(r,@)|0),
4.17)
where
Ha, = +coshr +ure¥¥sinhr . (4.18)

Two-mode squeezed states were introduced independently
by Caves?! in an analysis of quantum limits on the perfor-
mance of linear amplifiers (see also Ref. 13) and by Un-
ruh® in a quantum-mechanical analysis of an interferome-
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ter; they have also been considered formally by Barut and
Girardello,”® Perelomov,” and Milburn.*® Properties of
two-mode squeezed states are considered in Sec. VII.

Almost all previous work on squeezed states has dealt
with the degenerate limit, in which the two modes we con-
sider coalesce into one (=0, a, =a_). Our attitude is
that the degenerate limit is not very important in describ-
ing real two-photon devices, because it is merely the e=0
boundary for a more realistic and more general mul-
timode description. The degenerate limit can, however,
play a useful heuristic role, so we consider it in some de-
tail in Sec. VIIIL.

B. Quadrature-phase amplitudes

It is useful to decompose the electric field into its (Her-
mitian) quadrature phases defined with respect to the car-
rier frequency Q.!*2! In the IP the quadrature phases are
defined by

El(x,t)EE(+)(x’t)eiQ(t—x)+E(—)(x,t)e—iﬂ(t——x) (IP) ,

(4.19a)
Es(x,0)= —iE'*(x,0)e' =% 4 iE")(x,1)e ~1% =2 (IP) ,
(4.19b)
B (x, 1) = L[Ey(x,0)+iB(x,)]e ¥ =% (IP)  (4.20)

[cf. Eq. (1.6)]. In terms of the quadrature phases the IP
electric field operator (4.5a) becomes

E(x,t)=E
+E,(x,t)sin[Q(t —x)] (IP) (4.21)

[cf. Eq. (1.7)]; thus E(x,t) and E,(x,t) describe modula-
tion of waves “cos[Q(z—x)]” and “sin[Q(z —x)].” The
quadrature phases (4.19) or their multimode analogs [Eq.
(1.8)] have been used in multimode analyses of optical
homodyning,” resonance fluorescence,' =33 parametric
amplification,** 36 and four-wave mixing.

For two modes the concept of (second-moment) TS
noise means that each mode has (second-moment) TS
noise [Eq. (3.12)] and that the two modes have zero
second-order correlation [cf. Egs. (1.3)]; these conditions
imply that the electric field has constant variance. One
says that, for TS noise, the noise in the electric field is dis-
tributed randomly in phase, where phase is defined rela-
tive to frequency Q; equivalently, one can say that TS
noise means that the noise in the electric field is divided
equally between the quadrature phases.

A two-mode squeezed state does not, in general, have
TS noise. The two modes have correlated noise, and the
quadrature phases carry different amounts of noise.
Thus, in two-photon optics it is convenient to describe the
noise in terms of the quadrature phases. In particular, the
natural variables are the (two-mode) quadrature-phase am-
plitudes,'>*! which are simply the Fourier components of
the quadrature phases, normalized to be in units of square
root of the number of quanta referred to the carrier fre-
quency ). In the SP the quadrature-phase amplitudes are
explicitly time-dependent operators defined by

1(x,t)cos[ Q(t —x)]

34

Q,+ 172
6 .
al(I)E W a+e'“'
Q 172
+ -555 al e—i% (Sp), (4.222)
Q 1/2
a(t)=— 2_56 a, e’
Q 1/2
+i| = 9€] ale—i% (sp). (4.22b)

Notice that the quadrature-phase amplitudes are not Her-
mitian. In the MP the quadrature-phase amplitudes are
constant and are denoted by

—iHpt

aIEe Ral(t)e =a,(0)
Q 1/2 Q 172
= |21*€ —€ t (4.23a)
=20 | Tt |20 |
ay=e"Ray(t)e R = ay(0)
Q 1/2 172
. +€ . —€ +
=i l 20 a, +i Yo a._ (4.23b)

[cf. Egs. (1.13)]. We find it convenient to introduce the
symbols

A =[(Qte)/Q]V2,

so that Eqgs. (4.23) and their inverse can be written in the
compact forms

(4.24)

a=2""2A,a, +A_al), (4.25a)

ay=2""2(—ik,a, +ir_al), (4.25b)
Aya,=2""%a,+ia,), (4.262)
A_a_=2""2al+ia)) . (4.26b)

In the IP the quadrature-phase amplitudes acquire a har-
monic time dependence at the modulation frequency:

iHyt —iH,yt iHyt —iHyt —i
e Mo, e M 0 (e o — e iet

m=1,2. (4.27)

Using Eqgs. (4.5), (4.19), and (4.26), one can write the
quadrature phases in the form

Em(x’t)=ﬂl/2[ame—ie(t—x)+aj”eie(t—x)] ,

m=1,2 (4.28)
which shows explicitly that «,, is a complex-amplitude
operator at modulation frequency € for E,, (x,?) [i.e., it is
the Fourier component of E,(x,?) at positive frequency
€]. In our notation the MP is the most convenient picture
for writing a picture-consistent equation relating the
quadrature phases to their amplitudes; the MP quadrature
phases are denoted by

E,(x)=e "™ME_(x,0e™™' m=1, (4.29)

so that
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E,(x)=0"%a, e +ale=®), m=1,2 (MP). (4.30)

The two-mode quadrature-phase amplitudes have the
following (discrete) commutator algebra:

[apal]=[aynal]l=€/Q, (4.31a)
[a1,2,]=0, (4.31b)
[al,a;]=[a}‘,a2]=i . (4.31c)

These commutators enforce a set of uncertainty principles
which we discuss in detail in Sec. V1.

All of our two-mode results thus far can easily be ex-
tended to a continuum description by using “continuum”
quadrature-phase amplitudes and integrating over the pos-
itive modulation frequencies of interest [cf. Egs. (1.8) and
(1.13)]. The MP continuum quadrature-phase ampli-
tudes?! a,(€) and a,(e) are related to the continuum
creation and annihilation operators [Eq. (2.1)] by Egs.
(1.13) [cf. Eqgs. (4.23)]; they obey the commutation rela-
tions

[ai(e),a(e)]=[a(€),ae)]=[ax(e),axe)]=0,

(4.32a)
[al(e),a’{(e')]=[a2(e),a§(e')]=—gzva(e—e') ,  (4.32b)
[ay(e),ale)]=[al(e),are) ] =i2nsle—€") . (4.32¢)

The fundamental building blocks of two-photon optics
are the quadrature-phase amplitudes and the two-mode
squeezed states. In paper III these building blocks will be
used to define new two-photon quasiprobability distribu-
tions.

C. Pictorial convention

As is made clear by Egs. (4.199—(4.21), E(x,t)
+iE,(x,t) is a complex-amplitude operator for the two-
mode electric field, defined with respect to frequency Q.
The choice of phase for this complex amplitude is arbi-
trary, so one can ask what happens under a change of
phase. The unitary operator

R(B)Eexp[—ie(ax_a_,, +aT_a_)] (4.33)
generates just such a phase change, i.e.,
RYO)E (x,6)+iE(x,0)IR(6)
=E|(x,t)+iE}(x,t)
=[E;(x,t)+iE,(x,t)]le "% . (4.34)

We call R(0) the rotation operator because the transfor-
mation (4.34) is a rotation of the complex amplitude.
This rotation corresponds to a common phase change for
the annihilation operators,

R (6)a+R(0)=a" =a,e~'?, (4.35)
and to a rotation of the quadrature-phase amplitudes
(4.36a)

(4.36b)

R T(G)alR(G)Ea’l =a;cosf+a,sinf ,
RY(6)a,R(0)=ay = —a;sinf+a,cos6 .

Notice that e ®'—R(Qs) [Egs. (4.2b) and (4.33)]; thus
the time dependence at the carrier frequency is simply a
rotation of the complex amplitude.

One is now in a position to appreciate the importance
of the MP. In two-photon optics one deals with the quad-
rature phases and their amplitudes as the fundamental
quantities. The time dependence at frequency Q is trivial
and uninteresting; the important free time dependence is
at the modulation frequency. One would like to formu-
late the theory in such a way that the trivial time depen-
dence at Q is suppressed. This goal is achieved in two
steps: (i) one works in the MP, thereby transferring the
time dependence at Q) from the states to the operators; (ii)
one defines the fundamental operators—the quadrature
phases and their amplitudes—so that they are constant in
the MP. The second step requires defining the quadrature
phases and the quadrature-phase amplitudes with explicit
time dependences in the SP [Egs. (4.19) and (4.22)], which
then disappear in the MP [Egs. (4.23) and (4.30)]. The ef-
fect of the above two steps is to transform frequency Q to
zero frequency, thereby removing it from the problem. In
two-photon optics the MP in essence replaces the SP: in
the MP the states carry the important time dependence,
and the fundamental operators are constant.

With these remarks in mind, we introduce a set of con-
ventions that we adhere to throughout the remainder of
this paper and subsequent papers in this series. The
creation and annihilation operators are always written in
the SP (operators ai,a.); expectation values of the
creation and annihilation operators are evaluated using
the SP density operator pgp(#). The electric field and the
quadrature phases are always written in the IP [operators
E(x,t), E¥)(x,t), E(x,t), and E,(x,t); Egs. (4.5) and
(4.19)]; expectation values of these field quantities are
evaluated using the IP density operator pip(?). Finally, the
quadrature-phase amplitudes and the squeezed annihila-
tion operators are always written in the MP [operators a;,
a,, and a+(r,@); Egs. (4.23) and (4.14)]; expectation values
of these quantities are evaluated using the MP density
operator pyp(t). The MP free evolution operator we digni-
fy by a special notation,

+

UM(t)Ee—iHM'=exp[—iet(ala_,_—a_a_)] (4.37)

[Eq. (4.2¢)], because of the importance of the MP in our
foml}alism. In the SP the free evolution operator is
e ! °t=R(Qt)UM(t), and in the IP the free evolution
operator is the identity operator.

D. Physical significance of quadrature-phase amplitudes

Throughout this subsection we are interested in expec-
tation values of field quantities (the electric field and the
quadrature phases) which are undergoing free evolution.
Thus, in accordance with the conventions just described in
Sec. IV C, all expectation values are evaluated with respect
to the initial (¢ =0) state.

We turn now to a detailed discussion of the meaning of
the quadrature-phase amplitudes. To understand their
close connection to experiment, it is useful first to look
closely at how the expectation values of a; and a, deter-
mine the classical behavior of the electromagnetic field.
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By classical behavior we mean simply the free time evolu-
tion of the expectation value of the electric field at a par-
ticular point in space, say x =0. Equivalent information,
but with the rapid time dependence at frequency Q re-
moved, is contained in the expectation value of the field’s
complex amplitude:

(E(0,1)) =Re[{E(0,)+iE,(0,t))e %] (4.38)

For present purposes it is more convenient to deal with a
dimensionless complex amplitude, which is defined in the
IP by

& X, ) +i&(x,t)=(2Q) "V E (x,t)+iE,(x,t)]

=(Z/Q)I/ZE(+)(x’t)ein(t—x) X (4.39)

This dimensionless complex amplitude is related to the
annihilation operators by

&1(x,t)+i&5(x,t)=A a e i

+A_a_etet—x) (4.40)

[Egs. (4.5b) and (4.24)], and its components, dimensionless
(Hermitian) quadrature phases, can be written as

& m(x,)=(2Q)"2E,, (x,)
=2—1/2(ame—ie(z—x)+a:rneie<t—x)) ,

m=12 (4.41)

[Eq. (4.28)].
For the simple case of a two-frequency field, the classi-
cal behavior is specified by

(&10,)+i&,(0,0))=A,(a e "+ A _(a_)e®
=Re(2!2(a;)e i)

+iRe(2V*(a,)e i) | (4.42)

Equation (4.42) says that the mean complex amplitude ro-
tates about the origin, its tip tracing out an ellipse, the
“signal ellipse,” during each modulation period 27 /€.
The classical behavior of the field can be pictured on a
complex-amplitude diagram (Fig. 1). On a complex-
amplitude plane one draws the signal ellipse, indicates the
initial (t =0) complex amplitude by a vector whose tip lies
on the signal ellipse, and shows the direction of rotation
of the complex amplitude by arrows on the signal ellipse.
Four pieces of information are required to specify the
classical behavior: the two radii and the orientation of the
signal ellipse, and the direction of the initial complex am-
plitude. Notice that the phase change (4.34) corresponds
to rotating the axes of the complex-amplitude plane coun-
terclockwise by an angle 6. Notice also that in the degen-
erate limit (€=0, @, =a_) the mean complex amplitude
never changes; the signal ellipse collapses to a single point,
which is just the unchanging complex amplitude of a sin-
gle mode. -
Simple though the representation in Fig. 1 may be, it is
instructive to decompose the elliptical motion of the com-
plex amplitude into even simpler parts. The obvious
decomposition is in terms of the two Fourier components
of the field, i.e., in terms of the mean complex amplitudes

Y i €

FIG. 1. Complex-amplitude diagram for the classical
behavior of the electric field. The dotted ellipse is the signal el-
lipse traced out by the mean complex amplitude
(&1(0,1)+i&5(0,)) during each modulation period 27 /€. Ar-
rows on the signal ellipse show the direction of rotation of the
complex amplitude. A vector indicates the initial (¢ =0) com-
plex amplitude.

(a+) of the two modes. In this decomposition [Eq.
(4.42)], the mean complex amplitude is a sum of two vec-
tors, A {a, Ye ¢ which rotates clockwise, and
A_{a_)e', which rotates counterclockwise (see Fig. 2).
The four classical pieces of information are given by the
complex numbers {2 ) and {(a_ ), each of which speci-
fies the (real) amplitude and phase of one of the modes.

The other useful decomposition is in terms of the
quadrature-phase amplitudes:

(&,,(0,1))=Re(2"*a,, Ye '), m=1,2. (4.43)

In this decomposition the four required pieces of informa-
tion are given by the complex numbers (a;) and (a,),
each of which is a complex amplitude for one of the quad-
rature phases. To represent this decomposition graphical-
ly, one draws separate complex planes for the vectors
22(a;)e "¢ and 2'*(a,) e ~'¢". In each of these planes
the vector 2!/%(a,, )e ~*¢ rotates clockwise, and its pro-
jection on the real axis gives (&,,(0,t)) [Eq. (4.43); see
Fig. 2]. These separate planes are phase planes for the
quadrature phases; they show vividly how {a,, ) specifies
the (real) amplitude and phase of (& ,,(0,¢)).

Figure 2 shows, at four separate times, the complex-
amplitude plane for (&,(0,z)+i%,(0,¢)), together with
the two decompositions discussed above. Such a diagram
at any particular time (usually chosen to be t =0) contains
all the information about the classical behavior of the
field. In the next section we show how to include infor-
mation about TSQP noise on such a diagram.

The physical significance of the quadrature-phase am-
plitudes can be demonstrated compellingly in two ways.
The first is to consider their relation to amplitude and
phase modulation. Superpose on the two-mode electric
field (4.5) a strong, classical carrier wave at frequency Q;
let the carrier wave be given by (2Q)!/?B cos[Q(t —x)],
where B is real. The two modes at frequencies Q+e
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FIG. 2. Complex-amplitude diagrams at four times: (a) t =0, (b) t=7/4¢, (c) t =m/2¢, (d) t=3m/4¢. At each time the central
complex-amplitude diagram is the same as in Fig. 1, except that the vector indicates the mean complex amplitude at the appropriate
time. To the right of the central diagram is a complex-amplitude plane which shows the decomposition of the mean complex ampli-
tude into contributions from the two modes [Eq. (4.42)]. Above and to the left of the central diagram are phase planes for the quad-
rature phases. In the phase plane above the central diagram, a vector indicates the value of 2!/2(a; ) e ~'% its real part is ( &(0,1))
[Eq. (4.43)]. In the phase plane to the left a vector indicates the value of 2!/2{a, ) e ~'¢; its real part is { €,(0,¢)).

represent sidebands of the carrier. The positive-frequency
part of the total field is given by

E (x,0)=(Q/2)"*Be ~' M=) 4 E)(x,1)
=2[2Q)2B +E(x,t)+iE,(x,t)]e ~/ =%

(4.44)
[Eq. (4.20)], corresponding to an electric field
E(x,0)=E Fx,0)+[E Fx,0]
=[(2Q)2B +E(x,)]cos[ Q(t —x)]
+E,(x,t)sin[Q(t —x)] . (4.45)

In Egs. (4.44) and (4.45) an overbar designates the total
field, including both the carrier and the sidebands. Equa-
tion (4.45) shows that E;(x,t) modulates a wave that is in
phase with the carrier—amplitude modulation of the
carrier—and E,(x,?) modulates a wave that is 90° out of
phase with the carrier—phase modulation of the carrier.
Thus the quadrature-phase amplitudes are complex-
amplitude operators for the amplitude and phase modula-
tion. The expectation value of the total field’s dimension-
less complex amplitude is the sum of the constant ampli-
tude B of the carrier and the modulated complex ampli-
tude (4.42):

(Z1(0,6)+i&0,8))=(2/Q)*E t)(0,1) )e'™
=B+($1(O,t)+ig2(0yt)> (4.46)

[Egs. (4.39) and (4.44)]. Thus the effect of the carrier on
the complex-amplitude diagrams of Figs. 1 and 2 is to dis-
place the signal ellipse a distance B along the real axis.
The resulting complex-amplitude diagram makes clear
that the oscillation of (& (0,¢)) is the amplitude-
modulation signal and the oscillation of ( #,(0,¢)) is the
phase-modulation signal. The separate planes for
212{@;)e ¢ and 2'/*(a,) e ¢ are phase planes for the
amplitude and phase modulation.

The second way to demonstrate the significance of the
quadrature-phase amplitudes is to note their relation to
ideal heterodyning. In heterodyne detection the two-mode
field (4.21) is mixed with (multiplied by) a strong local-
oscillator field at frequency Q, and the result is filtered to
pick out the Fourier component at frequency €. If the
local-oscillator field is proportional to cos[Q(z—x)]
(sin[Q(¢ —x)]) and if the mixing and filtering are ideal,
then the output of the heterodyne detector is proportional
to E (x,t) [E,(x,t)], and its complex amplitude is propor-
tional to @, (@;).>* In terms of the complex-amplitude di-
agrams of Fig. 2, heterodyning picks out the oscillation of
(&,0,1)) [(&,0,))]; the separate plane for
2V ay)e=' (2'2(a,)e ') is a phase plane for the
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heterodyned output.
At optical frequencies heterodyning is performed by
“combining the two-mode field (4.21) with a local-
oscillator field at a beam splitter and then directing the
combined field onto a photodetector; the mixing is a result
of the photodetector’s square-law response. Yuen and
Shapiro’ have analyzed optical heterodyning in detail.
They assume € << so they can neglect € relative to  in
factors like A+ =[(Q+€)/Q]"? [cf. Egs. (4.25)]. In this
approximation they find that ideal optical heterodyning
does indeed produce an output whose complex amplitude

is proportional to «a;.

The physical significance of the quadrature-phase ampli-
tudes lies in their close connection to experimental tech-
niques; they are the complex-amplitude operators for
fields—the quadrature phases—that are directly accessible
to measurement and experimental manipulation. The
‘quadrature phases are accessible because they describe the
physical process of putting amplitude and phase modula-
tion on a carrier signal and because they are the quantities
detected by phase-sensitive detection  techniques such as
heterodyning. ’

In place of the quadrature-phase amplitudes, one might
be tempted to use operators®’ defined in the MP by

Bi=2""a, +al),

Bo=2""—ia +ial)

(4.47a)
(4.47b)

[cf. Egs. (4.25)]. These operators have a simpler commu-
tator algebra than a; and a,:

[81,811=[B» B =1B1,B,]1=0 ,
[B1,B31=[B],B,1=i

~ [cf. Egs. (4.31)]; and under a unitary transformation gen-
erated by S(r,0), they transform very simply:

(4.48a)
(4.48b)

(4.49a)
(4.49b)

ST(r,008,8(r,00=Be ",
St(r,008,8(r,0)=B,e"

[Egs. (4.10) and (4.47)]. Despite these simple properties,
B1 and 3, are not the natural variables for two-photon op-
tics because they have no close connection to experimental
techniques; they are not complex-amplitude operators for
fields that can be measured. Shapiro and Wagner®’ have
argued that 3 or BB, is the quantity detected by optical
heterodyning. Their contention is based on Cook’s
claim® that photodetectors respond to “photon flux.”
The detailed analysis of Kimble and Mandel*® does not
support Cook’s claim. Recent work by Yurke*® indicates
that a; or a,, more nearly than f3; or f3,, is the quantity
detected by ideal optical heterodyning.

One can understand why ; and f3, are not the natural
variables—and at the same time understand the factors
A+ which appear in the definition of @; and a, [Egs.
(4.25)]—by a simple units argument. The operators a
and aT_ should not be added directly, as in Egs. (4.47), be-
cause they have incompatible units; each has units of
square root of the number of quanta, referred to its own
frequency. Multiplication of a, by (Q+¢€)'/? and a’ by

(Q—e€)!’? converts the two quantities to common units of
square root of energy; after this multiplication the two
quantities may be added, as is done in the definitions of
a; and a, [Egs. (4.23)]. Division by (20)!/? then leaves
a; and a, with dimensionless units of square root of the
number of quanta, referred to the carrier frequency Q.
That a;, and @, have these units is confirmed by writing
the free Hamiltonian (4.2a) as

Ho=0[(10])yym+ (@203 ym— 1] - (4.50)

Thus (ala;r)sym-}-(azag)sym=(Ho+Q)/Q is the total ener-
gy, including the one quantum of zero-point energy, mea-
sured in units of the quantum at frequency Q.

V. TIME-STATIONARY QUADRATURE-PHASE
NOISE

A. Definition and discussion

The states encountered in two-photon optics—in partic-
ular, two-mode squeezed states—can have electric field
noise that is not distributed randomly in phase, where
phase is defined relative to Q. This phase-sensitive noise
is of a special sort, however, which we call time-stationary
quadrature-phase (TSQP) noise.'>?! The reason for the
name is that the quadrature phases have time-stationary
noise; this means that the natural variables to describe
TSQP noise are the Fourier components of the quadrature
phases, the quadrature-phase amplitudes.

To see what TSQP noise means, let p be the initial den-
sity operator for the pair of modes considered in Sec. IV.
The noise associated with p can be characterized by the
noise moments of a;, a,, a;, and a,. Just as we did for
TS noise, we consider only the second-order noise
moments—a specialization justified by the assumption
that the noise is Gaussian; a complete description of
TSQP and TS noise, based on all noise moments, will be
presented in paper III. The state p is said to have
(second-moment) TSQP noise if the quadrature-phase am-
plitudes have random-phase noise, i.e., if
(Aa,, Aa, ) =tr(p Aa,, Aa,)

={a,a,)— oy ){a,)=0. (5.1)

where m,n=1,2 and Ac,, =a,, —{a,,) [cf. Egs. (1.10a)
and (1.13)]. In general, ten real numbers are required to
specify all the second-order noise information, but the
TSQP condition (5.1) eliminates six of those numbers.
The remaining four numbers are contained in the “re-
duced” spectral-density matrix

Sn = (A, A ) sym
=tr[p(Aa,, Aai )sym] = <ama-rt >sym_ <am ) <ai )
(5.2)

[cf. Egs. (1.10b) and (1.13)], which is dimensionless (units

of number of quanta at frequency ) and Hermitian:
2’r.;'m =Zum - (5.3)

The spectral-density matrix, which has units of energy, is
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defined by
Smn=0%,,, . (5.4)

The diagonal elements of X,,, are simply the mean-square
uncertainties in a; and o:

Spm={ Aty |2), m=1,2; (5.5)

the off-diagonal element =;,=33%; is a complex correla-
tion coefficient between the quadratures.

Under free evolution [MP evolution operator U, (2); »

Eq. (4.37)] the noise moments (Ae,, Aa, ) acquire a har-
monic time dependence e —2i€t whereas the noise moments
(Aa,, Aa), )sym are constant [Eq. (4.27)]. Just as for TS
noise, the vanishing of the time-dependent noise moments
is the key to generalizing the notion of TSQP noise to mo-
ments of arbitrary order and also to understanding why
the quadrature-phase amplitudes are suited to two-photon
optics. The general definition of TSQP noise, which will
be given explicitly in paper III, requires that all time-
dependent noise moments of @, a,, aj, and a, vanish.
The quadrature-phase amplitudes are the natural variables
Sfor two-photon optics because the TSQP noise produced by
two-photon devices is completely characterized by the time-
independent noise moments of a;, a,, a, and a;.

It is often useful to have the TSQP condition (5.1) and
the reduced spectral-density matrix (5.2) written in terms
of creation and annihilation operators. The (second-
moment) TSQP condition is equivalent to the following
conditions on the second-order noise moments of the
creation and annihilation operators:

(5.6a)
(5.6b)

<(Aa-_t)2)=0 s
(Aa, Aal )=0

[Egs. (4.26); Eq. (5.6a) means that for TSQP noise each
mode by itself has random-phase noise]. The remaining
second-order noise moments of the creation and annihila-
tion operators are related to =,,,:

Ayd_(Aay Aa_ ) =5 (21— 3p) +5i(Zp+3y)

T(En—3p)+iRe(Zy) ,

Ml Aas |2y =5 (21 +320)FFi(2—3,)
F(Z+2p)+Im(2)y)

(5.7a)

(5.7v)

[Egs. (4.26)]. Equations (5.7) can be recast in the form
(430 =3A3(|Aay |2 +A2(|Aa_ |?))

(5.8a)

3 (Z—Zn)=A,A_Re({Aa, Aa_)), (5.8b)

3 (Zp+3)=Re(Zp)=A,A_Im({Aa, Aa_)), (5.8¢)
—3i(Zp—3)=Im(Z ) =5 (A%« |Aay |?)

' —A2(|Aa_|%)). (5.8d)

Notice that for TSQP noise the time-dependent noise mo-
ment {Aa . Aa_) (free time dependence e ~%%) need not
vanish. Since it must vanish for TS noise, Egs. (5.7) im-

ply that (second-moment) TSQP noise is (second-moment)
TS noise if and only if

Sn=2p=7A5(|Aay [P +22([Aa_|?)),
Sp=—2y=7i(A% (| bay [2) =22 (|Aa_|?)).

(5.9a)

(5.9b)

The reduced spectral-density matrix X,,, describes how
the noise is distributed in phase, where phase is defined
with respect to frequency Q. There are two good ways of
seeing this—ways that make clear the meaning of the four
pieces of information in =,,,. The first way looks at the
two-point correlation matrix of the dimensionless quadra-
ture phases & (x,?) and &,(x,?) [Eq. (4.41)],

K (T)=(AE , (x,t +T)AE ,(X,1) gy, m,n =1,2
(5.10)

which is a dimensionless, real matrix. If the two modes
evolve freely, then

F (1) =3 (Zpne "+ 2, me' ) =Re(Z,,,e ~€")

[Egs. (4.41), (5.1), and (5. 2)] The two-point correlation
matrix also satisfies

Ko (—T)=H

(5.11)

(5.12)

nm (T)

[Eq. (5.3)]. That the two-point correlation matrix depends
on the time delay 7, but not on the retarded time ¢ —x, is
the essence of TSQP noise, and it is a direct consequence
of the TSQP condition (5.1). Note, however, that TSQP
noise does not mean that the two-point correlation matrix
for the two-mode electric field depends only on the time
delay 7; that condition is met only for TS noise [Egs.
(5.9)].

Consider now the zero time-delay (7=0) correlation
matrix

K mn = n(0)= A (X, )AE (%,8) ) sy =Re(Zpn) »
(5.13)

which is just the symmetric covariance matrix of the di-
mensionless quadrature phases [cf. Eq. (1.11)]. If the
noise is distributed randomly in phase, then %", is a
multiple of the unit matrix. The covariance matrix ¥ ,,
contains three of the pieces of information in =,,,. Two
pieces of information are contained in the diagonal ele-
ments

Wmm::([Agm(X,t):P):Emm:( lAam '2>, m=1,2
(5.14)

which give the (constant) variances of &(x,t) and
&,(x,t), and the third piece is contained in the off-
diagonal element

.ﬁYu:.z’u:(A&’l(x,t)A?fz(x,t) )sym=Re(212) ) (5.15)

which is a correlation coefficient for & (x,t) and & z(x,t).
These three pieces of information characterize the noise in
the following way: the overall scale of the noise is set by
3 (211+222) which is the average noise in the quadra-
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tures [Eq. (5.14)] or the average noise in the two modes
[Eq. (5.8a)]; the extent to which the noise is not distribut-
ed randomly in phase is specified by +(2;;—=,,) and
Re(Z,). The roles of these quantities are immediately ap-
parent in the variance of the electric field

([AE(x,t)]2> =Q{211 +222+(2”—~222)c0s[29(t—x )]
+2Re(Z,)sin[2Q(1 —x )]} (5.16)

[Egs. (4.21), (4.39), and (5.13); cf. Egs. (1.12) and (3.13)].
A nonrandom distribution of noise in phase corresponds
to a time-dependent electric field variance. The quantities
that describe a nonrandom distribution, +(2;,—2,,) and
Re(Z),), are related to (Aa, Aa_) [Egs. (5.8b) and
(5.8¢)]; if the electric field noise is not distributed random-
ly in phase, the two modes must be correlated.

The fourth piece of information in =,,, shows up in the
time-delayed (75£0) correlation between the dimensionless
quadrature phases. Specifically, for r=mu/2¢, the two-
point correlation matrix becomes an antisymmetric matrix

T rn =K mn7/2€)
=(A&,,(x,t +7/26)AE ,(x,1) sy

=Im(Z,,,) . (5.17)

The diagonal elements of % ,,, vanish. This result one
expects for TSQP noise; it says that for each quadrature
phase the noise at a particular time is uncorrelated with
the noise a quarter cycle later. In contrast, the off-
diagonal element of ¥, need not vanish. It gives the
fourth piece of information in X,,,:

F 2= —Fn=CA& (x,t +7/2)AE o (X,1))gym

=Im(212) . (5.18)

This result is a bit mysterious; it says that the noise in one
quadrature at a particular time is correlated with the noise
in the other quadrature a quarter cycle later. The ex-
planation lies in the definitions of a; and «, [Egs. (4.25)].
A fluctuation in the upper mode a, corresponds to iden-
tical fluctuations in a; and a,, but the fluctuation in a,
lags that in a, by a quarter cycle; this produces a positive
contribution to % ,. Similarly, a fluctuation in the lower
mode a _ corresponds to a fluctuation in a, that leads the
fluctuation in a, by a quarter cycle; this produces a nega-
tive contribution to % j,. Thus ¥ ;, should be related to
the difference in noise in the two modes, an inference con-
firmed by Egs. (5.8d) and (5.18), which show that

712=Im(212)=%“2+< [Aa, lz>—k2-( [Aa_ |2>) .

The second way of investigating the meaning of =,,, is
to look at how it transforms under a rotation (phase
change) of the complex amplitude of the electric field [ro-
tation produced by R(6); Egs. (4.33)—(4.36)]. Recalling
that a rotation produces a common phase change of the
annihilation operators [Eq. (4.35)], one sees from Egq.
(5.7b) that 5(=;+=,,) and —~i(Z;,—=5)=Im(Z;,) are
invariant under rotations; these quantities have nothing to
do with the differential distribution of noise in phase.
Similarly, one sees from Eq. (5.7a) that 5(2;;—3,,) and

%(2,2+221)=Re(2,2) transform as
5 (ZH =)+ Ti(Z+35)

=e ML (2 —Zp)+ 5i(Znp+3)];  (5.19)

these quantities characterize precisely the extent to which
the noise is not distributed randomly in phase.

B. Complex-amplitude diagrams

One can add information about TSQP noise to the
complex-amplitude diagrams in Figs. 1 and 2. Start with
the complex-amplitude diagram (¢ =0) in Fig. 1, which
describes the classical behavior of the electric field. To
add information about TSQP noise, draw an ‘“error el-
lipse” centered at the tip of the initial complex-amplitude
vector (Fig. 3). The error ellipse displays the information
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FIG. 3. Standard complex-amplitude diagram for TSQP
noise. The behavior of the mean complex amplitude
(&1(0,t)+i&(0,¢)) is shown, as in Fig. 1, by a dotted signal
ellipse and an initial (¢ =0) complex-amplitude vector. The
quadrature-phase noise is depicted by a shaded error ellipse.
The principal axes of the error ellipse are the eigendirections of
the covariance matrix % ,,, [Eq. (5.13)], and the principal radii
are the square roots of the eigenvalues of %",,,. The complex-
amplitude diagram shows rotated (primed) axes that lie along
the principal axes of the error ellipse. With respect to the rotat-
ed axes the covariance matrix ¥ ,, is diagonal, its diagonal ele-
ments ¥ pm=([A&,,(x,0)*) =3, =(]|Aca}, |2) giving the
squares of the principal radii. Separate phase planes are drawn
for the rotated quadrature phases (cf. Fig. 2). In each a vector
indicates the initial (£ =0) value of 2!/?(a,, ), and a shaded er-
ror circle, with radius ¢ |Aa,, |2)!/?, depicts the noise in the
quadrature phase.
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contained in the covariance matrix % ,,, =Re(Z,,,) [Eq.
(5.13)]: its principle axes are the eigendirections of %,,,,
and its principle radii are the square roots of the eigen-
values of .%",,,. It is convenient to rotate the axes of the
complex-amplitude plane counterclockwise by an angle 8
[rotation defined by Eq. (4.34)] so that the new (primed)
axes are parallel to the principal axes of the error ellipse
(see Fig. 3), i.e., so that the covariance matrix is diagonal
with respect to the new axes. The angle 6 is obtained
from

(=20 +3i(Zp+3201)
= — 1 [(Z) =2 +(Zp+3,)%] %%,

where 0 <8 <7 [Eq. (5.19)]. The diagonal elements of the
rotated covariance matrix are given by
Hhom =([AE,(x,0)]*) ==}, = ( | Aat), | *); their square
roots—the uncertainties in the rotated quadrature
phases—are the principal radii of the error ellipse. The
error ellipse is a convenient way to show graphically the
nonrandom distribution of noise in phase.

Figure 3 also shows separate phase planes for the rotat-
ed quadrature phases (cf. Fig. 2). In each phase plane a
vector indicates the initial expectation value of 2'%aj,.
The noise in each quadrature phase is depicted by an “er-
ror circle,” which is centered at the tip of the vector
2'/2(a,, ) and whose radius is the root-mean-square un-
certainty in «a,,. That one uses a circle expresses the fact
that the quadrature phases have time-stationary (random-
phase) noise; i.e., the uncertainties in the Hermitian real
and imaginary parts of 2!/%a}, are the same, and they are
equal to the root-mean-square uncertainty { | Aa, |2)'/2
Just as the projection of 2!/?(a;, ) onto its real axis gives
the associated component {&;,(0,t)) of the mean com-
plex amplitude, so the projection of the error circle on the
real axis gives the associated principal diameter of the er-
ror ellipse (Fig. 3).

We refer to Fig. 3 as the standard complex-amplitude
diagram. The vectors in it are drawn at ¢ =0, but a simi-
lar diagram could be constructed at any time. As time
passes, the vector in each separate phase plane rotates
clockwise with angular velocity €, dragging its error circle
with it; the projection of the vector and its error circle on
the real axis describes the oscillation of the associated
quadrature phase with constant variance. These projec-
tions can also be used to construct the mean complex am-
plitude (&,(0,5) + i&,(0,2)) and its error ellipse. The
mean complex-amplitude vector rotates in the direction
shown by the arrows. The error ellipse is dragged along
as the mean complex-amplitude vector rotates, but it re-
tains the same size, shape, and orientation—a consequence
of TSQP noise.

The axes in Fig. 3 are somewhat loosely labeled by
operators because the diagrams are supposed to indicate
both the mean behavior and the fluctuations about the
mean. The axes of the separate phase planes are labeled
by the Hermitian real and imaginary parts of 2'/%a,.
Notice that the free time dependence e ~¢ is not indicated
explicitly as in Fig. 2. The reason is that this time depen-
dence is implicit; the expectation values of @ and a; are
evaluated in the MP (Sec. IV C), where they have the free

time dependence e ~*¢. The standard complex-amplitude
diagram can be put on a more rigorous footing after the
two-photon quasiprobability distributions are introduced
in a future paper (paper III). Then the axes can be labeled
by variables of an appropriate quasiprobability distribu-
tion, and the error ellipse and the error circles become
particular contours of the quasiprobability distribution.

TS noise is distributed randomly in phase (%, is a
multiple of the unit matrix). In the complex-amplitude
diagram in Fig. 3 this means that the error ellipse is a cir-
cle [21=2,,, Re(Z,)=0; Egs. (5.9)] and the error circles
in the separate phase planes have the same size. To go
from TS noise to TSQP noise, one imagines ‘“‘squeezing”
the error circle of TS noise into the error ellipse that
characterizes TSQP noise; noise is squeezed from one
quadrature phase into the other so that the error circles in
the separate phase planes have different sizes. The use of
the term squeezed to describe a nonrandom distribution of
noise in phase arose from this simple picture of a circle
being squeezed into an ellipse. The term*® was originally
applied to the degenerate limit (=0, a, =a_), where
one draws complex-amplitude diagrams very much like
the central diagram in Fig. 3. In the degenerate limit the
noise is depicted by an error ellipse just as in Fig. 3, but
the signal ellipse collapses to a point, which is the un-
changing complex amplitude of a single mode (see, for ex-
ample, Fig. 1 of Ref. 1). It should be emphasized that
squeezing is a consequence of correlation between the two
modes [Egs. (5.8b) and (5.8c)]; each mode by itself has
random-phase noise [Eq. (5.6a)].

The standard complex-amplitude diagram (Fig. 3) does
not display all the information about the second-order
noise. It shows graphically the three pieces of informa-
tion in the covariance matrix %, =Re(Z,,,) [Eq. (5.13)],
but it does not include any information about Im(Z;,)
[Eq. (5.18)]. This omission is really not very serious. The
purpose of the standard complex-amplitude diagram is to
depict the nonrandom distribution of noise in phase,
which does not depend on Im(Z5).

The relation of the standard complex-amplitude dia-
gram to the behavior of the electric field and the quadra-
ture phases is made clearer by the graphs in Fig. 4. Each
part of Fig. 4 shows two complex-amplitude diagrams for
a particular state of the field which has TSQP noise; one
diagram is drawn at ¢ =0 and the other at t=m/2¢€. The
states depicted in Fig. 4 are special in two ways: (i) All
the signal is carried by &(x,?), i.e., { &,(x,7))=0. Thus
the signal ellipse collapses to a line along the &, axis, and
the mean electric field at x =0 is given by

(E(0,t)) ={E(0,t))cos(Qt) (5.20)

[Eq. (4.21)]. (ii) The quadrature phases have zero second-
order correlation, i.e., # j,=Re(X;,)=0. Thus the prin-
cipal axes of the error ellipse are parallel to the &, and &,
axes, and the uncertainty in the electric field at x =0 is
given by

([AE(0,))P)1?=(2Q) /[ 3 cosX( Q1)
+3,,8in%(Q1)]'?
[Eq. (5.16)]. Figure 4(a) depicts a state with TS noise

(5.21)



(211=2,,), Fig. 4(b) depicts a state with less noise in
& 1(x,t) than in &,(x,t) (£;; < =,,), and Fig. 4(c) depicts a
state with less noise in &,(x,?) than in & (x,t) (S5, < Z1y).
Below the complex-amplitude diagrams in each part of
Fig. 4 are graphs for the electric field E(0,¢) and the
quadrature phases E(0,#) and E,(0,t). The dark central
line in each graph is the expectation value of the appropri-
ate field, and the width of the shaded region is twice the
uncertainty in the same quantity. The graph for E(0,t)
shows a sinusoidal oscillation at frequency € with constant
uncertainty ([AE;(0,)]*)'/2=(203,,)!/%; this behavior
is described by the projection on the real axis of the rotat-
ing vector 2!”2(a,) and its associated error circle. The
graph for E,(0,t) shows a zero expectation value with
constant uncertainty ([AE,(0,2)]*)12=(2Q32,,)!/% this
behavior is described by the unchanging projection on the
real axis of the error circle in the phase plane for 2!/%a,.
In the graph for E(0,t), the mean electric field is modu-
lated at frequency € [Eq. (5.20)], and the uncertainty oscil-
lates as given by Eq. (5.21). Similar graphs for the
behavior of the electric field have been drawn in the de-
generate limit (see, for example, Fig. 2 of Ref. 1); the un-
certainty oscillates just as in Eq. (5.21), but the mean elec-
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tric field is unmodulated.

The graphs for E(0,t) and E,(0,¢) in Fig. 4 are closely
related to the output of an ideal heterodyne detector and
to amplitude and phase modulation of a carrier wave (see
discussion in Sec. IVD). If the electric field in Fig. 4 is
mixed with a local-oscillator wave proportional to
cos[Q(t —x)], then the graph for E(0,¢) characterizes the
heterodyned output at frequency €, which has constant
noise.  If a strong classical carrier wave proportional to
cos[Q(t—x)] is added to the electric field in Fig. 4, then
the graph for E(0,t) describes an amplitude-modulation
signal with constant amplitude-modulation noise, and the
graph for E,(0,¢) describes a zero phase-modulation sig-
nal with constant phase-modulation noise. The differ-
ences among the three parts of Fig. 4 lie in the different
ratios of amplitude-modulation noise to phase-modulation
noise.

VI. UNCERTAINTY PRINCIPLES
FOR QUADRATURE-PHASE AMPLITUDES

In this section we consider uncertainty principles that
apply to the mean-square uncertainties in the quadrature-
phase amplitudes. The analogous uncertainty principles

Im(v/2a))
\ Re(v/Za)
Re(vZa2) &,
t= 1r/2<
E2(0, 1)
t
Im(+/2a)) Im(v/Z2a)
Re(v/Zay) Re(v/Zay)
Re(v2az) £z
Im(v/Zaz)
£
t=m/2¢
E2(0, 1)

FIG. 4. Graphs of the electric field E(0,¢) and the quadrature phases E;(0,?) and E,(0,¢) for three states with TSQP noise: (a) a
state with TS noise; (b) a state with less noise in &(x,?) than in &,(x,1); (c) a state with less noise in &,(x,t) than in & (x,t). Above
the graphs in each part are two complex-amplitude diagrams for the same state, one at £ =0 and one at ¢ =7/2¢. In each graph the
dark central line is the expectation value of the appropriate field quantity, and the width of the shaded region at any time is twice the

uncertainty in the same quantity. See the text for further discussion.
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for more general non-Hermitian operators are derived and
discussed in the Appendix; here we simply apply the more
general results to the particular case of a; and «,.

The most important uncertainty principle!>?! places a
lower limit on the product of the root-mean-square uncer-
tainties in a; and a;:

(| Ay | DV |8y | D> 1 [([apddl) | =1 6.1)

[Egs. (A16) and (4.31¢)]. In terms of the spectral-density
matrix S,,, [Eq. (5.4)], the uncertainty principle (6.1) be-
comes S1,55, > +Q% It should be noted that Eq. (6.1)
does not require an assumption of TSQP noise, but it does
rely on the fact that a; and @, commute [Eq. (4.31b)].
Yurke and Denker***! have considered an uncertainty
principle similar to Eq. (6.1), but in terms of the mul-
timode quadrature phases [Eq. (1.6)].

What is the meaning of the uncertainty principle (6.1)?
The zero-point noise in each mode corresponds to half a
quantum at the mode’s frequency. In units of energy the
combined zero-point noise in the two modes is
3(Q+€)+ +(Q—€)=Q, which amounts to one quantum
at the carrier frequency. If

(|Aa; | =(]|Ay| ) =7 (6.2)

(S11=S,,=+3Q), then each quadrature carries half of the
one quantum of zero-point noise. The uncertainty princi-
ple (6.1) allows the uncertainty in one quadrature to be re-
duced below the level set by zero-point noise, but only at
the expense of increasing the noise in the other quadrature
above the zero-point level. Thus the uncertainty principle
describes the squeezing referred to in Sec. V B: noise can
be reduced below the zero-point level only by squeezing
noise from one quadrature phase into the other.

Equation (6.1) is the two-mode analog of an uncertainty
principle’ that applies in the degenerate limit—e=0,
a,=a_=a. This uncertainty principle, which is
equivalent to the position-momentum uncertainty princi-
ple, is usually written in terms of a; and a,, the Hermi-
tian real and imaginary parts of a =a +ia,:

((Aa )YV ((Aa ) %> 1 [ ([a,a,]) | =5 . (6.3)

Further discussion of the degenerate limit can be found in
Sec. VIII.

Equality in Eq. (6.1) imposes very restrictive conditions
on the state vector | ¥ ); indeed, Egs. (A27), specialized to
the case R=a; and S=a,, show that equality holds in
Eq. (6.1) if and only if

(Aa;+i Aay) | ¥) =0, (6.42)
(Aa}+iAad) | W) =0 (6.4b)

[Egs. (4.31), (A27c), and (A29)]. Plugging in the defini-
tions (4.25) of a; and «;,, one finds that Egs. (6.4) reduce
to

Aas |W)=0. (6.5)

Thus the only states that yield equality in Eq. (6.1) are the
simultaneous eigenstates of a, and a_, ie., the two-
mode coherent states (4.11).

In addition to the uncertainty principle (6.1), there is a
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separate uncertainty principle for each quadrature-phase
amplitude:!>2!

(| At |2) = 3 | ([amah]) | =€/2Q, m=1,2  (6.6)

[Egs. (A9) and (4.31a)]. Equation (6.6) does not rely on an
assumption of TSQP noise. Equality holds in Eq. (6.6) if
and only if the state vector | W) is an eigenstate of a,,,
i.e.,

Aa,, | W) =0 6.7

[Eq. (A12a)]. Since €<, it is immediately apparent
from Eq. (6.1) that it is impossible to find a state | V) for
which both ( | Aa;|?) and ( | A, | %) have the minimum
value €/2€). This means that there are no simultaneous
eigenstates of a; and «,.

What can one learn from the uncertainty principle
(6.6)? For each quadrature it says that the minimum
noise is a factor €/{) smaller than the level set by zero-
point noise [Eq. (6.2)]. If one writes Eq. (6.6) in units of
energy—=S,,, > 5 €—one sees that the minimum noise cor-
responds to half a quantum at the modulation frequency €.
This suggests interpreting the minimum noise 5 € as a sort
of zero-point noise for the quadrature phases; we call it
the quadrature-phase zero-point noise. This interpretation
is strengthened by noting that the quadrature phase
E,, (x,t) is a “field operator” at frequency € [Eq. (4.28)].
The variance of 27!/2E, (x,t) for a state with TSQP
noise,

H{AE,(x,)]}) =Q( | Aa, | 2) > L€, (6.8)

should be compared with the single-mode electric-field
variance (3.13) for a state with TS noise, where the single
mode has frequency w=e€. In terms of energy the lower
limit in Eq. (6.8), which is enforced by the quadrature-
phase zero-point noise, is the same as the lower limit in
Eq. (3.13), which is enforced by the ordinary zero-point
noise at frequency w=e [Eq. (3.14)]. Physically the
quadrature-phase zero-point noise means the following: if
one chooses to work at modulation frequency € about a
high carrier frequency Q, then the noise in one quadrature
phase can be made as small as, but no smaller than, the
minimum noise that one would encounter if working
directly at the low frequency e.

The relation between the quadrature-phase amplitudes
and the quadrature-phase zero-point noise is analogous to
the relation between the creation and annihilation opera-
tors and the ordinary zero-point noise. The analogy be-
comes apparent if one writes the free Hamiltonian H
[Eq. (4.2a)] in terms of various operator orderings. Order-
ings of the creation and annihilation operators give ex-
pressions that involve the ordinary zero-point energy Q:

(Q+elaial Vym+(Q—eNa_al )ym=Ho+Q, (6.92)
(Q+e)a1a++(ﬂ—e)af_a_=HO ) (6.9b)
(Q+ea,al, +(Q—ea_at =H,+20 . (6.9¢)

Symmetric ordering [Eq. (6.9a)] yields the total energy, in-
cluding the one quantum of zero-point energy, normal or-
dering [Eq. (6.9b)] yields the total energy minus the zero-
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point energy, and antinormal ordering [Eq. (6.9¢)] yields
the total energy plus the zero-point energy. Analogous or-
derings of the quadrature-phase amplitudes and their Her-
mitian conjugates involve the quadrature-phase zero-point
energy € (3¢ from each quadrature):

Q(@1@])gym + (@20 ym] =Ho+Q , (6.10a)
Qala, +ala)=Hy+0—¢, (6.10b)
Q(a1a1{+a2a;)=H0+Q+e . (6.10c)

Symmetric ordering [Eq. (6.10a)] again yields the total en-
ergy. If one places a; and a; to the left of a; and a, [Eq.
(6.10b)], an ordering which is analogous to ordinary nor-
mal ordering and which we call quadrature-phase normal
ordering, then one obtains the total energy minus the
quadrature-phase zero-point energy. Similarly, if one
places a; and a, to the left of «; and a; [Eq. (6.10c)], an
ordering which we call quadrature-phase antinormal or-
dering, then one obtains the total energy plus thé
quadrature-phase zero-point energy. These and other
more general orderings for the quadrature-phase ampli-
tudes will be considered in paper III.

One can also write an uncertainty principle for the
operators 3; and 3, [Eqgs. (4.47) and (4.48)]. Analogous to
Eq. (6.1) is an uncertainty principle

CLABL V2 ABy |20V 2> L [ 1BLBI | =1,

but there is no analog of Eq. (6.6); i.e., { | AB,, | 2) can be
made arbitrarily small.

(6.11)

VII. TWO-MODE SQUEEZED STATES

Two-mode squeezed states are the natural states for
two-photon optics because they are the output states of an
ideal two-photon device (see Sec. IV A). Here we discuss
briefly the most important properties of two-mode
squeezed states; our purpose is to show how they fit into
the general framework developed in Secs. IV—VI. A
more thorough investigation of their properties is under-
taken in paper II.

A useful preliminary to the properties of two-mode
squeezed states is a review of the most basic properties of
two-mode coherent states [Eq. (4.11)]:

|t den=D(a,p)D@_,u_)|0) . (7.1)

Using the fact that |, ,u_ ). is an eigenstate of a
and a _, one can show, first, that the expectation values of
the annihilation operators and the quadrature-phase am-
plitudes are given by

(as)=p+, (7.2a)
{ap)=&=2"12A u +A_pu*), (7.2b)
(@) =&=2""X—ik u, +ik_u*) (7.2¢)

[Egs. (4.25)] and, second, that |p,,u_ ), has TS

noise—((Aa+)?)=(Aa Aa’ )=(Aa, Aa_)=0 [Egs.
(5.6) and (5.9)]—with ( |Aa, |*)=(|Aa_|?)=5—ie,
Spm=C{ Ay |*) =75, m=1,2 (7.3a)
Sp=—3=7i(e/Q) (7.3b)

[Eq. (5.2)]. A two-mode coherent state can be regarded as
a classical excitation of the two modes, contaminated by
zero-point noise. The covariance matrix of the dimen-
sionless quadrature phases [Eq. (5.13)] is a multiple of the
unit matrix,

K =Re(Zpn) =58 » (7.4)

which shows that the noise associated with a coherent
state is distributed randomly in phase. In the standard
complex-amplitude diagram (see Sec. VB and Fig. 3),
these properties of a two-mode coherent state show up in
the following ways: the error ellipse in the central
complex-amplitude plane is a circle, the two error circles
in the separate phase planes have the same size, and all
three circles have radius 27!/2. Notice that
Im(2,)=€/2Q does not vanish for a coherent state—a
consequence of the fact that the energy associated with
the zero-point noise is different for the two modes [see
discussion surrounding Eq. (5.18)].

Turn now to the two-mode squeezed states defined by
Egs. (4.15), (4.17), and (4.18):

;“a+’#a_ >(r,¢)ES(r’§0) l.‘"a+’l-l'a_ >coh
=S(r,@)D(a ,pq, )D(a_,p, ) |0)
=D(a,,u )Dla_,u_)S(r,p)|0), (7.5
[a, =M scoshr +p e’ #sinhr . (7.6)

When r=0 a two-mode squeezed state reduces to a two-
mode coherent state. The unitary equivalence between the

" squeezed annihilation operators and the annihilation

operators [Eq. (4.14)] provides an easy way to calculate
first and second moments for a two-mode squeezed state;
the moments of a.(r,) with respect to [ua+,,ua_)(,,¢,)
are the same as the moments of @, with respect to
| Ha_ stha_ Ycon- Using this approach, one can calculate the
following expectation values for the two-mode squeezed
state (7.5):

<ai>=ﬂi , (7.7a)
(A ) =& (7.7b)
[cf. Egs. (7.2)]. In addition, one can show that

|ha,ta_dire has TSQP noise [Eq. (5.1) or Egs. (5.6)]
with

(|Aa, |*)=(|Aa_|?)=2cosh(2r),

(Aa, Aa_)=—+e¥%sinh(2r) ;

(7.8a)
' (7.8b)
translated into the language of the reduced spectral-
density matrix (5.2), Egs. (7.8) become
Zu=(|Aa;|?)

= 3cosh(2r)— +(1—€2/Q%)"%sinh(2r )cos(2¢) ,
' (7.9a)
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Zpn={|Aay|?)
=+cosh(2r)+ 3 (1—€2/Q?)%sinh(2r )cos(2¢) ,
(7.9b)
3,=3% = — 2 (1—€*/Q%)"%sinh(2r )sin(2¢)
++i(e/Q)cosh(2r) (7.9¢)

[Eqgs. (5.8)]. For rs£0 a two-mode squeezed state does
indeed display the nonrandom distribution of noise in
phase which entitles it to be called squeezed. The stan-
dard complex-amplitude diagram looks like Fig. 3 with
6=¢; the error ellipse has principal radii
27 2[cosh(2r) F (1 —€2/Q2)%sinh(2r)]'/?, which also are
the radii of the error circles in the separate phase planes.

An important subset of the two-mode squeezed states
consists of those with ¢ =0. For this subset the reduced
spectral-density matrix (7.9) becomes

Z=( | Aa; '2>

=te 74 I[1—(1—€*/Q)"?]sinh(2r) , (7.10a)
Sp={lAay|?)

=te¥—2[1—(1—€2/Q%)?]sinh(2r) , (7.10b)
3,=—3,=7i(e/Q)cosh(2r) . (7.10¢)

Letting =0 yields a diagonal covariance matrix
K mn =Re(Z,,,), which means that the squeezing of the
error ellipse in Fig. 3 occurs along the & and &, axes or,
equivalently, that the quadrature phases E(x,t) and
E,(x,t) have zero second-order correlation. The reduced
spectral-density matrix for any squeezed state can be put
in the form (7.10) by using rotated quadrature-phase am-
plitudes aj=acos@+a,sing and aj = —a;sing +a,cos@
[Eqgs. (4.36) and (5.19)]. Thus the subset defined by ¢ =0
is not so much a special case as it is a convenient choice
of phase for defining the quadrature phases—a choice
that puts the information about squeezing wholly into the
diagonal elements of .%,,,. For ¢ =0 the product of the
root-mean-square uncertainties in a; and a, is given by

([Aa; )| Ay |2 2= 5[ 14 (€2/Q%)sinh?]'/2 .
2
(7.11)

In accordance with the proof in Sec. VI and the Appendix
[Eq. (6.5)], the uncertainty product (7.11) achieves the
minimum value of 5 if and only if =0 (provided €s£0).

Consider now what happens as the squeeze factor r in-
creases from r=0; choose ¢ =0 for easy interpretation.
For small r [cosh(27) << /€], the mean-square uncertain-
ties in @, and a, are given approximately by

(|Aa;|?)~1e %, (|Aay|?)="te? . (7.12)
These mean-square uncertainties are the two-mode analog
of the variances that apply in the degenerate limit [see Eq.
(8.25)]. They show that { | Aa; |?2) is squeezed below the
zero-point level; in accordance with the uncertainty prin-
ciple (6.1), { | Aa, | %) increases above the zero-point level.
As long as cosh(2r) <Q/€, {|Aa;|?) continues to de-

crease as r increases, but it departs more and more from
1 —
+e . When r=rq> 0, where

(7.13a)
(7.13b)

cosh(2ry)=Q0/€,
coshr0=(0/26)1/2k+, sinhrg=(Q/2€)12A _

[Eq. (4.24)], { |Aa,|?) achieves the minimum possible
value €/2Q [Eq. (6.6)]; thus the state l,ua+,,ua_ >(r0,0)

yields a classical excitation of the quadrature phase
E(x,t), contaminated only by quadrature-phase zero-
point  noise. Equation  (6.7) guarantees that
| Ba, ta_dirg0 is an eigenstate of a;=(e/Q)"%a (ry,0)
[Egs. (4.14), (4.25a), and (7.13b)]:

a 'Ha_p["’a_ >(r0,0):§1 '/-‘a+’/"a_ >(ro,0) ’ (7.14a)

E1=(e/Q)"pq, (7.14b)

[cf. Eq. (4.16)]. For r>ry, { |Aa;|?) increases as r in-
creases.
The state |u, Ha_ >(r0,0) belongs to a special class of

two-mode squeezed states which we call squashed states.'>
The set of squashed states consists of the states
| 1o +,,ua_>(ro,q,) for all values of ¢. The squashed state

| o +,#a_>(,0,¢) is an eigenstate of the rotated quadra-
ture-phase amplitude

o) =a cosp+a,sing=(e/Q)%e ~%a_ (ro,p)

with eigenvalue (€/Q)!/? a+e“i"’ [Egs. (4.14), (4.25), and

(4.16)]; hence a)} has the minimum mean-square
uncertainty (|Aa)|?)=€/2Q. In particular,
|Ba,a_dirgmr) is an eigenstate of a=—i(e/Q)!/?

Xa(rg,=m) with eigenvalue &= —i(e/Q)!2 a,- Ini-

tially we hoped that the squashed states, as eigenstates of
the quadrature-phase amplitudes, might play a fundamen-
tal role in two-photon optics, analogous to the role played
by the eigenstates of the annihilation operator—the
coherent states—in one-photon optics. Our initial hopes
were quashed, however, by our inability to find any spe-
cial role for the squashed states. In the formalism
presented in this series of papers, therefore, the squashed
states are on the same footing as all the other two-mode
squeezed states.

The mean-square uncertainties in 3; and B, [Egs.
(4.47)] for a two-mode squeezed state can be obtained
from Eqgs. (7.9) and (7.10) by setting €=0. In particular,
for ¢ =0 one finds that

(|AB1 D) =Fe™%, (|ABy|2)=7e¥. (7.15)

VIII. DEGENERATE LIMIT

A. Definition and discussion

We shift attention now to the degenerate limit of our
two-mode formalism. By the degenerate limit we mean
that the two modes we have dealt with coalesce into a sin-
gle mode at frequency Q. Taking this limit is not an en-
tirely trivial task. An obvious first step is to set €=0, so
we assume €=0 throughout the remainder of this subsec-
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tion. This step alone, however, is not sufficient, because it
leaves two degenerate, but distinct modes at frequency Q,
which have distinct annihilation operators ¢, and a_.
[Simply setting e=0 would describe, for example, the case
where the two modes are plane waves of the same fre-
quency traveling in different directions; see discussion
preceding Egs. (4.5).] To take the desired degenerate lim-
it, one must somehow reduce the number of modes from
the two original modes to one mode that corresponds to
the coalescence of the two original modes; out of the four
original degrees of freedom, one must pick two relevant
degrees of freedom and discard the other two. ‘

The key to picking the relevant degrees of freedom is to
define new annihilation operators a and b, which are uni-
tarily related to'a, and a_:

(8.1a)
(8.1b)

a=2""%a, 4a_ ), b=2"" —ia +ia_),
a,=2""Xa+ib) .

The importance of these new operators becomes apparent
when one writes the positive-frequency part of the two-
mode electric field [Eq. (4.5b) with €=0] in terms of a
and b:

E(+)(x,t)=91/2ae—iﬂ(t—x> . (8.2)

One sees that a is the annihilation operator for a plane-
wave mode at frequency Q; it contains the relevant de-
grees of freedom. In contrast, b does not appear in the
electric field; it contains the irrelevant degrees of freedom.
One can write the operators introduced in Sec. IV in terms
of a and b. For example, the quadrature-phase ampli-
tudes (4.25) become

G =ap +ib,, m=1,2 (8.3)

where a;, a,, b, and b, are the Hermitian real and imag-
inary parts of a and b, i.e.,

a=a1+ia2, b=b1+lb2 . (8.4)

Thus, another way to characterize the relevant degrees of
freedom at degeneracy is that they are the real parts of a,
and a,, whereas the irrelevant degrees of freedom are the
imaginary parts. In terms of a and b the fundamental un-
itary operators become

Up(t) | e=o=1, (8.5a)

R(0) | c—o=exp(—i6a'a)exp(—iob'b), (8.5b)

D(a,,u )D(a_,u_)|¢—o=D(a,u)D(b,y), (8.5c)

S(r,@) | eo=expl 3r(a’e "7 —qT%27)]
xexp[3r(b2e M _pt2%29)]  (8.5d)

[Egs. (4.37), (4.33), (4.12), and (4.9)], where
p=2""Xu, +u_), (8.6a)
y=2""X —iu, +ip_). (8.6b)

Notice that Eq. (8.5a) implies that when e=0 the MP and
IP are the same.

The two-mode Hilbert space factors into a tensor
(direct) product of Hilbert spaces for the @ mode and the
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b mode. The a-mode Hilbert space is the Hilbert space
for the relevant mode at degeneracy. We let tr, denote a
trace over the irrelevant b-mode Hilbert space. We use a
subscript a to denote a state vector that lies in the a-mode
space or an operator that operates in the a-mode space; a
subscript b performs the same role for the b-mode space.

One is now in a position to define the degenerate limit:
one reduces the Hilbert space from the two-mode space to
the a-mode space; for a state vector or an operator, one
extracts a piece that lies in or operates in the a-mode
space. To make these notions precise, consider a two-
mode density operator p. We say that p has a degenerate
limit if the a mode is independent of the irrelevant b
mode, so that no matter what operation is performed on
the b mode, the a-mode is unaffected. Hence, a density
operator p has a (unique) degenerate limit p, =tr,(p) if
P=PpapPs; we denote this limit by

pP—Pa - (8.7)
p

Similarly, a state vector |¥) has a degenerate limit |, ),

denoted by

19>~ 14a)
p

if |¥)=|v,)® |, ); requiring that |, ) be normalized
makes this limit unique up to an arbitrary phase factor.
The limits (8.7) and (8.8) have an obvious extension to un-
'itary operators. A unitary operator U has a degenerate
limit U,, denoted by

U—-U, ,
p

(8.8)

(8.9)

if U=U,Uy; requiring that U, be unitary makes this lim-
it unique up to an arbitrary phase factor. In Egs.
(8.7)—(8.9), the p under the arrow signifies that these are
product degenerate limits; i.e., each requires that the
relevant quantity factor into a product of an a-mode
quantity times a b-mode quantity. The limits (8.7) and
(8.9) could easily be extended to a product degenerate lim-
it for arbitrary operators, but we have no need for such a
generalization here. For present purposes the important
properties of the product degenerate limit are that

U—U,, p—p, = UpU'— U,p, U], (8.10a)
p p p

U;» U,, |1/;)—;|¢a) =>U|1/1);>U,,|¢a) . (8.10b)

For observable quantities or for non-Hermitian opera-
tors like the quadrature-phase amplitudes, a different de-
generate limit is appropriate. Consider an arbitrary
operator R. We say that R has a sum degenerate limit
R,, denoted by

R—R, , (8.11)
s
if R=R,+R;,. The motivation for this definition is that
for a state p with a degenerate limit, R, and R, are un-
correlated. The sum degenerate limit (8.11) is defined
only up to an arbitrary additive constant.
Having specified how to take degenerate limits, we now
consider the limits of the two-mode quantities introduced
in Sec. IV.  We adopt the sensible convention that the lim-
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it of an SP operator is an SP operator, and the limit of an
IP or a MP operator is an IP operator. For normalization
purposes we define the sum degenerate limits of the IP
two-mode electric field operator [Eqs. (4.5)] and the IP
quadrature phases [Eqgs. (4.19)] to be 2!/2 times a quantity
denoted by the same symbol [e.g., E‘)(x,z)
—»21/2(9/2)1/206 —iﬂ(t—x)Ezl/ZE(+)(x’t); cf. Eq. (8.2)];

s
with this choice the degenerate limit of the IP two-mode
electric field operator yields the IP single-mode electric
field operator defined by Egs. (3.3) with @ =, and the re-
lations between the electric field and the quadrature
phases [Eqgs. (4.19)—(4.21)] retain the same form in the de-
generate limit. The sum degenerate limit of the SP an-
nihilation operators [Eq. (8.1b)],

ax—2712, (8.12)

s

suggests defining the sum degenerate limit of the MP
squeezed annihilation operators (4.14) in the following
way:

a+(r,@)—2"1"%(a coshr +a e *#sinhr)=2" 2a(r,p) .
s
(8.13)

The MP quadrature-phase amplitudes (4.25) have a Her-
mitian sum degenerate limit

Ay —py =2""%x,,, m=1,2 (8.14)
s
[Eq. (8.3)].

The loss of two degrees of freedom at degeneracy erases
the distinction between the quadrature phases and the
quadrature-phase amplitudes: the IP quadrature phases,
which are initially Hermitian operators with harmonic
time dependence at frequency €, become constant in the
degenerate limit; the MP quadrature-phase amplitudes,
which are initially (constant) complex-amplitude opera-
tors, become Hermitian in the degenerate limit. As a re-
sult, at degeneracy there are three Hermitian IP operators,

E,(x,t)=20)"%,, =0"x,, , (8.15)
all of which are constant and any of which could be called
a quadrature phase or a quadrature-phase amplitude.? We
prefer to give x; and x, the distinction of being the (de-
generate) quadrature-phase amplitudes, because their rela-
tion to the annihilation operator has the same form as
Egs. (4.25) with €=0, i.e.,

x1=2""%a+a"), (8.16a)

x,=2""%—ia+ia"), (8.16b)
and because their commutator

[x1,x2]=i (8.17)

enforces the same uncertainty principle as Eq. (6.1), i.e.,
((Ax))V2((Ax,)) V2> + (8.18)

[cf. Eq. (6.3)].
The fundamental unitary operators introduced in Sec.

IV [Egs. (8.5)] have the following (unitary) product degen-
erate limits:

Uy(t)—1, (8.19a)
p

R(0)—exp(—iba'a), (8.19b)
p

D(a,p)Dla_,u_)—Dla,p), p=2""u +p_),
p

(8.19¢)
S(r,@)— exp[ +r(a%e ~29—a%29)]=5(r,p) . (8.19d)
P

The MP free evolution operator U, (¢) becomes the iden-
tity operator, the rotation operator R(6) becomes a
single-mode rotation operator, the two-mode displacement
operator D(a ,,u,)D(a_,u_) becomes the single-mode
displacement operator (3.7), and the two-mode squeeze
operator S(r,p) becomes the degenerate squeeze opera-
tor*»® §,(r,p). Under a unitary transformation generat-
ed by S;(r,p) the annihilation operator a becomes the
squeezed annihilation operator a(r,p) [Eq. (8.13)]:

a(r,cp):Sﬂr@)aSI(r,:p):a coshr +a'e??sinhr  (8.20)

[cf. Eq. (4.14)]. For ¢ =0 the degenerate squeeze operator
transforms the quadrature-phase amplitudes according to

STr,00x,8,(r,00=xe ", (8.21a)
ST(r,00x,8,(r,0)=x,e" . (8.21b)

The degenerate limits (8.19) can be applied to obtain the
degenerate limits of the special states defined in Sec. IV.
The product degenerate limit of a two-mode coherent
state [Eq. (4.11)] is a single-mode coherent state [Eq.
(3.9)]:

17 (8.22)

[“+4"——>coh"p"ll~">coh7 p=2""py +p).

The product degenerate limit of a two-mode squeezed
state [Eq. (4.15)] is a degenerate squeezed state*’**?

|.u'a>(r,<p):
|“a+’ﬂa_ >(r,¢>)7sl(r’¢7)D(anu'a) l O>

ZD(G,,U,)SI(",¢) ‘ 0)5 I,U—a>(r"p) , (8233)

Le=2" 1f2(y,,+ +q )=p coshr +u*e*?sinhr (8.23b)

[Eqgs. (4.17) and (4.18)]. A degenerate squeezed state is la-
beled by the eigenvalue of a(r,¢) [Eq. (8.20)]:

a(r,@) |.u'a>(r,<p)=.ua I .LLa>(;,¢>) (8.24)

[cf. Eq. (4.16)]. The quadrature-phase amplitudes have
the following variances in a degenerate squeezed state
with ¢=0:

((Ax )}y =577, ((Axy)?)=+e¥
[cf. Egs. (7.12)].

(8.25)

B. Review of previous work .

Degenerate squeezed states were introduced indepen-
dently by Stoler*”* (“minimum-uncertainty packets”)
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and Lu*** (“new coherent states”), both of whom used

the degenerate squeeze operator to generate squeezed

states from coherent states. The first comprehensive
treatment of squeezed states is due to Yuen,> who called
them ‘“‘two-photon coherent states” because of their gen-
eration by ideal two-photon processes. Yuen explored in
detail the properties of degenerate squeezed states, and he
discussed several physical mechanisms for generating
them. In this series of papers we adopt Yuen’s notational
convention, which labels a degenerate squeezed state by
the eigenvalue of the squeezed annihilation operator. Not
long after Yuen’s paper, Yuen, Shapiro,”’ and Machado
Mata® developed the theory of optical communications us-
ing squeezed states. At about the same time Hollenhorst*
introduced squeezed states into the theory of “quantum
nondemolition measurements.”*® Hollenhorst coined the
term squeezed and applied it to the degenerate squeeze
operator (in Ref. 1 the term was extended in an obvious
way to apply to the states themselves). Hollenhorst’s
work led to the realization' that squeezed states could be
used to improve the sensitivity of laser interferometers
used to detect gravitational waves. In the last few years
there has been an explosion of interest in squeezed
states.>* Optical communications and high-precision
measurements remain their primary potential applica-
tions, but interest is also fueled by a desire to investigate
their nonclassical behavior.?

In unpublished work Yuen*’ has considered general
multimode squeezed states. Yuen and Shapiro’ and Mil-
burn®® have defined two-mode or multimode squeezed
states, but the states they define are simply tensor (direct)
products of degenerate squeezed states for each mode.
There is a formal sense, realized by Lu*® and pointed out
explicitly by Milburn,® in which the two-mode squeezed
states defined here can be regarded as a tensor product of
two degenerate squeezed states. For any value of € one
can define the operators a and b of Eqs. (8.1), and one can
write the two-mode displacement operator and the two-
mode squeeze operator in terms of a and b as in Eqgs.
(8.5¢) and (8.5d). Thus a two-mode squeezed state (4.17)
factors into a tensor product of degenerate squeezed states
for the “@ mode” and the “b mode.”

The difficulty with this description is that unless e=0
the operators a and b are not modal annihilation opera-
tors because they do not have a harmonic time depen-
dence in the IP. The operators @, and 'a_—not a and
b—appear in a modal decomposition of the electromag-
netic field. Formally, it is correct to describe a two-mode
squeezed state as a product of degenerate squeezed states
for the “a mode” and the “b mode,” and this description
does permit one to obtain properties of two-mode
squeezed states directly from properties of degenerate
squeezed states. Physically, however, this description is
very misleading, because it can easily lead one to believe
that the way to produce nondegenerate (wide-band)
squeezing is to squeeze separately two different modes. In
reality, wide-band squeezing does not result from
separately squeezing different modes [see Eq. (5.6a)]; rath-
er, it is a consequence of a special sort of correlation be-
tween two modes symmetrically placed about a carrier
frequency [Eqgs. (5.8b) and (5.8c)]. Such correlation is

produced by ideal two-photon devices, and it is the feature
that characterizes two-photon optics.
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APPENDIX: UNCERTAINTY PRINCIPLES
FOR NON-HERMITIAN OPERATORS

In this Appendix we derive and discuss uncertainty
principles that apply to the mean-square uncertainties of
non-Hermitian operators. Our immediate objective is to
derive the uncertainty principles for a; and a, which are
given in Sec. VI. The derivations are more general,*®
however, than the special case of a; and a,, because we do
not restrict ourselves to operators with c-number commu-
tators. Since the uncertainty principles for non-Hermitian
operators are based on the uncertainty principles for their
Hermitian real and imaginary parts, we begin by review-
ing the standard uncertainty principle for two Hermitian
operators. The notation we use here is introduced in Sec.
II.

1. Two Hermitian operators

Consider two Hermitian operators B and C. They
satisfy the ordinary uncertainty principle for the product
of their uncertainties:

((AB)V2((AC)V2> + |([B,C]) | .

The derivation of Eq. (Al) can be found in most
quantum-mechanics textbooks (see, e.g., Chap. 8.6 of Ref.
27). Equality holds in Eq. (A1) if and only if the state
vector |W) is an eigenstate of a particular linear com-
bination of B and C:

(A1)

(AB+iBAC)|¥)=0, (A2a)
p= _i SIB.CD _ ((aB)'”

—KIB.CDY| ((AC)y1”?

_,.{(ABY?)  , .{[B,C])

=2i ((B.CI) =—7i (AC)) . (A2b)

Notice that B is real because ([B,C]) is pure imaginary.
Equality in Eq. (Al) implies that B and C have zero
second-order correlation, i.e.,

(ABAc)sym=<BC>sym'—<B)<C):O . (A3)

2. One non-Hermitian operator

Let R be a general, possibly non-Hermitian operator.
We want to derive a lower limit for its mean-square
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uncertainty (|AR|?) [Eq. (2.9)]. An instructive ap-
proach is to consider its Herm1t1an real and imag-
inary parts R;=Re(R)= (R+R) and R,=Im(R)
=—LiR—RD),ie,

R=R,+iR, . (A4)

It is useful to note the following relations among opera-
tors:

(AR=(AR,)*—(AR,*+2i(AR; AR,y ,  (AS)
|AR |*=(AR)*+(AR,)?, (A6)
[R,R]=—2i[R,R,] . (A7)

Notice that ([R,R]) is real.
By noting that

(|AR |2)=((AR*)+{(AR})*)
>2{(AR )2 (AR,)*)1/?, (A8)

one can use the ordinary uncertainty principle (Al), ap-
plied to R, and R,, to establish a lower limit for
(|AR |?):

(JAR[?) 27 [X[R.R']) | = [{[RL,RD | . (A9)
This derivation makes clear that equality in Eq. (A9) is
equivalent to each of the following: (i) R, and R, have

equal uncertainties, which have the minimum-uncertainty
product, i.e.,

((AR*)={(ARy*)=7 [{[Ri,R;]) | ; (A10)
(ii) the state vector | W) satisfies

ARMJ%ARZ |W)=0 (A11)
[Egs. (A2) and (A7)]; (iii) the state vector | ¥) satisfies

AR |¥)=0 if ([R,R'])>0, (A12a)

ART|wy=0 if ([R,RT])<O0. (A12b)
Equality in Eq. (A9) implies

{((AR)*)=0. (A13)

The uncertainty principle (A9) can also be obtained
directly without introducing R; and R,. One writes the
mean-square uncertainty in two ways which imply two
lower limits:

(|AR|*)=(ARTAR)++([R,RT]) > +([R,RT]),
(A14a)

1([R,RT]) .
(A14b)

(|AR |>)=(AR AR") —L([R,R']) > —

Equatlons (A14) imply the uncertainty principle (A9). If
{[R,R ])>0 then equality holds in Eq. (Al4a) if and
only if (ARTAR )= 0 which is equivalent to Eq. (A12a);
similarly, if ([R,R ])<0 then equality holds in Eq.
' (A14b) if and only if (AR AR")=0, which is equivalent
to Eq. (A12b).

3. Two commuting non-Hermitian operators

Consider now two general,*® possibly non-Hermitian

operators R and S which commute:
[R,S]=0;

thus the important commutator is [R,S T] =—[R s ]Jr.
In analogy with the ordinary uncertainty principle (A1),
one might expect |{[R,ST])| to set a lower limit on the
product of the root-mean-square uncertainties in R and S.
Indeed, the main result of this subsection is that

(|AR [2)V2(|AS )2 L [ ([R,ST]) |,

an uncertainty principle that bears a striking resemblance
to the ordinary uncertainty principle (A1).

The uncertainty principle (A16) is a consequence of the
ordinary uncertainty principles for the real and imaginary
parts of R and S. We therefore begin a proof of Eq.
(A16) by introducing the Hermitian real and imaginary
parts of R as in Eq (A4) and by 1ntroduc1ng the Hermi-
tian real and imaginary parts of e’ As,

(A15)

(A16)

SIET((?'}”S-{—E—'AST), Sz—-—-—l( iAg _ —ihs*) ,
(A17a)
S=e NS, +iS,), (A17b)

where e is an arbitrary phase factor. For different
values of A the operators S; and S, are different linear
combinations of the real and imaginary parts of S, but the

mean-square uncertainty in S is still given by
(|AS|?)=((AS)*)+{(AS,)?)

[cf. Eq. (AB)]. In what follows we derive lower limits on
(|AR |?)2( | AS|?)!/? which depend on A, and we
then choose A to enforce the most stringent limit. Using
Eq. (A15), one can derive the following commutators:

(A18)

[R1,S11=[R,,S;]=+(e MR, ST]+e*[RT,S])

T
=+1iIm(e ~*[R,5]) (A19a)
[R1,S2]=—[R2,S1]1=7ile "*[R,S"]—e™[RT,S])
=—+iRe(e MR,ST]).  (A19D)

The notation is made less cumbersome by introducing the
symbols

ri={(AR;)?>0, s5;=((AS;)*)!*>0, j=1,2.
(A20)

The commutators (A19) enforce four uncertainty princi-
ples [Eq. (AD)],

ris;>5¢|sin(6—A) | , (A21a)
P28y > %c |sin(6—A) | , (A21b)
risy>+c|cos(8—A) | , (A21c)
ras1> 3¢ |cos(8—A) | , (A21d)

where we define
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([R,ST])=ce®, c=|([R,ST])] . (A22)
Hence, the problem is to minimize
(JAR|2)(|AS |2y =(r]+73)(s]+53)
= | (ry+iry)(s +isy) |2, (A23)

subject to the constraints (A21). An easy way to do this is
to write Eq. (A23) in two ways, which lead to two dif-
ferent lower limits:

CIAR |2 | AS |2y =(ris1—r252)*+(r1sy+ 7251
> +cZcos((8—A) ,

CJAR |2 (| AS |2y =(r1s1 472520 +(ris3— 15 )
> +e%in%(8—2) . (A24b)

If one chooses A=8 (A=8—m/2), then Eq. (A24a) [Eq.

(A24b)] implies the uncertainty principle (A16).

The operators S| and S, defined by Egs. (A17) with
A=0—m/2 (or, equivalently, the operators S, and —S,
defined by A =23) bear a special relationship to R; and R,.
For A=8—m/2, Eq. (A24b) shows that equality in Eq.

(A16) is equivalent to each of the following two state-
ments: (i) Ry, R,, S, and S, satisfy

((AR)*)=((AR,)*), ((AS)*)=((AS,)?),
((VAR1)2>1/2<(AS1 )2)1/2:_((AR2)2>1/2((AS2)2)1/2

(A24a)

(A25a)

=+ (RS ; (A25b)

(ii) the state vector | W) satisfies
(AR, +iy AS;) | W) =0, (A26a)
(AR, +iy AS,) | ¥)=0, (A26b)
y=C(| AR |2)12/( | AS | 2)172 (A26¢)

[Egs. (A2)]. By taking appropriate linear combinations of
Eqgs. (A26a) and (A26b), one can show that equality holds
in Eq. (A16) if and only if

(AR +7ve'®AS)|W)=0, (A27a)

(ART—ye—®Ash) | W) =0, (A27b)
o= SIRST) (|AR| %)V
IKIRSTD) | (]As |22

_,{1AR|D 1 (R,ST]) (AZ7c)

(RS T 2 ([As )

[Egs. (A22) and (A260c); cf. Egs. (A2)]. Equations (A27)
do not depend on any special choice for A. They can be
used to show that equality in Eq. (A16) implies the fol-

lowing:
((AR)?)=((AS)*)=(AR AS)=0, (A28a)
(AR AST) =1 7e™([S,51])
=57 'e®([R,RT]) . (A28b)

A simple, but important consequence of Egs. (A27c) and
(A28b) is that equality in the uncertainty principle (A16)
implies
2 (|AR|*) _([R,RT])
(1as]2)  ([s.8™D

provided that ([R,R ']1)5£0-4([S,S™]).

Equation (A28a) shows that equality in Eq. (A16) im-
plies ((AR;)*) =((AR;)*) and ((AS)*)=((AS;)?), re-
gardless of the choice of A. This tells one immediately
that Egs. (A25) are a consequence of equality in Eq.
(A16), regardless of the choice of A. Equally true is that
Egs. (A25) imply equality in Eq. (A16), regardless of the
choice of A. On the other hand, only for the special
choices A=86—/2 and A=8 (or their equivalents) are
Egs. (A25) equivalent to eigenvalue equations like Egs.
(A26), because only for these special choices is Eq. (A25b)
a minimum-uncertainty product [cf. Egs. (A21)]. Thus it
is the eigenvalue equations (A26) that pick out the opera-
tors S, and S, defined by A=8—/2.

An alternative method of proving the uncertainty prin-
ciple (A16) goes as follows. Choose for illustration
A=8—m/2; the problem is then to minimize
f(ri,ra,81,8,)=(ri+r3)(s3+s3) [Eq. (A23)], subject to
the constraints r;s; > %c and rys, > %c [Egs. (A21a) and
(A21b)]. As a first step, minimize f on the hypersurface
ri#,815,=K?>c?/16, where K is a constant. The
minimum value f=4K? can be found by using a
Lagrange multiplier to enforce the hypersurface con-
straint; the minimum occurs when r;=r,;, s;=5,,
ris;=rys,=K. Now vary K to find the absolute
minimum consistent with the constraints; the obvious
answer is K=+c, which yields an absolute minimum
value f=+c2. '

It should be remembered that the uncertainty principle
(A16) is not the whole story, since it is based only on the
commutator [R,ST]. It is quite possible that the con-
straint

(JAR|2)(|AS |3y >+ | {[R,RTD||([S,STD |,
(A30)

> (A29)

which follows from the separate uncertainty principles for
R and S [Eq. (A9)], provides a more stringent lower limit
than Eq. (A 16).
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