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The autoionization widths of the lower S, ~P', and 0 Feshbach resonances in Li I, Be II, and 8 III
are calculated with the saddle-point complex-rotation method. For Ben and BIu the radiation
widths are also computed. Relativistic and mass polarization corrections to the resonance energy
are included. The width results for the [ ls (2s 2p)'P]2P' and ( ls 2p 2p)2D states are compared with
other theoretical results and with the recently published experimental results for LiI and Be?I.
Transition wavelengths involving these autoionizing states are also calculated and compared with
theory and experiment. Due to the substantial difference between theory and experiment on the
Li[1s (2s 2p) P] P' width, a detailed study is made on the convergence of this width with respect to
the closed channel, open-channel target state and out-going electron wave function to access the sta-
bility and reliability of the theoretical result.

I. INTRODUCTION
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FICs. l. Optical transitions recently measured for the core-
excited~lower-lying autoioning states. They have been ob-
served for LiI and BeII. The upper states are metastable
against autoionization in the I.S coupling scheme due to conser-
vation of angular momentum and parity. For Li I and Be II, the
widths of the lower state are significantly larger.

Recently, autoionization widths have been measured for
the [ls(2s2p) P] P' and (ls2p2p) D resonances in Lil
(Ref. 1) and Ben (Ref. 2). These ha've been obtained by
analyzing the broadened line profiles resulting from the
optical transitions ( 1 s 2p 2p) P~ [1s (Zs 2p) P] P' and
[(ls2p) P3d) D ~(ls2p2p) D which are seen in beam-
foil light sources. These radiative transitions are observed
because the upper state, although core excited, is metasta-
ble against autoionization in the LS-coupling scheme due
to conservation of parity (see Fig. 1). These lines are
broadened due to the fact that the lower state primarily
decays by autoionization. The total width of these lines is
the sum of the radiative and autoionization widths of the
upper and lower states. In the energy region of interest,
the relativistic spin-induced autoionization rates of the
upper states are very small. For Li, the radiative widths
of the upper and lower states can be neglected with the ex-
perimental resolution obtained, however, for the

(ls 2p 2p) P~[ ls (2s 2p) P] P transition in Bell and
8 III these widths have a small but non-negligible effect.

In this work we present results for the autoionization
widths of the lower S, P', and D resonances of the lithi-
um isoelectronic sequence from Z=3 to 5. These results
were obtained with the saddle-point complex-rotation
method. In an earlier work, this method was tested for a
three-electron system by applying it to the ( ls 2s 2s) S res-
onance for Z= 2 to 5. The complex eigenvalue,
E i I /2, wa—s found to be very stable with respect to the
rotation angle and the nonlinear parameter of the scat-
tered electron in the open-channel component. In that
work it was mentioned that the various theoretical results
for the width of Ben ( 1 s 2s 2s) S were in serious disagree-
ment. In the recent experimental publications, ' it has
also been pointed out that large discrepancies exist among
the various theoretical results for the widths of the
[ls(2s2p) P] P and (ls2p2p) D resonances in Li and
Be?I. It is our hope that calculating the widths of many
different states along the isoelectronic sequence will pro-
vide more theoretical data to stimulate further experimen-
tal measurements and wi11 also help access the reliability
of our theoretical method as well. as that of the existing
experimental techniques.

For the case of the Li [ls(2s2p) P] P' width, our re-
sult differs substantially from that of the experiment. It
is, therefore, worthwhile to look closely into the theoreti-
cal calculation for this state. To accomplish this, we ex-
amine the stability and convergence of this theoretical re-
sult with respect to the wave functions of the closed-
channel, open-channel target state as well as that of the
outgoing electron. These results will be reported in later
sections.

In the past, the calculated resonance energy posi-
tions were usually compared with observations from
Auger spectroscopy where an experimental uncertainty of
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50-100 meV is quoted or with optical-absorption spectros-
copy with an experimental uncertainty of 6—20 meV.
The results from the saddle-point technique compare well
with these experiments. In the recent optical-emission
spectroscopy measurements, the transitions of interest are
usually observed in the 3000—4000-A region where an ex-
perimental uncertainty of 1 A corresponds to about 1

meV. This presents a new challenge to the theoretical
methods. In order to meet this challenge, we reexamine
the nonrelativistic energy calculated before by includ-
ing more correlations and by including the relativistic and
mass-polarization corrections. These new results will be
compared with those from optical-emission spectroscopy.

II. THEORY AND RESULTS

The nonrelativistic Hamiltonian for the three-electron
system in atomic units (a.u. ) is given by

Ho= g ——&; ——+ g, (1)1. Z 1

i =1 i pairs iJ

where Z is the nuclear charge and r,&
is the interelectron

distance. For a complex-rotation computation the rotat-
ed Hamiltonian is obtained by scaling each radial coordi-
nate with e', i.e., rJ becomes rJe', where 0 is the angle
of rotation. If we refer to the S-electron radial coordi-
nates collectively as R~ and the corresponding angular
variables as Q~, then the form of a rotated w'ave function
of L symmetry becomes

Partial wave
Number
of terms

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

(s,p) P s
(s,p)'P s
(s,s)'S p
(s,s)'S p
(p, s)'P s
(s,p)'P d
(s,p)'P d
(p, d)'P s
(p, d) P
(p p)'S p
(p,p)'S p
(d,f)'P s
(d,f)'P s
(d, d)'S p
(d, d)'S p
(f,g)'P s
{f,g)'P s
(g, h)'P s
{f,f}'~p
(f,f}'&p
(p, s)'P s
(p, s) P d
(p, s)'P d
(s,d}'D f
(s,d)'D f
{s,f}'Fg

18
13
11
7
2
8
7
6
1

5
5
2
1

2
1

2
1

1

2
1

2
4
2
2
3
1

5.294 3136
0.007 351 0
0.000 885 0
0.000 394 0
0.000 060 8
0.004 973 1

0.001 582 9
0.001 274 2
0.000 077 2
0.000 8176
0.000 452 6
0.000 144 7
0.000 1126
0.000 089 5
0.000 025 6
0.000 034 1

0.000 016 7
0.000 0102
0.000 0166
0.000 003 1

0.000 008 2
0.000 0179
0.000 0196
0.000 035 6
0.000 032 5
0.000 011 9

TABLE I. Nonrelativistic energy and wave function for the
[1s (2s 2p}'P] P' state of lithium (in atomic units).

'Il( l. ) = g Cjpj (R3e', Q3)
Total 110 5.3127608

+A g Dkgs(R2e', Q2) Ug, (r}
k

(2)

where CJ and Dk are linear variation parameters and 3 is
an antisymmetrization operator.

The first term in Eq. (2) represents the closed-channel
component. In this term, the PJ. are optimized, antisym-
metrized, configuration interaction basis functions with
the "proper"' 1s vacancy built in. These closed-channel
basis functions are obtained from a saddle-point solution
for the particular resonance and nuclear charge of in-
terest. That is,

Psp g Bjfj (R3 Q3 Q g)
J

is obtained by the variation

(e„[a,/ e„)
(q„(q„) (4)

The linear variational parameters B~ and the nonlinear
parameter set represented by a are obtained by minimiz-
ing the energy, while q, the nonlinear parameter in the 1s
vacancy orbital is obtained by maximizing the energy with
respect to it. For the detailed form of the Pj~, the interest-
ed reader is referred to Ref. 4. The convergence of the
saddle-point energy is illustrated for the case of the
[is (2s 2p) Pj P' resonance of lithium in Table I. In this
table, we give the energy contribution for each partial

wave along with the number of terms used in that partial
wave.

The second term in Eq. (2) represents the open-channel
component. gg is the (ls ls)'S two-electron target state.
For this state we use. a three-partial-wave, eight-term wave
function. 3 In Table II the convergence of the energy of
this target state for Li u, Bell?, and B Iv is demonstrated
and compared with the nonrelativistic energy of Pekeris. "
The square integrable basis set used for representing the
scattered electron is given by

Uk (r) =r "e r'Yl (Q), (5)

where y is a nonlinear variational parameter. In Eqs. (2)
and (5) the angular and spin coupling of the target state

Ps with the UP is suppressed, these functions are coupled
to form the L, symmetry of interest.

With the 4 of Eq. (2), the width and the shift from the
saddle-point energy are calculated by the standard varia-
tion method

(e
i
ao(e)

i
e)

5
( )

—0. (6)

In the preceding procedure the unconjugated e' is used in
the complex conjugated wave function. For a more de-
tailed account of the above procedure the interested reader
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TABLE II. Convergence of the energy of the three-partial-wave, eight-term (1s 1s)'S target state and
comparison with Pekeris's value (in a.u.).

No. of
partial waves

No. of
terms
Li II
BeIII
B IV

1
—7.222 656

—13.597 656
—21.972 656

This work

4
—7.251 861

—13.625 239
—22.000 695

7
—7.274796

—13.649 025
—22.024 882

8
—7.276 970

—13.651 410
—22.027 384

Pekeris
(Ref. 11)

—7.279 913
—13.655 566
—22.030972

is referred to Ref. 12.
In Table III we present our results. E,&

is the saddle-
point energy obtained from Eq. (4). L is the total number
of angular and spin partial waves and N is the total num-
ber of basis functions used in the calculation of E». The
column labeled q gives the optimized value of the non-
linear parameter in the 1s vacancy orbital,

Pr, ——Ce

where C is a normalization constant. It is interesting to
note that q=Z ——,, indicating that the 1s vacancy orbital
is approximately half shielded from the nucleus by the ls
electron. The results tabulated under the headings
(Hr+H z) (correcti'on to the kinetic energy and Darwin
term), (H3) (contact term), H4 (retardation), and H,
(mass polarization) are obtained by calculating the expec-
tation value of the appropriate operator with the saddle-
point wave functions. The explicit form of these opera-
tors is given in Ref 3. W.e note that the relativistic and
mass polarization corrections vary smoothly as a function
of nuclear charge.

In the complex-rotation computation [Eq. (6)], the in-
clusion of 15 terms in the open channel [i.e., k runs from
0 to 14 for S states, 1 to 15 for zP'states, and 2 to 16 for
D states in Eq. (2)] yields a converged complex energy,
E,—i(I /2). This energy is stable with respect to the ro-
tation angle 0, and the nonlinear parameter, y, as has been
demonstrated in Ref. 3. In order to keep the size of the
complex matrix reasonable for diagonalization we restrict
the number of angular partial waves used in the closed-
channel component to thirteen. For states with more than
thirteen partial waves in the closed channel, we eliminate
the less important ones. For example, the complex-
rotation calculation for Li[ls(2s2p) P] P' is done using
only the first thirteen partial waves in Table I.

The value of E„ in the complex energy turns out to be
shifted by a small amount from the corresponding
saddle-point energy. This results from the interaction of
the closed- and open-channel components of the total
wave function through the Hamiltonian. This shift from
the saddle-point energy is defined by

L=E,—E,p

and is given in Table III. If partial waves are eliminated

from the closed-channel component in the calculation of
E„, then the corresponding result for E» is used to com-
pute b.. 5 is positive for most cases, however, for a few
states (see Table III) it is negative and small. This shift
usually depends on the accuracy of the closed-channel
basis functions used in Eq. (6). The small shifts shown in
the table seem to justify the inner shell vacancy picture
which is the foundation of the saddle-point technique.

The resonances given in Table III are the lowest reso-
nance levels for a given angular symmetry. For this
reason some of the lithium resonances are omitted. For
instance the (ls2p2p) S resonance in Li appears as a
much higher root than the second in the secular equation.
The [( ls2s)'S 3p] P' state of Li is the seventh lowest P'
resonance. This state acts as a perturber in the
[(ls2s) Snp] P' series The. [(ls2s)'S 3d] D state of Li
lies in the inelastic scattering energy region, it is not con-
sidered in this work. The 1s 2s 2s S states have been pub-
lished earlier, they are not included in Table III.

I, and I „ in Table III are the widths due to autoion-
ization and dipole radiative transitions, respectively. I, is
obtained by taking twice the imaginary part of the com-
plex energy resulting from Eq. (6). I, is calculated by
computing the transition probabilities from the resonance
level of interest to the more important lower autoionizing
and bound states. The I „ for Ben are from an earlier

owr k sTo ill.ustrate the various contributions to I, for
B tie we tabulate the transition probabilities (in units of
sec '} from the P' resonances to the lower states in
Table IV. The conversion factor necessary to convert
these results into atomic units of energy is 4.13393&&10'
sec. a.u. The radiative widths of the lithium resonances
are small. They are not calculated in this work.

It has been remarked that autoionization widths for a
given resonance should be essentially independent of vari-
ations in Z. This argument is based on a computation'
of the transition probability (via the llr;J interelectron
repulsion perturbation} between initial- and final-state
wave functions that are assumed to be products of hydro-
genic wave functions of a given Z. However, for low-Z
atomic systems, screening effects in autoionizing states
are relatively much more important than for large-Z sys-
tems making the above argument invalid. For the atomic
systems considered in this work, Table III shows that
the autoionizing width is an increasing function of Z
with two exceptions, the [ 1s (2s 2p) P] P' and
[(ls2s) S3p] P'.
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TABLE IV. Radiative dipole transition probabilities from the I"resonances of BIII (in sec ').'
Initial [1s(2s Zp)3P]~P' [1s(2s 2p)'P) P' [(1s2s) S 3p] P' [(1s2s)'S 3p]2P' [(1s2p)3P 3s]2P'

(1s1s2s) S
(1s 1s 3s)2S
(1s1s4s) S
(1s2s2s) S
(1s2p2p) S
[(ls2s) S 3s] S
[(1s2s)'S 3s]2S
(1s 1s 3d) D
(1s 1s4d) D
(1s2p 2p)2D
[(1s2s)'S 3d) D
(1s2p2p) I'
[(1s2p) P 3p]2P
Total

2.7682(11)
7.8368(8 )

1.2287(8)
1.3476(7)

6.6771(8)
1.2751(8}

2.7853( 11)

3.1172(10)
1.8546(8 }
4.6278(7)
5.7464(8)

3.1708(8)
1.0271(8}

3.2399( 10)

4.9202( 10)
1.3607(9)
3.2473(7)
3.9097(9)
2.5756(7)
1.5927(6)

5.2390(6)
9.8539(5)
4.1949(8 )

7.2436( 5)

5.4959( 10)

1.5192(10)
1.8230(10)
3.9444(8 )

6.9229(8)
1.2438(8 )

6.9397(7)
3.2466(6)
1.0128(10)
1.6322(8)
6.4479(8)
3.1891(6)
1.3607( 8)

4.5780( 10)

6.2730( 8)
2.9830(10)
7.4480(7)
2.8534(8)
2.3709(8)
8.0798(7)
9.8034(6)
2.3706(9)
4.8264(8)
3.1279(8)
1.4416(5 )

3.7784( 8)
8.2739(4)
3.4689( 10)

'Transition probabilities from other resonances will be supplied upon request.

III. COMPARISON WITH THEORY
AND EXPERIMENT

In Table V we compare our results for the autoioniza-
tion widths with other theoretical calculations and experi-
ments. These results are given in meV. The conversion
factors used for Li 1, Be 11, and B 111 are 27 209.48
meV/au, 27 209.95 meV/au, and 27 210.25 meV/au,
respectively.

For the [ls(2s2p) P] P' state in Be11 the experimental
result of Cederquist et al. is 4.58+0.13 meV; our result
4.08 meV is 11% less than this. The width which was
measured experimentally and fitted to a Lorentzian pro-
file was 4.67+0.12 meV; after subtracting from this the
radiative widths of the upper and lower states in the
(ls 2p, 2p) P~ [ ls (2s 2p) P] P transition, the result
4.58+0.13 meV was obtained. Our result for the radiative
width of (ls2p2p) P is 0.0858 meV (Ref. 7) and for the
[ls (2s 2p) P] P' state, 0.0555 meV (Ref. 8) which gives a
combined result of 0.14 meV. This is larger than the esti-
mate, 0.09 meV, based on theory given by Cederquist
et al. Another factor which could complicate the experi-
mental analysis is the fine-structure splittings. For Be11
we find the splittings of (1s 2p 2p) P&/p 3/p and
[ls(2s2p) P] P&/23/p to be 2.31 meV (Ref. 7) and 1.61
meV which gives a spread of 2.5 A in the 2831 A region.
This splitting is too small to be resolved in the experi-
ment. However, when this theoretical fine structure is
taken into account in the experimental analysis the width
is reduced to 4.08 meV (Ref. 14) in good agreement with
the saddle-point complex-rotation result.

The width of Li[ls(2s2p) P] P' was measured to be
2.6+0.13 meV from the (ls2p2p) P~[ls(Zs2p) P] P
transition. ' This result is not corrected for the radiative
widths of the upper and lower states since these correc-
tions are expected to be small in lithium. Our result for
the width of this resonance is 3.71 meV. It is 43% larger
than the measured width. For lithium the fine-structure
splittings of the upper and lower states are calculated in

this work to be 0.31 and 0.30 meV for the ( 1s 2p 2p) P and
[ls (2s 2p) P] P' states, respectively. This splitting, being
relatively much smaller, should not affect the analysis of
the measured width by much.

For the ( ls Zp 2p) D state of Li, the experiment of Man-
nervik et al. ' measures a width of 10.4+0.26 meV; our re-
sult, 11.00 meV, is 5.8% larger. For the same state in
BeII Cederquist et al. measure the width to be 30.3+1.1
meV; our result 27.56 meV is smaller by 9%. These ex-
perimental widths obtained from the transitions
[(ls2p) P 3d] D ~(lsZpZp) D in Li and Be11 are not
adjusted for the radiative widths of the upper and lower
states. For the Bed? transition we calculate the radiative
widths for [(ls 2p) P 3d] D' and ( ls 2p 2p) D to be
0.001 39 meV (Ref. 7) and 0.02634 meV (Ref. 8), respec-
tively. The combined result, 0.028 meV, is indeed beyond
the spectral resolution. The fine-structure splittings of' the
[(ls2p) P3d] D and (ls2p2p) D states are calculated to
be —0.012 meV (Ref. 7) and —2.735 meV, respectively,
for Be 11, and —0.041 and —0.681 meV, respectively, for
Li. These splittings are probably too small to affect the
experimental analysis.

The agreement among the various theoretical results is
poor. In Bhatia's calculations, ' the closed-channel wave
function is a configuration-interaction function derived
from the quasiprojection operator technique. For the
open-channel he uses a scattering function computed from
the static exchange approximation with a closed-shell tar-
get state. With these wave functions he computed the
width with the golden-rule formula. Although the widths
of (ls2s2s) S, [(ls2s) S3s] S, and [ls(2s2p)'P] P in
Ref. 15 agree reasonably well with ours, the widths
for other states differ very substantially. For
[ls (2s 2p) P] P' of Li1, Be 11, and B 111 his results are ap-
proximately twice ours. For Li(ls2p2p) D his result is
approximately half of ours. For Ben(lsZpZp) D there is
about a 20% difference between the two results.

All of the theoretical results for Li[ls(2s2p) P] P0 are
too large as compared to experiment. The closest result is
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TABLE V. Comparison of autoionization widths in Li I, Be II, and B III (in meV).

Li I Be II B III

(1$2$2$) S

(1$2p2p) S

[( 1 s 2s)3S 3s]2S

[ls(2s2p) P] P'

[ 1 s (2s 2p) 'P j P

[(ls 2s) S 3p] P'

( 1s 2p 2p ) D

[(ls2s) S 3d] D

[(ls2s)'S 3d] D

36.84'
40.3b

7.89'
13b

3 71'
7b

8.49:5.13;3.42'
507

'

3.9'

3.07"

2.6+0 13"

10.01'
11
11'
0.172'
0.021b

11.00'
5b

21.5; 17.2; 10.0
23h

123"
10.4+0.26"
1.11'
0 75 '0 89

52.99'
53b

83;23'
20 5d

92.93'
5.71'
8b

9 95'
8b

4.08'
10

12.8;5.46;4.31g

4.58+0. 13'
4.08+0.11

21.00'
17

0.321'
0.022b

27.56'
23

40.4; 38.2; 31.3g

30.3+1.1'

1.67'
2b

0.08'
0.18b

62.19'
68b

6.70'
9b

14.79'
~3b

4.05'
10b

30.60'
28'

0 381'
0.051

42.04'
27'

2.2'
3b

0 28

0.25"

'This work.
Bhatia, Ref. 15.

'Nicolaides et al. , Ref. 19.
Palmquist et al. , Ref. 22.

'Kelly, Ref. 23.
Nicolaides et al. , Ref. 20 (see text).

gNicolaides et al. , Ref. 21 (see text}.
"Propin, Ref. 17.
'Manson, Ref. 18.
'Safronova et al. , Ref. 16.
"Mannervik et al. , Ref. 1.
'Cederquist et al. , Ref. 2.

Private communication, Ref. 14.

3.07 meV of Safranova et a/. ; however, their width for
Li(ls2p2p) D, 123 meV, is 12 times that of the experi-
ment. Safronova et al. use a Z-dependent perturbation
theory as does Propin. ' Manson' used a perturbation-
theory technique, in which the closed-channel wave func-
tion must be a Hatree-Fock function with no configura-
tion interaction. A golden-rule-type formula yields a
width of 3.9 meV for this lowest P' resonance. He also
computes the width of the second 1owest P' resonance
and obtains 11 meV, in good agreement with the present
result of 10 meV and with Bhatia's' result of 11 meV.

Nicolaides and collaborators' ' have published results

for the resonances that have been measured experimental-
ly. They calculate the width with a modified golden-rule
formula. The three results quoted for each state corre-
spond to calculations with closed-channel wave functions
of increasing complexity. The open-channel or final-state
wave function in each calculation is the same, a Hartree-
Fock wave function. As an example, the first result of
Nicolaides et al. for Li[ls(2s2p) P] P' corresponds to
the use of a Hartree-Fock initial-state wave function for
the [1s (2s 2p) P] P' state, this gives a w'idth of 1.45 meV.
However, since their initial- and final-state wave functions
are obtained independently of each other, they are not
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TABLE VI. Transition wavelengths for (is2p2p) P~[ls(2s2p)'P]2P' and [{1s2p)'P3d] D'~(ls2p2p)2D. (Energy in a.u. ,

wavelengths in A, conversion factors: 455.669 A/a. u. for Li and 455.661 A/a. u. for Be II}.

Li

State

(1s2p 2p)~P

[ls(2s2p) P) P'

[(ls 2p) P 3d]2D'

(1s2p 2p)'D

(1s2p2p) P

[1s(2s2p) P] P'

[(is2p) P 3d] D'

{1s2p2p) D

~8
Erel, sp

—5.214064

—5.313340

—5.089 701

—5.234 273

—9.801 189

—9.962 011

—9.417 771

—9.827 107

This work
b

Etot

—5.313056

—5.234 200

—9.961 635

—9.826 952

~SP

4589.96

3151.85

2833.33

1113.17

d
~res

4603.10

3153.44

2839.97

1113.59

Experiment

4585'

3144'

2831.7'

1112.3+0.4

8hatial'

4687.2 4898"

3239.4 3232"

2890.5 2975.07'

1136.7 1169.69'

Other theory'
Nicolaides

and
collaborators

Saddle-point energy or Rayleigh-Ritz energy plus relativistic and mass polarization corrections.
Shifted included, i.e., E„,=E„],p+ k.

'Using E„~,~ for the autoionizing state.
Using E„,for the autoionizing state.

'Mannervik et al. , Ref. 1

Cederquist et al. , Ref. 2.
~Bhatia, Ref. 15.
"Nicolaides et al. , Ref. 20.
'Aspromallis et al. , Ref. 21.
'Using the upper-state energy of this work. Relativistic and mass polarization corrections for the resonances are also included.

orthonormal. %'hen they take into account this nonortho-
normality the width becomes 8.49 meV. If a five configu-
ration multiconfiguration Hartre-Fock (MCHF) function
for [Is (2s 2p) P] P' with energy —5.29991 a.u; is used
and nonorthonormality is taken into account the width
becomes 5.13 meV. If further correlations are added to
the MCHF wave function the energy becomes —5.3066
a.u. At this point, taking into account nonorthonormality
becomes computationally tedious and only the most im-
portant nonorthonormality contributions were taken into
account with the final result of 3.42 rneV for the width.

The width results of Nicolaides and collaborators'
for [is(2s2p) P] P' and (ls2p2p) D in Lil and Bell are
in reasonable agreement with our results. However, their
(1s2s2s) S width is very different from ours. We note
that while their width fluctuates greatly in the various
steps of their calculation, the width in our calculation ap-
pears to be more stable (see next section). Their final cal-
culated energy position deviates substantially from the ex-
periment (see Table VI).

In Table VI the wavelengths calculated in this work for
the ( Is 2p 2p) P~[is (2s 2p)3P] P' and [(ls 2p) P 3d] D
~(ls2p2p) D transitions in Lil and BelI are compared
with those of experiment and other theory. The energies
quoted for (Is2p2p) P and [(is2p) P3d] D' of Bell
which include relativistic and mass polarization correc-
tions were computed in an earlier work. The energies
quoted for the same two states in lithium are calculated

here. For the (Is2p2p) P and [(Is2p) P3d] D' states of
lithium we obtain the nonrelativistic energies —5.213 517
a.u. and —5.089 141 a.u. , respectively. The calculated rel-
ativistic and mass polarization corrections are —0.000 547
and —0.000561 a.u. for the two states. By adding these
corrections to the energy, we obtain the results quoted in
Table VI.

In the recent optical emission spectroscopy measure-
ments, Lorentzian line profiles are assumed with the ef-
fect of the open-channel continuum neglected. "' If this
effect is neglected in the theoretical calculation, the ener-

gy will be simply the saddle-point energy. In Table VI
two theoretical wavelengths for each transition are quoted
from this work; one is calculated with the resonance ener-

gy and the other is calculated with the saddle-point energy
(with relativistic and mass polarization corrections includ-
ed). It appears that the nonshifted saddle-point energy
gives a closer agreement with that of the experiment.

The calculated wavelengths are slightly too long as
compared with the experimental results of Refs. 1 and 2
which indicates that the calculated energy for the autoion-
izing levels is too high. This follows from the fact that
the energy of the upper states which are metastable
against autoionization satisfy the upper bound principle
and therefore should not be expected to be calculated too
low. If we use E„&,p to calculate A, and if we assume that
the upper-state energies are accurate (judging from the
comparison between theory and experiment in Ref. 7) then
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the discrepancy with the experimental wavelengths im-
plies that the energy of [Is (2s 2p) P] P' of Li and Bell is
too high by about 0.000095 a.u. and that the energy of
(Is2p2p) D of Li and Bell is too high by approximately
0.00034 a.u. This deficiency in energy is not surprising
when one considers the number of partial waves necessary
to account for the electron correlation in an autoionizing
state (see Table I).

Also given in Table VI are the theoretical transition
wavelengths obtained by using the nonrelativistic reso-
nance energies of Bhatia' and of Nicolaides and colla-
borators. ' ' In order to make a meaningful comparison
with these references we have added our relativistic and
mass polarization corrections to their nonrelativistic reso-
nance energies. The transition energies quoted for these
references were computed using the upper-state energies
of Table VI. We note that although the width results of
Nicolaides and collaborators are in reasonable agreement
with our results, their transition wavelengths and there-
fore resonance energies are quite different from our re-
sults.

IV. CONVERGENCE OF THE WIDTH
OF Li[ls(2s2p) P) P'

In view of the poor comparison between our result and
experiment for the width of Li[ls (2s2p) P] P' a detailed
study of the convergence is needed to access the reliability
of our theoretical result. In this work, we examined the
convergence of this width with respect to both the open-
and closed-channel components of our wave function.

The convergence was examined with respect to two dif-
ferent aspects of the open-channel: (a) the accuracy of the
(1s is)'S Lili target state, and (b) the number of Ui, 's

used to represent the scattered electron. When carrying
out these calculations, the same closed-channel basis func-
tions were used as those in Table III.

The crudest target state possible is a one-term closed-
shell target state. For this we used a product of two hy-
drogenic 1s orbitals with the effective nuclear charge set
equal to the optimized value Z &g:2 6875 The ener-

gy of this target state is —7.222656 a.u. With this target
state and 15 Uk's we obtain 4.10 meV for the width. If
the target state is improved by using a four-term (s,s)'S
partial wave with energy —7.251861 a.u. and the same
number of Uk's are used, then the width becomes 3.85
meV. After the target state is improved further by adding
to it a three-term (p,p)'S partial wave [so that the
( I s Is) 'S energy becomes —7.274 796 a.u.], the width
reduces to 3.73 meV. Finally the addition of a one-term
(d, d)'S partial wave results in our final three-partial-wave
eight-term target state with energy —7.276970 a.u. which
yields a converged width of 3.71 meV. These computa-
tions indicate that accounting for electron correlation in
the target state results in a 10 jo decrease in the width.
Many theoretical calculations in the literature do not in-
clude any correlation in their target states.

To examine the' convergence of the width with respect
to the number of UI, 's used for the scattered electron, we

TABLE VII. Convergence of the Li[is(2s2p) Pj P' width
with respect to angular correlations (in meV).

Angular correlations
included

Small
closed-channel

basis set

Large
closed-channel

basis set

ssp
spd +ssp

ppp +spd +ssp
sdf +ppp +spd +ssp

5.080
4.185
4.302
4.276

4.660
3.508
3.709
3.713

performed calculations using the three-partial-wave
eight-term target state with 11, 12, 13, 14, and 15 Uk's.
The resulting fluctuation in the width occurred at the
fifth significant digit, i.e., the result given in Tables III
and V remained stable.

The convergence of the width with respect to the
closed-channel was tested in three different ways: (a) with
respect to the size of the closed-channel wave function; (b)
with respect to the type of basis functions used to describe
the closed-channel; and (c) fixing the closed-channel wave
function before the complex rotation by forcing the CJ in
Eq. (2) to be equal to the BJ of Eq. (3). When carrying
out these calculations, the three-partial-wave eight-term
target state with 15 Uk's was used for the open channel.

First, we calculate the width by using a limited number
of terms in the closed-channel component. To this end we
calculated a 14-term eight-partial-wave saddle-point wave
function with energy —5.307433 a.u. By using- the 14
basis functions resulting from this calculation in Eq. (2)
and then carrying out the complex-rotation computation
of Eq. (6) a converged width of 4.276 meV is obtained.
This is 15% larger than our result in Tables III and V.
The shift from the saddle-point energy is 0.000316 a.u.
which is larger than that of Table III as should be expect-
ed. The convergence of the width with respect to angular
correlations is demonstrated in Table VII for two cases.
The first column corresponds to the use of the small
closed-channel function discussed here. The second
column results from using the large closed-channel basis
of Table. I. Both calculations converge at about the same
rate with respect to the addition of angular correlations.
The difference between the two columns results from the
extra radial correlation obtained with the larger basis set.

A second test of the stabili. ty of our result for the width
can be made by using the same closed-channel basis
functions as those for the [1s (2s 2p) 'P] P' and
[(Is2s) S 3p] P' states in Eqs. (2) and (6). The converged
results using these (inferior) basis functions are 3.40 and
3.53 meV, respectively. These results are only 8%%uo and
3% smaller than the result of Table III. This relatively
small change in the width resulting from such a large
change in the closed-channel basis functions seems to in-
dicate that the width is very stable and it is not likely to
change much by further improving our wave function.

One advantage of the wave function given by Eq. (2) as
compared to many other theoretical calculations is its
ability to account for the coupling between closed and
open channels. The open-channel component can modify
the closed-channel component through the Cz in the
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complex-rotation computation. Likewise, the closed
channel can modify the open channel through the Dk. In
many other theoretical width .calculations, closed- and
open-channel components or initial- and final-state wave
functions are obtained from separate calculations with the
result that these wave functions are fixed separately. The
width is then computed by calculating a transition matrix
element between these two wave functions.

As an alternative to the wave function given by Eq. (2)
we could choose the following trial wave function for the
complex-rotation computation:

4( L)=a+,p(R3e', Q3)

+A QDI, pg(R2e', Q2)Uk(r), (9)

where +,p is the saddle-point wave function and a is a sin-

gle linear variational parameter. In this case we have
forced the CJ of Eq. (2) to be equal to the BJ of Eq. (3).
When this wave function is used in Eq. (6) a width of 3.90
meV is obtained which is 5% larger than that obtained
with Eqs. (2) and (6).

The most distinctive feature of the saddle-point tech-
nique is that it considers vacancy orbitals different from
particle orbitals and that the vacancy orbitals are obtained
by maximizing the energy of the innershell vacancy state.
This is different from the frozen-core Hartree-Pock
method and other hole-projection techniques. To what
extent is this vacancy orbital more "correct" is not entire-
ly clear. In this work, we wish to exam'. ne and compare
results from different vacancy orbitals obtained with and
without this maximization process.

Another point of interest is that in scattering theory,
the Hilbert space is conveniently divided into a closed-
channel and an open-channel subspace. The two sub-
spaces are assumed to be mutually orthogonal. For two-
electron systems, the projection operators which project
the total wave function into such subspaces are well de-
fined. However, for systems with three or more elec-
trons, rigorous projection operators are not available. '

Although the concept of closed and open channels is still
extensively utilized in scattering theory, the orthogonality
between these components is no longer obvious. On the
other hand, if there is substantial overlap between the
closed- and open-channel components, then the identifica-
tion of such subspaces becomes less meaningful. In the
saddle-point technique, the closed-channel wave function
is obtained by building the proper vacancy into the wave

function. Whether this wave function will be orthogonal
to the open channel has not been explicity investigated.

To answer these questions we present the results in
Table VIII using the I.i[Is (2s2@) P] P' calculation as an
example. Here the closed-channel wave functions are 110
term functions obtained with Eqs. (3) and (4). In addition
to the saddle-point wave function used earlier with
q=2.47, we also obtain wave functions with q=2, 2.6875,
and 3. The wave function with q=2.6875 bears sortie
similarity to that of the quasiprojection operator
method. ' The energies of these wave functions are desig-
nated E~ in the table.

Two separate sets of calculations using Eq. (6) are
presented in this table. In the first calculation Eq. (9) is
used to calculate the resonance energy and width. The
second calculation is obtained by using the wave function
given by Eq. (2). The overlap given in this table is defined
by

& +open I +creased &

(10)

where 4',„,„and V,~„,d are obtained after the complex-
rotation procedure.

One interesting feature in this table is that the reso-
nance energies and widths in the second part all turn out
to be very close. This is actually expected. With the large
wave function used in these calculations, the basis set is
"almost complete. " In this case, the proper solution
should appear based on the theory of the complex-rotation
method. However, the widths resulting from the use of
Eq. (9) show clearly that a slightly inaccurate wave func-
tion could lead to erroneous results. This is particularly
important when a golden-rule formula is used to compute
the width. The fact that the shift for q=2.47 is at least 1

order of magnitude smaller than that of the other calcula-
tions in this table shows that the saddle-point energy is far
more accurate.

Perhaps the most interesting feature of this table is the
very small overlap between the open- and the closed-
channel components of the wave function for q=2.47.
This small overlap suggests that carrying out the saddle-
point variation procedure results in a wave function that
is essentia11y orthogona1 to the open channel. In this case,
the Hilbert space can easily be separated into closed- and
open-channel components without the explicit construc-
tion of the corresponding projection operators. The over-

TABLE VIII. Comparison of shifts and widths obtained from the wave functions given by Eq. (9) and (2). q=2.47 is the opti-
mized value from the saddle-point technique (in a.u.).

From Eq. (9) From Eq. (2)

2
2.47

2.6875
3

EB

5.348 206
5.312761
5.315079
5.324 531

5.296 655
5.312475
5.312416
5.310628

10 6
5.1551
0.0286
0.2663
1.3903

104r
3.446
1.435
1.735
2.884

Overlap"
0.027 423
0.000007
0.000 674
0.005 426

5.312287
5.312477
5.312 510
5.312 539

10 2
3.5919
0.0284
0.2569
1.1992

10 I
1.337
1.364
1.367
1.383

Overlap"
0.011968
0.000007
0.000 626
0.003 887

'Nonrelativistic energy given by the closed-channel part of the wave function.
"See Eq. (10) in text.
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laps corresponding to the other q value in this table are
orders of magnitude larger.

V. SUMMARY

In this work we have calculated the autoionization
widths for eleven resonances in Lil, BeII, and 8 III. The
results for the [ls(2s2p) P] P' and (ls2p2p) D states in
Li I and Be II are compared with the recent measurements.
Reasonable agreement with experiment is obtained for the
( ls 2p 2p) D state in both Li I and Be II. For the
[1s (2s 2p) P] P' state very good agreement is obtained for
Be?I; however, the result for Li deviates substantially
from that of the experiment. In order to examine closely
the theoretical result for Li we have carried out detailed
tests of the convergence of this width with respect to vari-
ous aspects of the wave function used in this work. We
find that our result is stable within the framework of the
saddle-point complex-rotation method. The reason for
this discrepancy with experiment is not clear at this point.
Experimentally, a Lorentzian line profile has been as-
sumed where the effect of the continuum is assumed to be
negligible. It is not clear whether the continuum has
made a significant contribution (via the line profile ' )

for the width of this state or whether some important ef-
fects have not been considered in our work.

On the experimental side, recently improved techniques
in beam-foil spectroscopy have quoted measurements with
resolutions of 1 A in the 4000-A region. This corresponds
to an energy resolution of less than 1 meV. These pre-
cision measurements present a challenge to theoretical cal-
culations of autoionizing states. The transition wave-
lengths computed in this work with saddle-point energies
that include relativistic and mass polarization corrections
indicate that the energies are still too high by a few meV
when compared to the experiments of Refs. 1 and 2. It is
conceivable that a more extensive configuration interac-
tion calculation similar to those of Bunge and Bunge on
Li bound states may bring the saddle-point energy result
even closer to that of the experiment.
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