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We consider pulses of coherent electromagnetic radiation impinging upon an autoionizing atom.
Analytic solutions in the cases of hyperbolic-secant- and exponential-pulse envelopes are given for
the ground-state atomic population and 'for the photoelectron spectrum. The sensitivity of these
quantities to the pulse area and to the interference between the autoionizing state and the continuum
is studied.

INTRODUCTION

Most recent studies of strong-field photoionization have
assumed that the laser light is suddenly switched on and
its intensity remains constant during the interaction
time. ' These studies predicted a number of new coher-
ence phenomena, especially noteworthy are those pertain-
ing to trapping of the electronic population in the ground
state, and to spectral features appearing in the pho-
toelectron and photoemission spectra. All of these prop-
erties can be adequately discussed within the dressed-atom
picture.

The term "dressed atom" was coined in the theory of
bound-bound transitions. A composite system consisting
of a two-level atom and a single mode of the electromag-
netic field has a time-independent Hamiltonian whose
eigenstates are the "dressed states. " The inclusion of any
relaxation mechanism, such as, spontaneous emission or
collisional dephasing of the atomic dipole or in the case of
ionization, the very existence of the continuous atomic
spectrum gives the dressed-atomic states a finite width;
that is, they become unstable.

The photoelectron spectrum in strong-field ionization,
the absorption spectrum in double-optical resonance ex-
periments, and the fluorescence spectrum for a transition
from the excited state to a third level are all probing the
population of the excited state; hence, they have a number
of maxima equal to the number of dressed states which
have a nonvanishing overlap with the probed state. In the
corresponding semiclassical description, there is an obvi-
ous simplicity of the cw signal in the rotating-wave ap-
proximation. It allows the elimination of time depen-
dence in the coefficients of the linear-evolution equation,
and thus, their solution is amenable to solution by Laplace
transform methods. The atomic structure of the model
determines the number of poles whose locations depend
on the strength of the field. These poles manifest them-
selves as maxima of various spectra.

A completely new situation arises if the laser light is a

smooth pulse. The Hamiltonian is no longer time in-
dependent and the dressed-atom picture is no longer appl-
icable to this situation. Also, since the coefficients of the
evolution equations contain an explicit nontrivial time
dependence, their solution by resolvent methods must be
abandoned. However, a few analytically soluble examples
have been studied. In contrast to the cw signal case, it be-
comes a more complicated matter now to anticipate how
many maxima will appear in the spectra.

The remainder of this paper is devoted to two analyti-
cally soluble pulse forms driving the atom from the
ground state to an autoionizing state. In Sec. II we
derive the basis evolution equations for our study of
strong-field ionization. The density of continuum states is
dressed by the autoionizing state embedded in the contin-
uum, the result being a Fano profile with an asymmetry
characterized by a single parameter. Section III presents
results for the ground-state population and photoelectron
spectrum when the pulse form has a hyperbolic-secant
shape. In Sec. IV corresponding results are provided for
exponential pulses and the conclusions are given in Sec. V.

II. GENERAL FRAMEWORK

In this section we derive the basic formulas relevant to
the study of strong-field autoionization by a smooth pulse
of coherent radiation. Our model atom has only one
bound state and a single narrow autoionizing resonance
located far away from the ionization edge. This atom is
irradiated by a strong laser pulse with envelope
E(t)=Eof (t), where Eo is its typical strength and f (t) is
a dimensionless function characterizing the pulse shape.
The Hamiltonian for our system is

H = I dco fico
i
co)(co

i

+ dc@ AA co t e 0 cu +H.c. , 2.1

where for convenience the ground-state energy has been
chosen to be zero, and the integrals extend over the entire
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real axis (i.e., we neglect the ionization threshold), and the
radiative matrix element Q(co) is a double Lorentzian ex-
tension of Fano's parametrization of the autoionization
resonance as discussed in Ref. 6:

P

a'+ g ——+bf a+(waif +bgf +bf)fa=0, (2.8)

where

Qp
Q(co) =

(4~y, )'"
yo

co —co, i y—o (q +i )(co ro—, i y—& ) and

g=yo+t (toe —coL ) =yo+i b

2
&o (q i)—
4 (q+i)

(2.9a)

(2.9b)

The energy of the autoionization resonance is Ace, and

yp is its width. Qp is the Rabi frequency containing the
transition-dipole moment and the electric field amplitude
Ep, q is the Fano asymmetry parameter determining the
shape of the resonance. The second term in Eq. (2.2) con-
tains the background contribution; in Pano's theory the
background is flat and it remains very broad in the
present model (y»~yo). The limit y, ~ ao is taken
whenever it does not lead to a divergence.

The time-dependent Schrodinger equation

A 8 /=HE
i Bt

(2.3)

splits into a set of c-number equations upon introducing
the state vector

~
P(t) ) in the form

~g(t))=a(t) ~0)+e f dcoP(co, t) ~ro) . (2.4)

For the amplitudes, we obtain the following integro-
differential equations:

a(t) = i f den Q(co)f—(t)P(co, t),

f3(co, t)= i(ro cur )P(—ro, t) ——iII"(co)f(t)a(t) . (2.5b)

The second equation (2.5b) can be formally solved for
the density amplitudes P(co, t); we shall assume that the
atom was in the bound state before the pulse arrived:

b= Qp

4yo(1+q )
(2.9c)

Equation (2.8) is supplemented by the boundary condi-
tions a( —oo ) =1 and a( —00 ) =0; the last condition being
easily obtained from Eq. (2.7).

The differential equation (2.8) contains an important
special case: When q~ac, the terms proportional to b
vanish in the equation, furthermore, if yp —+0 it reduces to
the equation established for the two-level system in the
thirties.

The photoelectron spectrum is an important physical
quantity which naturally arises in the present case. This
spectrum is defined as

W(co, t) =
i
P(co, t')

i
(2.10)

III. HYPERBOLIC-SECANT PULSE

The hyperbolic-secant pulses,

and can be expressed by the solution of Eq. (2.8):
2

W(ro, t)=
~

fl(co)
~ f dre f(r)a(r) . (2.11)

The spectrum expressed in Eq. (2.11) is easiest to compute
for t —+ ~x). It is then related to the Fourier transform of
a(t)f (t). In the following sections we present specific ex-
amples.

lim a(r) = 1, lim P(co, t) =0, f (t) =sech(yt), (3.1)

lim f(r) =0 .

The solution is

P(co, t) = i Q*(co) f— dr f(r)a(r)e . (2.6)

Substituting Eq. (2.6) into Eq. (2.5a) we obtain an in-
tegrodifferential equation for a(t):

a(t)= f(t) f dr@~ Q(co)
~ f —drf(r)a(r)

Xe
—i (co—~I )(t —&)

(2.7)

This equation can be transformed into a second-order dif-
ferential equation using our parameterization of the radia-
tive matrix element Q(co) and taking the limit y~~ao.
The important simplification comes from the simple ex-
ponential form of the kernel in Eq. (2.7) after the co in-
tegrals have been performed. The basic differential equa-
tion is

play an important role in quantum optics. They appear
naturally in the study of the propagation of very short
pulses through a medium of two-level atoms. In fact, the
evolution of a lossless two-level atom driven by a
hyperbolic-secant pulse was found in 1932 by Rosen and
Zener. The solution for this case may be expressed as a
hypergeometric function; this function is also the solu-
tion for the amplitude a(t) in the case of a symmetric
Fano profile (q~ao):

&o —&o g+ y tanh(yt)+ 1

2'V 'V
(3.2)

2 =Iso f deaf(r) . (3.3)

The presently discussed case is nontrivially richer than
the case of a two-level system, as it contains the notion of
the photoelectron spectrum. As has been shown in Ref. 9,
this spectrum is multipeaked, the maximum number of
peaks being determined by the value of the pulses' area de-
fined as
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For sufficiently short pulses of area A =2mn, the max-
imum number of peaks is equal to n .Thus, we see here
the breakdown of the dressed-atom picture mentioned in
the Introduction. The number of peaks depends on the
dynamics; no longer is it determined only by the number
of' atomic levels participating in the interaction. There is

I

also no pole structure corresponding to the peaks in the
spectrum. The characteristic frequencies appearing in the
Fourier transform of f(t)a(t) reveal the positions of the
maxima. An explicit formula for the electron spectrum
under the condition q = oo, but otherwise arbitrary pulse
area detuning and pulse duration, takes the form

~n(~) ~' r((y iS)/2y)r((y+ia)/2y) n n—y+m g+y 3y+m
y I'((3y+i5)/2y) 2y

'
2y

'
y

'
2y

'
2y

2

where 5=co —col . (3.4)

To complete the brief but fully analytic presentation in
Ref. 9, we present and discuss some numerical results ob-
tained for the hyperbolic-secant pulse.

In Fig. 1 we show the time dependence of the pho-
toelectron spectrum based upon the substitution of Eq.
(3.2) in Eq. (2.11). To avoid a contradiction with the
time-energy uncertainty principle, the physical meaning of
this time-dependent spectrum should be as follows: The
spectrum W(co, t) corresponds to the pulse truncated
(switched off) at time r, the observation time is actually
much longer. ' The evolution of the spectrum in Fig. 1

corresponds to a pulse evolving with a total area
A =4X2m. . We clearly see the development of the four-
peak structure out of a single peak through double and
triple peaks as the evolution of the population unfolds its
nonperiodic oscillations.

We have also studied hyperbolic-secant-pulse autoioni-
zation when the atom possesses an asymmetric Fano reso-
nance. The solution of the evolution equation (2.8) can-
not be expressed by known special functions. After sub-
stitution of the new variable

tanh(yt)+1zt=
2

into Eq. (2.8), it takes the form

(3.5)

d a g (1—2z) 2bz d~
z 1 —z

dz 2y 2 y dz

+,+, +—(1—2z) a=O.b b

y' y' y
(3.6)

Equation (3.6) can be solved by the power series method:

a= g a„z",
n=0

where

(3.7a)

ao ——1 and a& —— 2[ )+7b—(1+/)]/(1+(') . (3.7b)

1
(n +1) n+ +—a„+&

The ansatz (3.7) leads to a three-term recurrence formula,
which can be trivially solved numerically:

t'

2 b(2n +1) g bg+,+, "
2bn a„)——0.
y

(3.8)

0.1

0. 01

(~ ~L)
VQ

FIG. 1. Electron-energy spectrum W(co, t) for a sech-pulse of
area A =8~ and q = op, t = —1, 0, 1, and 2 are shown (5=0,
'V ='Vo).

0.001

A/2n

FKJ. 2. Population of the ground state at t = ~ as a function
of the pulse areas. Three values of q are shown (6=0, y =yo).
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P(t)

1.0-— 14' PULSE

6=3

0.5

-2 v&

I

-2

FIG. 3. Population of the ground state as a functiof nction of scaled
time yt for A =2m, 4m, and 8~ (q=4, 4=, y=yo .0 = }.

FIG. 5. Population of the ground state P(t} for 3=14~ and
q==2 and 7 and detuning 4=3 (y =yo }.

where

I„"+~—— dte'"' z t " t

The integrals I„(co) also fulfill a simple recursion formu-
la:

(3.10)

I„+)—— (2n + 1)y+i co

2(n +1)y (3.1 1)

The formulas (3.8) and (3.11) are sufficient to obtain the
(3.9). It is worth stressing that with the help o

'
n 3.11) wethe finite-time version of the recurrence relation ( . , we

may a soiso investigate W(co, t) for finite times.
UndIn Fig. 2 we have plotted the population of the boun

state long after the pulse has passed versus the pulse area.
The most important observation is that the distinguis e

la ed b the 2~n pulses is washed out as q decreases.
However, we note that the 2~ pulse is distinguished even

The typical time dependence of the population for finite

The electronic spectrum 8'(co, t) is given for taboo b the
expression

2

(3.9)
n=0

displayed in Fig. 3. As in the q = ao case, the number
of Rabi oscillations increases with the area of the pu se.
In Fig. 4, a pulse with area 3 =7&2~ is used to demon-
strate the dependence of the ground-state population on
the asymmetry parameter q. As in F'g.'n Fi . 2 there is a clear
tendency toward the suppression of oscillations as q de-
creases. This is easily understood, since as the low-q reso-
nances arise in the Fano theory when the direct radiative
coupling between the bound state and the continuum is
strong. A similar effect of suppressing Rabi oscillations
has been noticed earlier for the cw excitations. " The ad-
dition of detuning between the autoionizing state and the

weakens the effective coherent field strength and also
suppresses the Rabi oscillations.

The photoelectron spectra have a complicated structure
and are not easy to analyze. In Fig. , t pthe s ectra for
q=2 and areas 2~, 4~, and 8~ are shown. The general

peas cks changes with the area of the pulse, is retained.
toHowever, due to the direct coupling of the ground state o

the continuum, which suppressed the oscillations in Fig.
4, the maximal number of peaks is limited and saturates

the finite q spectra is the presence of the exact Fano

P(t)
1.0- 10m PU[SP

q=2

0.5

/

/

/

/

/

/

1

\

1

I
I
I

I

-2

FIG. 4. Population of the ground state P(t) for A =14~ and
q=2 and 7 (6=0, y=yo).

FIG. 6. Electron-energy spectrum for A=or A=2m, 4m, and Sm

(q=2~ ~=0 y=yo}
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0.50—

14ri pulse
The fundamental equation (2.8) is transformed into one

for the confluent hypergeometric function upon change of
variables (er' is the variable). The solutions for the cases
(i) to (iv) can be all expressed in terms of the confluent hy-
pergeometric function.

Consider the exponentially growing pulse; for this case
the amplitude a(t) is given by

0.25— a(t) =)F)(a,c; (b—/2y)e r'),
where )F) is the hypergeometric function and

(4.5)

FIG. 7. Electron-energy spectrum for A=14m and q=2 and
7 (6=0, y=yp).

minimum at hto= —qyp in all the spectra. The degree of
complication grows even further when we go to pulses of
larger areas. The A=14m case is illustrated for q=2 and
7 in Fig. 7. The number of maxima for q=2 is three and
corresponds to the above rnenttoned saturation. The num-
ber of peaks for q=7 is five and there is an extra struc-
ture far in the wing at Acp= —7yp left out of the figure.

IV. EXPONENTIAL PULSES

In this section we discuss various cases of the pulses
composed of exponentially time-dependent fields. The
nice feature of such pulses is that explicit analytic formu
las are available, both for the evolution of the population
and the photoelectron spectrum even for finite q. We
present the results for the following specific cases.

(i) Exponentially growing pulse:

a =—+ (yp+ib, )+ (q i) —=y+g+ (q i)—1 1 . 'Vo 'Vo

2 2p 2$ 2p
(4.6)

c = —+ (yp~ib)=1 1 . y+g
2 2y

'
2y

For the symmetric Fano profile (q~oo), the solution
(4.1) reduces to"

a( t) =[(Ap/2y)er']'r

XI"((y+k)/2y)J(g y)ny((f)o/2y)er —) (47)

where J„(x) is the Bessel function and I (x) is the Euler
gamma function.

Substituting (4.1) into the formula for the photoelectron
spectrum, we get

W(co, t )0)= 8'(co, t =0)
2

I),(~),F,(a,X,c,7+1; b /2y )—
(4.&)

2y

where

er', for t &0,
0, otherwise . (4.1)

1X= +&
2 2p

(4.9)

(4.2)

(iii) Symmetric exponential pulse:

I(t) —e
—r I

~
I

(iv) Exponentially switched-on CW signal:

f( )
er', for+t&0,
I, otherwise .

(4.3)

(4.4)

(ii) Suddenly switched-on, exponentially decaying pulse:

f( )
0, for t&0,
e ~', otherwise .

and 2F2 is the generalized hypergeometric function. It is
worth noting, that the spectrum for t=0 and a definite
value of the Rabi frequency Qp is the same as the spec-
trum for t =r and Qp ——Ape r'. Therefore, the discus-
sion of the t=O spectra dependence on Qo is equivalent to
the discussion of the time dependence of the spectra of the
fixed value of Qp.

For the exponentially decaying pulse [case (ii)) we
proceed in a similar manner. The proper initial condi-
tions in this case are a(0)=1, a(0)=0. The solution for
a(t) reads

D, =,F, (a —l,c; b/2y), —
'1 —c

a —1 b
c(1—c) 2y

)F) (a —c,2 —c; b /2y) . —

The spectrum of outgoing electrons as t~ oo is given by

a( t) =D) )F)(1—a, 1 —c;(b/2y)e r')+D2[(b/2y)e r']')F) (c +1—a, c +1;(b/2y)e r') .

Using the initial condition and the formula for the Wronskian, the coefficients D) and D2 are

(4.10)

(4.11a)

(4.11b)



3000 RZQZEWSKI, ZAKRZEWSKI, LEWENSTEIN, AND HAUS 31

2

~(ro)=,zFz(1 —a,X*,1 —c,X*+1;b/2y)Q(co)

2p

b
+D2

2g
zFz(c+1 —a,X*+c,c +1,X'+c + 1;b/2y)

(X*+c)
(4.12)

The symmetric pulse [case (iii)] is interesting for two reasons: (a) It can be compared with our earlier results for the
hyperbolic-secant pulse; and (b) the exponential symmetric pulse has a Lorentzian-Fourier spectrum. The same form of
the spectrum is implied by the widely used phase diffusion model of the single-mode cw laser. This model was used in
the context of strong-field autoionization. Our present results allow for the comparison with that case as well.

The solution in the present case is obtained by combining the results of (i) and (ii). The evolution (4.1) determines the
initial values a(0) and a(0) used for the evolution (4.6). The long-time photoelectron spectrum reads

2

8'(co)=
2

—zFz(a, X,c,X+1; b/2y—)+, zFz(1 —a,X', 1 —c,X*+1;b/2y)Q(ro) 1

2y

D2+
+C

zFz(c + 1 —a,X*+c,c + 1,X*+c + 1;b/2y) (4.13)

(4.14b)

~
II(~)

~

' [yo pi(a c' b/2y)+yo—rj g i(a c+1;—b/2y)/2yc(&~ —yo)]
8'(co) =

7o A ( i(co col —))—
2

The new constants D& and D2 are given by

ab 2

D( D) )F)(a,c;——b/2y)+—
z )F((a+1,c+1; b/2y) (F)(—a,c+1; b/2y), —

2/c
ab 2

Dz Dz ~F~(a, c;——b/ay)+ —
z ~ F~( a+ 1,c +1; b/2y) ~F—~(c —a, l —c; b/2y) —.

2/c
Finally, we consider case (iv) of an exponentially switched-'on cw signal. In contrast to the previous cases, the notion

of the pulse area is not applicable. The assumed form of f(t) allows for proper treatment of the switch-on problem,
which has been neglected in the earlier treatments. The solutions of (i) can now be used to determine the initial condi-
tions u(0) and P(co, 0) for the constant laser signal which then is solved in the usual manner in Laplace transform domain.

The long time spectrum is given by

+ zFz(a, X,c,X+ 1; b/2y )—3'o

2/X
(4.15)

W{m)0.4

%t pulse

0.2-
I l~l

1

I I

I I
I I

l
I l

I
I l
I I

l
I l

~ 0

~t
~0

~ 0

-10

FIG. 8. Electron-energy spectrum for A=8z (q = oo, 6=0, y=yo): curve a, decreasing-exponential pulse; b, cusp-shaped pulse;
c, increasing-exponential pulse.
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w(m)0. 5

0.25

FIG. 9. Electron-energy spectrum for decreasing-exponential pulses with Qo——2m.yo and three values of the pulse width corre-
sponding to curve a, A=12m", b, A=8m', e, A=2m.

where the resolvent of the cw signal problem is given by

A (z)=z+b+ (4.16)
z —iA+yo

Of course, in the limit of the instantaneous switch-on
(y~ ao ), we get back the formula from Ref. 11.

The above analytic results are illustrated by several fig-
ures. In Fig. 8 we present photoelectron spectra corre-
sponding to pulses of area 8n and different pulse shapes:
the increasing exponential, the decreasing exponential, and
the cusp. The last of the three cases bears a striking
resemblance to the hyperbolic-secant pulses discussed in
Sec. III.

The increasing-exponential pulse produces a spectrum
where the central or nearly elastic part is more pro-
nounced; whereas, the decreasing exponential pulse pro-
duces enhanced wings of the spectrum. The interpretation
of this fact is rather simple. In the first case, a substantial
part of the ionization process occurs while the field is
weak, i.e., low Rabi frequency. In the second case, a sub-
stantial portion of the ionization process occurs at strong
fields. In fact, the result for the decreasing-exponential
pulse allows for a smooth transition to the well studied
case of the suddenly switched-on cw field. The limiting
spectrum is the Autler-Townes doublet. In Fig. 9 we ex-
hibit this limiting behavior for the spectra with pulse
areas 2m, Sm, and 12m.. The Rabi frequency is held con-
stant and the pulse width is appropriately increased. The
passage to the Autler-Townes doublet is clearly visible.

V. SUMMARY

We have presented exact solutions for particular laser
pulse envelopes impinging upon an autoionizing atom.

The features appearing in the ground-state population and
photoelectron spectrum are dependent on several parame-
ters. First, there is a dependence on the relation between
the rates y, yo, and Qo. Second, the physical quantities
are altered by the relative coupling between the ground-
continuum- and the ground-autoionizing-state transitions
represented by the parameter q; and third, an important
role is played by the detuning of the laser from the
autoionization-state transition frequency.

Since so many parameters are involved in the theory, it
is difficult to make general statements concerning the
behavior of the physical quantities. However, some
specific remarks are possible. For small area pulses, the
duration of the pulse is insufficient to establish a mul-
tipeak structure in the photoelectron spectrum. A time of
order Qo

' is needed to dress the states in a sharp turn-on
of a cw signal, so here also this time must be available for
the atom to be affected by a strong field. Also, a large
area pulse may not produce multiple peaks in the spec-
trum; this structure is absent if Qo&yo, in this case, the
time scale for leaking population to the continuum is fas-
ter than the time scale for recycling population back to
the ground state. Furthermore, the addition of a large de-
tuning and interference effects (finite q) also washout the
structure of the spectrum.

There remains still the problem of introducing spon-
taneous emission and computing the photoemission spec-
trum. This is a very difficult task for which even the
two-level atom has not yet been solved in general. How-
ever, recent progress has been made on the two-level prob-
lem' and a solution of this interesting problem for the
autoionizing atom in the limit of large radiative lifetime is
presented in another publication. '
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