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l

We have studied the long-range interaction potentials of the heteronuclear alkali-metal-atom di-
rners in the case when one of the atoms is in the first excited state (n&P) and the other is in the
ground state (n~S). The presentation of the general expressions for the interaction energies in the
Hund's case (c) is followed by the calculation of the corresponding C6 constants for all heteronuclear
alkali-metal-atom pairs. In the case of heavier perturbers (Rb and Cs} the C6 constants are found to
be significantly influenced by the perturber's fine structure. The van der Waals interaction in the
K-Rb system is exceptionally strong resulting in C6 constants considerably larger than in all other
alkali-metal-atom heteronuclear systems. The intermediate-coupling region (ICR) is defined as the
region of internuclear separation R where the interaction energy is of the order of the atomic spin-
orbit splitting, while the exchange energy is sti11 negligible. Analysis of the general form of the ener-

gy matrices in the ICR shows that the homonuclear alkali-metal-atom dimers can be treated as a
special case. In the large-R limit, the ICR results reduce to those obtained in Hund s case (c). As an
example, we have calculated the ICR interaction potentials of the K-Rb system, taking into account
only the leading dipole-dipole interaction. Finally we have discussed the construction of the absorp-
tion coefficient in the wings of the resonance lines, both in the impact and in the quasistatic approxi-
mation.

I. INTRODUCTION

The interactions and the line-broadening effects in the
alkali-metal-atom vapors have been of interest for a long
time. The asymmetries and satellites in the inner wings of
the self-broadened first resonance lines, ' the blue asym-
metry of the potassium resonance lines broadened by ru-
bidium and by cesium, or the impact broadening of the
sodium resonance lines due to collisions with rubidium
and with cesium are just a few illustrative examples.

In the case of the first resonance lines the potential
curves in question are those arising from the interaction
of two alkali-metal atoms, one being in the ground state
and the other in one of the first excited states. For
homonuclear alkali-metal-atom pairs the resonance in-
teraction (the first order of the perturbation theory) is
usually sufficient to explain the experimental data and
only in the case of Cs -Cs interaction was there an indica-
tion of the second-order effects. ' On the other hand, the
relatively small difference in the excitation energies of dis-
similar alkali-metal atoms yields to the strong long-range
interaction of the van der Waals type (the second order of
perturbation theory).

The relevant energy levels corresponding to the case of
separated atoms are generally well isolated in the energy-
level diagram and that fact suggests that the system can
be described by the following effective Hamiltonian:

H g=Hp+ Vso+ V+ Vpo)+ Vex ~

which should be diagonalized in the chosen finite basis set
of the zeroth-order wave functions.

In Eq. (l) Ho is a sum of the Hamiltonians. of the iso-

lated atoms (with spin-orbit interaction neglected), V„ is
a sum of the atomic spin-orbit interactions, V is a pure
electrostatic interaction which gives the first-order contri-
bution to the interaction energy, Vp, ~ gives the second-
order polarization contributions corresponding to the
one-electron excitations (induction) and two-electron exci-
tations (dispersion), and V„describes the exchange in-
teraction which can be treated separately in the long-range
region and thereupon simply added to give the total in-
teraction energy In .the limit of large internuclear
separations the exchange energy and, in some cases, the
induction energy fall off exponentially.

Neglecting the retardation effects, the whole region of
the internuclear separations can be divided as follows.

(a) The region where Hund's case (c) is strictly valid,
i.e., the spin-orbit interaction is the dominant one.

(b) The intermediate-coupling region where the interac-
tion energy is of the order of the atomic spin-orbit split-
ting.

Up to this point the exchange interaction can be
neglected and the electrostatic interaction potential can be
used in the form of the multipole expansion in the powers
of R-'.

(c) The region where the exchange interaction becomes
important and a nonexpanded form of the electrostatic in-
teraction V is required. The matrix elements of the ex-
change interaction can be calculated on the basis of the
work of Umanskij and Voronin. The matrix elements of
V and V~,~

are of the form g„(C„R ")f„(R), where

f„(R) is a damping function (due to the overlap effects)
with asymptotic behavior f„(R)—+ I as R —+ ao and
f„(R)~0as R~0.
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(d) The region of still shorter internuclear separations,
where Eq. (1) is not applicable at all.

Although the effective Hamiltonian, Eq. (1), has been
designed bearing in mind its application in the case of the
interaction of two ground-state atoms as well as in the
case of the interaction of two atoms, one being in the
ground state and the other in the first excited state, a very
similar approach is possible for the interaction of two ex-
cited atoms.

In the present paper we shall study the interaction po-
tentials in the 1ong-range region where the exchange in-
teraction can be completely neglected, i.e., in regions (a)
and (b) as defined above. Kamke et al. have calculated
van der Waals energies of Na 3PJ states assuming that
they do not depend on the fine structure of the perturber.
Although it is an excellent approximation for the case of
light-alkali-metal-atom perturbers, we shall show that the
interaction potentials depend strongly on the fine struc-
ture of heavier perturbers (Rb and Cs). The C6 constants
for the K-Rb pair, calculated assuming the Hund's case
(c), have been published previously by Beuc et al.

II. MATRIX ELEMENTS IN THE COUPLED
REPRESENTATION

In the one-electron approximation the alkali-metal-
atom wave functions are of the form

I nljm) (coupled
representation), where n, l, j, and m are the quantum
numbers of the valence electron. The zeroth-order wave
functions for quasimolecule A +8 are simply the
products of the atomic wave functions

I
nz l~j „m„;nBlBjBmB ), and correspond to the particular

projection M =m~+mB of the total electronic angular
momentum of the system along the internuclear axis.

The Ho+ V„part of the H,rr, Eq. (1), is diagonal in
the coupled representation, with the matrix elements equal
to the zeroth-order energies E(nz, l~,j~ )+E(nB,lBjB).

At large separations, where the overlap of the atomic
charge distributions 3 and 8 can be neglected, the classi-
cal electrostatic interaction is usually represented by mul-
tipole expansion. If coordinate systems at 2 and B are
oriented so that their Z axes coincide with the internu-
clear axis, the electrostatic interaction potential V can be
written in the very useful form'

4' ( —1) (a+b)!r rj Y, (r;)FP(rj)V= R'+ +'[(2a + 1)(2b + 1)(a —a)!(a +a)t(b —a)t(b +a)fl' (2)

r; and rj are the radius vectors of the i'th electron in atom 3 and jth electron in atom 8, respectively, R is the internu-
clear separation„and 1; (r;) and YP(rj ) are spherical harmonics. For the case of two neutral atoms, a and b are both
positive integers and a=0, +1, . . . , +min(a, b).

The first-order matrix element of V, Eq. (2), between two arbitrary states of the system could be evaluated in a
straightforward way by using the theory of angular momentum. ' Integrating the angular parts exactly, one finally ob-
tains

( nglgj~ m~, nBIBj BmB'I V
I
n~'l~j'„"m~', nB'lBj'B'mB')

=5~~ ( —1)' [(2jz + 1)(2hz + 1)(2jB+1)(2lB+1)(2jz'+ 1)(2l~'+1)(2jB'+ 1)(2lB'+ 1)]'~

x , q ~ R'+ +'[(a —~)!(a+a)'(b —a)'(b +a)']'
~ r

la & la

0 0 0 0 0 0 pyg~'

Jw Ja & Ja
—A' 727 g PBg A —Pl g

a Ja Ja & Js
!' (3)

where (n~I~
I
r~

I n~l~ ) and (nBlB
I
rB

I
nB'lB') are the

atomic radial matrix elements.
The 5 condition in Eq. (3) reflects the quantization of

the total electronic angular momentum along the internu-
clear axis and allows the factorization of the secular deter-
minant. As a consequence of the properties of 3-j sym-
bols, the double infinite sum in Eq. (3) usually reduces to
only a few terms. Namely, /&+a+i&' and l~+b+l~'
should be even, triads (I„',a, l~') and (lB,b, lB') should satis-
fy the "triangular inequalities, "" and cx =m&' —m~

mB mB 'f
I

m&' m~ I I mB —mB'
I

(m—in(a, b), oth-
erwise the matrix element vanishes. For example, (see the
last column of Table I), in the case lB ——IB'=0 the second
3-j symbol in Eq. (3) equals zero for any b =1,2, . . . and
the first-order matrix element vanishes for any pair of the
states of the system with atom B being in a S state. In

another interesting case l~ ——1, lz ——0 and lz' ——0, lz' ——1,
only the term with a =b= 1 is different from zero, i.e., in
the first order the nearly resonant states of the system
3+8 are coupled exclusively by the dipole-dipole in-
teraction C3R . Furthermore, the triads (j~',a,j~ ) and
(jB',bjB) should also satisfy the triangular inequalities
and this can further reduce the number of terms in the
right-hand side of Eq. (3). So, if both atoms are, e.g., in P
states, the matrix elements connecting the states
(P~~2)~P. , and (P~~2)~P. „or P , (Pl~2)B and P . „(P~~ ) 2B.J~ ~a
vanish, while all other first-order matrix elements are pro-
portional to R (quadrupole-quadrupole interaction)

The matrix element of V„,~ (the second-order matrix
element of V) between two states

I
i ) and

I
j), belonging

to the finite basis set appertaining to the H,~~, has a form
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Vp, ( E —E;k i

where the sum is taken over all states
~

k ) not included in
the basis. The (i

~

V
~

k ) (k
~

V
~j ) is explicitly given by

( n A lAj ~ m ~
' na 4j a ms

I
V

I
n~ 4j ~ m ~

'
nIi liij s mIi & & n ~ l~j ~ m ~

' nIi lJij Ii mii I
V

I
n~ l~j A m & nB leJa ma'

&

e (a +b)l( c+d) ~
p I ~ i I I ~ I ~ ~ rr ~ n sr n ~ n=As M4m g b d 2 M,b d(M', l~jq m~ , le 'II , l~j '~m~', lsjII, le m~, liijs }

R + + + +

c,cf

&& &na4 I
"w Inca &&nab I

"w
I
nz'lz'&&nzls

I
rB

I
nels)(nBls le I

na'la'& (4)

with

~abed(M lAJAmd lBJB 4JAmA lBJB lA~JA™A~ lBJB }

= (2j~ + 1)(2l& + 1)(2' + 1)(2' + 1)

X [(2jz + 1)(2lz + 1)(2j~+1)(2' +1)(2J'~ + 1)(2lz'+ 1)(2j~+1)(21/+ 1)]'~

lz a lz lz c lz' l~ b lz ls d Is'

0 0 0 0 0 0 0 0 0 (0 0 0

jz a ja b jaj~ jz' c j~ Ja ~ Ja
I II I II

mg —Q —mg my —/3 —mg m JI cx —mg ms /9

[(a —~)!(a+~)!(b—~)!(b+~)t(c—13)!(c+P)t(d—P)t(d+P)!]' '

jg a jg jg' c jg jg b jg jg' d jg
C

where

I I
cz = m~ —m& ——m~ —m~,

and

mw I I ma ma I
(min(a

II II= mg —mg =mg —mg

~
mg —mg

~ ~
ms —ms

~

(min(c d)

otherwise, some of the 3-j symbols in Eq. (5) vanish.
The 5 condition in Eq. (4) is actually the same as in Eq.

(3) and the fourfold infinite sum will reduce to a finite
number of terms depending on the angular part of the in-
termediate state

~
nzlzjzmz ,nIilsjsms). 'The second or-

der matrix elements include the sum over an infinite num-
ber of intermediate state, i.e., all possible product states
except those included in the basis. The useful expressions

for the practical calculations could be obtained if one
truncates the fourfold sum in Eq. (4) in a way that retains
only the terms with R ", where n =a +b +c +d + 2 is
smaller than soine no. Hence, the infinite sum over the
intermediate-state quantum numbers lz and lz will
reduce to a finite number of terms, containing the infor-
mation about the first few terms of the multipole expan-
sion of the electrostatic interaction V, Eq. (2). For exam-
ple, for lz ——lz' ——1, lz ——lz' ——0 (PS PS interaction) it-fol-
lows that a =c =lz + 1, b =d =ls, and for l„'=ls'=1,
lz' ——ls ——0 (PS SP interaction) -it follows that a =lz + 1,
b =lz, c =l~, and d =lz + 1. In both cases the condi-
tion a, b, c,d) 1 should be satisfied. It is easy to see that
in the former case the leading term in the R ' expansion
of the second-order matrix element is proportional toR, while in the latter case the leading term is propor-
tional to R . The induction contribution ( n~ nz nz', ————
lz ——l~ ——lz' ——1, l~ ——ls'=0) has the leading term propor-
tional to R . The intermediate states (lzlz}, contribut-
ing to the second-order terms proportional to R and
R are given in Table I.
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TABLE I. The intermediate states ( lq l~ ) contributing to the second-order terms proportional to R
and R . The allowed R " terms of the corresponding first-order matrix elements are given in the last

column.

l~ lg l~'lg'

SSSS
PSPS
PSSP
DSDS

R

PP
SP,DP

PP, FP

R

DP, PD
PP,DP, FP,SD,DD

PP, DP, PD, DD
SP,PP, DP,

FP, GP, PD, FD

First order

R

PPPP SS,DS,SD,DD PS,DS,FS,SP,DP,
SD,PD, DD, FD,SF,DF

DPDP PS,FS,PD, FD SS,PS,DS,FS,GS,
PP, FP,SD,PD, DD,

FD, GD, PF,FF

DPPD SS,PS,DS,FS,SP,PP,
DP, FP,SD,PD, DD, FD,

SF,PF,DF,FF

DDDD PP, FP,PF,FF PS,FS,SP,PP, DP, FP,
GP, PD, FD,SF,PF,DF,

FF, GF, PG, FG

III. THE INTERACTION POTENTIALS
FOR HUND'S CASE (c)

For the case of homonuclear alkali-metal-atom pairs
the effective Hamiltonian, Eq. (1), could be taken in the
simplified form H, ft =Ho+ V«+ V and its diagonaliza-
tion is then equivalent to the first-order perturbation cal-
culations. '

Let us concentrate on the case of a heteronuclear
alkali-metal quasimolecule A +B, where one. of the atoms
(e.g., atom A) is in one of the first excited states n~P

and the other is in the ground state n~'S. ~~2. The basis set
contains now only the wave functions

~
n&Pjzmz, n~S , m~ ) with—jz———,

' or j„' = —,', and the di-
agonalization of the effective Hamiltonian, Eq. (1), is
equivalent to the usual second-order perturbation calcula-
tions for the degenerate levels, because the first-order ma-

trix elements vanish and the operator Ho+ V„ is diagonal
in the given basis, giving the zeroth-order energies
E (nq P., ) +E (n~S & /2 ).

According to the 5 condition in Eq. (4) the secular
determinants forj „' = —,

' and —,', respectively, factorize into
subdeterminants which are distinguished by different M
values. The subdeterminants with M =0 and —0 are
equivalent in the sense that both result in the same in-
teraction potentials, which is of course the consequence of
the axial symmetry of the diatomics. The subdeter-
minants with Q=O can be further factorized into two
subdeterminants corresponding to Q=O+ and 0 states,
where the superscript + or —means the point group
character for the reflection in the plane containing the

E(2)=(1
i V,t i

1),
i«1)i+= —(&21 Vp.112&+&31 Vp. l I

3 &)

+ —,
' [((2

i Vp, i i
2) —( 3

i Vp, i i
3 ) )

+4 I &2
I Vp.t I

3&
I

'1'"
E(0+—)=(4

f Vp, t f
4)+(4/ Vp, t (

5)

for the case A (n ~P3 /)2+8(a+Sf/2) and

E(1)=(6
i Vp, i i

6),
E(o+-)= &7 I Vp.i I

»+ & 7
I Vp.i I

g &

(6a)

(6b)

(6c)

(6e)

for the case A (n~P~/2)+8(n&S~/2). The wave functions

~

i ) used in Eqs. (6) have the following explicit form:

~

1)=
~
n/P —,

' ,';ngS —,
'

—,
'—),

~

3) =
~
n~P —,

' ,';n~S —,
' ———,

' ),
(
4) =

)
ngP —, —2;ngS —,

'
—, ). , —

[S&= ~n, P ', ,';n,'S-—
(
6) =

(
ng P —,

' ,';n gS —,
'

—,
' ), —

)
7) =

(

n„'P —,
' —2;nsS —,

'
—,
' ),

[
8) =

(
n„'P —, , ;n~S —, ——, ) . —

molecular axis.
By the choice E(Q) =0 for 8 = oo, the interaction po-

tentials E(Q) are given by the following equations:
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From Eq. (4) it follows that the leading term of the matrix element of V~I, corresponding to the dipole-dipole interac-
tion only, can be written in the form

(IIAPJArrIA naS2 rrIB
I
I I»o1 I

nAPjArrIA', IIBS—,
' ma'& =»'-IMM- g a(jA', M';rrIArrIA'le Aia)~VA le Aia»R6

~A JA~~B

where

I &nAlA lrA I~AP& I'I &~BP lra InBs& I'
~VA;le Aia) =e"

~„(I„I, E{"AP')+E{&BSI/2) «n—AlAiA) E{n—aP, )
'

nB(P)

and the angular factor cr(jA,'M';IA'mA";lA jA ja) can be obtained by summing Eq. (5), taken for (2 =b =c =d= 1,
lz ——lz' ——1 and jz ——jz' ———,, over mz. The selection rules for 3-j symbols allow lz to be 1 and E~ to be 0 or 2. Conse-
quently ja ———,', —,

' while jA ———,
' if l„=0or jA ———,', —,

' if l„=2. Furthermore, for IA
——2 and jA = —,

' the selection rules re-
strict jA to be —, only. The preceding considerations point out that for jA ———, the nonzero matrix elements given by Eq.
(7) actually consist of six parts, each of them corresponding to the sum over one of the possible types of the intermediate
states: ( rIASI/2rlBP3/2)» ( rIASI/2IIBPI/2), ( nAD5/27IBP3/2)» {HAD5/2BBPI/2)» {+AD3/2rIBP3/2)» and. ( +AD3/2+BPI/2)
j& ———, the two sums containing the states nqD5&2 vanish as the consequence of the properties of 3-j symbols.

The right-hand side of Eq. (8) can be considerably simplified if one neglects the fine structure of all excited levels
everywhere except in the first two sums containing ( nAS I/2nBPJ ) nearly resonant intermediate states, in which the fine
structure of the first excited doublet of atom B should appear explicitly. In the simplified form Eq. (8) reads

~VA STia)=. . . , +SA
1

C2

[E(IIAP,' ) —E{IIAsI/2)1 —I:E{IIaPj,) —E{IIasI/2)1

nA (S),

nB(P)

for the 1„=0case, where

c=e (nAP I rA
I
nAs&(nas

I
ra I naP&,

I &nAS lrA I~AP& I'I &naP lra I~BS& I'S„=e'
E (n A P)+E (naS) —E (nA S)—E(naP)

(10)

I & D
I I AP& I'I & P

I 8 I
'S& I'~{jA»DjA ja )=e

„„(D) E(nAP)+E(naS) E(nAD) —E(nBP)—
nB(P)

(12)

C2
C6(2) = WI (A ) + 9

(13a)

I:C6(1)1+=7'(CI+CII)+ 2 l(CI —Cn) +4Cm1'

for l~ ——2 case.
The first term on the right-hand side of Eq. (9), corre-

sponding to the nearly resonant interaction of the two
atoms, has a very small energy denominator and obviously
dominates the sum. It is clear that in the case of heavier-
alkali-metal-atom perturbers the fine-structure influence
on the energy denominator is by no means negligible.

Considering only the dipole-dipole interaction, all in-
teraction potentials, Eq. (6) are of the form
E{Q)=C6(Q)/R . From Eqs. (6), (7), (9), and (12) fol-
lows that C6 constants are given by

2 1 C
CI ——WI (/I)+ —+-

a P 27

8 19 C
CII ——W2(/I ) + —+

cx

1 1 43/3C
III p 81

25
C (0+)=W (/I)+ —+a P 81

2 1 C
C6(0 )= W2(/I)+ —+-

a P 9

(13b)

(13c)

(13d)
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TABLE II. C, S, and D radial terms required for calculation of Ct-, constants. All quantities are
given in a.u.

A-B

Li-Na
Li-K
Li-Rb
Li-Cs
Na-K '

Na-Rb
Na-Cs
K-Rb
K-Cs
Rb-Cs

'Estimated values.

17.80
20.71
20.86
22.50
22. 16
22.32
24.09
25.97
28.02
28.22

—1465
—2265
—2365
—2905
—5090
—S295

,
—6560
—6805
—8405
—8750'

—2935
—4480
—4600
—5575
—8370
—8605

—10510
—14250
—17 560
—18 330'

Sg

—3030
—3905
—4075"'
—5245
—4125
—4280'
—5510
—6805'
—8855
—9175

Dg

—5045
—8225
—8695'

—10300
—8665
—9120'

—10700
—14250'
—17 610
—18 190

TABLE III. Cq constants for all alkali-metal-atom heteronuclear pairs. In the last column the Cq constants for ground-state
atoms are given. All values are in a.u.

Li*-Na
Li*-K
Li*-Rb
Li*-Cs

0+

—13070
13 980
12 200

7985

0

—13 120
13 670
11 270

6955

—13090
13 860
11 870

7625

—5160
3360
2515

802

—5135
3475
2880
1215

0+

—9155
8445
6675
3635

~1/2
0

—9100
8745
7595
4565

—9110
8670
7365
4410

S1/2
0—,1

—1475
—2270
—2330
—2835

Na*-Li
Na*-K
Na -Rb
Na*-Cs

K*-Li
K -Na
K -Rb
K*-Cs

7825
3520
2946

942

—22 000
—14 560
200 800

31 860

7825
3445
2665

483

—22 000
—14 590

134 600
24 140

7825
3495
2845

782

—22 000
—14 570

181 800
29 390

1265
—1085
—1410
—2650

—9525
—7175
35 250

2935

1265
—1055
—1300
—2470

—9525
—7165
65 890

6260

4610
1185
581

—1180

—15 420
—10 800

85 800
12 560

4610
1265
864

—717

—15 420
—10 770
187 200
20 890

4610
1245
793

—832

—15 420
—10 780

161 900
18 800

—1475
—2420
—2485
—3015

—2270
—2420
—3865
—4720

Rb*-Li
Rb*-Na
Rb*-K
Rb -Cs

—20 670
14450

—232 500
40 920

—20 670 —20 670
—14480 —14460

—276 200 —251 400
30 150 37 550

—9205
—7255

—93 670
4490

—9205
—7250

—79 440
9200

—13 900
—10550
—87 700

19660

—13 900
—10 530
—78 750

35 790

—13 900
—10540
—80 990

31 750

—2330
—2485
—3865
—4855

Cs -Li
Cs*-Na
Cs~-K
Cs*-Rb

—18240
—14 930
—SS 140
—66440

—18 240
—14 950
—56 340
—75 340

—18 240
—14940
—55 600
—70 120

—8825
—7835

—23 460
—29 590

—8825
—7830

—23 020
—26610

—12 370
—10 880
—30 910
—37 400

—12 370
—10 860
—30 330
—33 830

—12 370
—10 870
—30470
—34 720

—2835
—3015
—4720
—4855

TABLE IV. C, S, and D radial terms in the case of homonuclear alkali-metal-atom dimers. All
values are in a.u.

C
S
D

16.63
—1365
—2725

Na

19.04
—3210
—5380

25.78
—6560

—13 830

26.16
—7060'

—14 680'

Cs

30.45
—11 370
—22 710

'Estimated values.
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for the case A (nqP3/2)+B(n]]S]/2)

C,(1)= W, (A)+ 4 14 C
y 6 81 (13e)

C,(0+)= W, (A)+ 16 2 C~

5 81

2C
C6(0 )= W3(A)+ (13g)

W] (A) = —,(Sg + , Dg ), —
W2(A) = —,(Sg + ', Dg ), —

W3(A) = —', (S„+2Dg ),
(14)

ix=[E(n&P3/2) E(nAS]/2)l

[E(n&P]/—2) E(n~S—]/2)],
p=[E(n&P3/3) —E(ngS]/2)]

for the case A (n~P]/2)+B(n~S]/2). The quantities
W;(A) are defined as

E(nqP~) &E(n&P~), the interaction potentials are repul-
sive (positive C6 constants), except for Na*-K, Na'-Rb,
and Na*-Cs pairs, where some of the interaction poten-
tials are attractive.

An exceptionally strong interaction exists in the K-Rb
system resulting in C6 constants considerably larger than
in all other alkali-metal-atom heteronuclear systems. As
previously mentioned, the fine structure of the heavier-
alkali-metal-atom perturbers (Rb and Cs) strongly influ-
ences the C6 constants.

If, in the expression for the second-order matrix ele-
ments, Eq. (4), one retains not only the leading term pro-
portional to R, but also the next term proportional toR, all interaction potentials, except that given by Eq.
(6b), would be of the form E=C6R +C8R . In some
cases the two potentials with Q=1, Eq. (6b), could be
written in the same form if one expands the square root
on the right-hand side of the Eq. (6b) in powers of R
or alternatively, if one fits the Eq. (6b) to the form
E =C6R +C8R, in a limited region of the internu-
clear separation R. In the latter approach the C6 and C8
constants depend on the chosen limited region.

The relatively small values of the C6 constants for
Na -B and Li -8 cases suggests that the higher-order
( C8R ) terms may be important, as actually was demon-
strated by Vadla' and by Vadla et al. ' for Na*-K, Na*-
Rb, and Li*-cs.

—[E(n&P3/p ) E(nI]S]j 2 )]—,
(15)

IV. THE INTERACTION POTENTIALS
IN THE INTERMEDIATE-COUPLING REGION

y =[E(n~P]/2) E(ngS]/2)]—

[E(nBP]/2) E(nBS]/2)]

&=[E(n~P]n) —E(n~S]/2)1

[E(n~P3/2—) —E(n&S]/2 )] .

The atomic radial matrix elements required for calcula-
tions of C, Sz, and Dz have been deduced from known
oscillator strengths according to the formula

(16)

Values of C, Sz, and Dz are given in Table II. Due to
the lack of the relevant data, the values of SRb and DRb
are only estimates. The C6 constants for all alkali-metal-
atom heteronuclear pairs are given in Table III.

Generally, the dominant contribution to the C6 con-
stants of the A(n&PJ)+B(n&S]/z) pair arises from the
nearly resonant intermediate states A (nqS]/2)+B(n~PJ ).
In the cases E(n~PJ ) & E(n&PJ ), all interaction potentials
are attractive (negative C6 constants), and in the cases

In the intermediate-coupling region the interaction en-
ergy is of the order of the atomic spin-orbit splitting 6.
Furthermore, for heavier heteronuclear alkali-metal-atom
pairs even the difference 6 between "uncoupled" energies
of the first excited states, i.e., the energy difference be-
tween centers of gravity of the first resonance doublets, is
of the same order or just a few times greater than one of
the atomic spin-orbit splittings 6z or 6~. For these
reasons the effective Hamiltonian, Eq. (1), should general-
ly be diagonalized in the basis which contains the
products of the atomic wave functions correspond-
ing to the following energy levels of the separated

A ( n A P3 /2 ) +B ( nBS1/2 ) A ( n A P] /2 ) +B ( n]] S 1/2 )
A (n~S]/z )+B(nl]P3/p ), and A (n~ S )]/+2B (n P~z)]./
The secular determinant is then of the order 24)&24 and
can be factorized in two 2&(2 subdeterminants for the
states with 0=2, two 6)&6 subdeterminants for the states
with 0=1 and two 4X4 subdeterminants, one for the
states with 0=0+ and the other for the states with
Q=O

As shown in Sec. II, the first-order nondiagonal matrix
elements of V appear, which correspond to the near-
resonance excitation exchange due to the relatively strong
dipole-dipole interaction.

If one neglects the exchange interaction V,„and takes
only the dipole-dipole interaction as a perturbation, the in-
teraction energies come from the diagonalization of the
following matrices:
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W((A)
E3r2(~)+ R6

C
3R

W((B)
E3y2(8)+

R

(17a)

W((A)
E3g2(A)+

R

(c) A=0+

W2(A )
E3y2(A ) +

R

Wq(A)

W3(A)
E~g 2(A) +

R

~3c
9R

v6c
9R

Wi(8)
E3n{»+

R

&3c
9R

4C
9R

2~2C
9R

W2(8)
E3n{»+

R

W6c
9R

2W2C

9R

2C
9R

W4(B)

W3(8)
E&yp(8)+ R6

(17b)

Wp{A)E3y2 (c4 )+
R

(d) Q=O

W2(A)
E3y2(A)+

R

Wg(A)

W3(A)
E]yp(A)+

R

W4(A)
R6

W3{A)
E&yz(A )+

R

5C
9R

~2C
9R

W2(8)
E3y2 (8)+ R6

C
3R

V2C
3R

W2(B)
E3/2 (8 )+

R

v2C
9R

4C
9R

W4(8)

R
W3(B)

E))2(B)+
R

v2C
3R

Wg(8)
R6

W3(B)
Ey2(8) +

R

(17c)

(17d)

where EJ(A) and Ez(8) have the meaning E(n&Pjz)
+ E(n&S~~2) and E(n~PJ'~)+E(n~St~z), respectively,

and the quantities W;(A) giving the polarization contribu-
tion are defined by Eq. (14) and by

vZ
W4(A) = — (S„+—,Dg ),9

(18)

with Sz and Dz given by Eqs. (11) and (12), respectively,
and C is given by Eq. (10). The Sz, Dz, and W;(8) are

I

defined in the same way with 8 instead of A (see Table
II).

Strictly speaking, in the denominators of W;(2) and
W; (8) one and the same zeroth-order energy should enter,

but by introducing the E(n„'P) in W;(A) and E(n~P) in
W; (8) the error made is usually less than or at most com-

parable to the total uncertainty due to various levels of ac-
curacy of the oscillator strengths used.

All energy matrices (17) have the same general form:
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A C
M C B (19)

and after expanding the square root one finally obtains

E+ E——+ 8', R + ,' (b—E+b,W, R )+ R
C2

with the property that besides diagonal blocks A and B,
the nondiagonal block C is also a real symmetric matrix,
i.e., C =C. Furthermore, only the nondiagonal block C
contains the first-order matrix elements proportional to
R . As shown in Sec. II, the leading term of the
second-order matrix elements in the diagonal blocks is
proportional to R, while in the nondiagonal block it is
proportional to R . With the help of a simple unitary
transformation, the matrix M can be written in the
equivalent form

exactly the same results as obtained in Hund's case (c) [see
Eqs. (6a) and (13a)].

It is interesting to note that under certain conditions,
the interaction potentials in a limited region of internu-
clear separations R can be dominated by the resonancelike
term R 3. If that is the case, the quasistatic wings of the
resonance lines would have the van der. Waals form fol-
lowed by the resonance one. '

If the condition

A+B +
M=U MU=

2

where

A —B
2

A+B
2

(20)

(bE+bWiR ) (( 9 C R

is satisfied, one can expand the square root in an alterna-
tive way obtaining

E+ E+ 8'——iR +—R 1+ (bE+b WiR )
C 3 9R

8C

(21)

and I is the identity matrix.
Equation (20) clearly demonstrates that in the case of

the homonuclear quasimolecule (A =B) the further fac-
torization of the relevant secular determinants is possible
due to "gerade-ungerade" symmetry of the system. Taken
without second-order terms, Eq. (20) gives the first-order
results of Movre and Pichler. ' The quantities C, S~, and

Dz, required for second-order calculations, are given in
Table IV.

In the limit of large R, the interaction potentials, ob-
tained by the diagonalization of the matrices (17), asymp-
totically coincide with the interaction potentials obtained
in the previous section for Hund's case (c). Using the per-
turbation treatment, ' the Eqs. (6) and (13) follow im-

mediately from (17).
Let us demonstrate some of the above-mentioned prop-

erties in the case of A=2 potentials. From (17a) it fol-
lows that the interaction energies are given by

E+ ———,[E3/2(A)+E3/2(B)]+ —,
' [8',(A)+ W, (B)]R—6

([E3/2(A) E3/2(B)+[W'I(A) —8'i(B)]R I

+ 4 ~2R —6)1/2
9

which, for convenience, can be written in shorthand but
obvious notation as

E =E+8' R '+ [(bE+58' R ')'+ O'R—-']' '—
In the case of two similar atoms (A =B), bE=O,
A8'I ——0, and

E+ ——E+—R +8'iR ~E+—R as R~~ .C —3
— —6 — C

3 3

For bE&0, and R large enough, the following condition
is satisfied:

(bE+bWiR ) ))—,C R

9b,Eb, W&=E+—R 1+ R +
3 8C' 4C'

9(b 8'i)
+

8C
R +8)R

Now it is easy to see that the required conditions are

max
9(b, 8'i )

8C

1/3
3 8'i

t 1/6
8C«R «

9 bE)

V. ABSORPTION COEFFICIENT
IN THE WINGS OF RESONANCE LINES

From the diagonalization procedure of the energy ma-
trices (17), not only the interaction energies, but also the
coefficients c;(R) of the basis-set expansion of the corre-

The inclusion of higher-order terms in the energy matrices
(17) is straightforward but laborious.

The interaction energies for the K-Rb pair, calculated
in the intermediate-coupling region, are shown in Fig. 1.
For comparison, the interaction energies calculated for the
Hund's case (c) are given by dashed lines. In both cases
only the dipole-dipole interaction was taken into a.ccount.
One can clearly see the effect of mixing of the basis wave
functions: In the intermediate-coupling region the overall
"repulsion" between "upper" (K'-Rb) and "lower" (K-
Rb*) states is weaker than for the pure Hund's case (c).
Only the states emerging from the asymptotic K(4Si/2)-
Rb(5P, /2) level seem to be unchanged.

%e have roughly estimated that below R=12 A the
higher multipole interactions may influence the interac-
tion energies by more than 10% and furthermore that for
R & 10 A the exchange contributions become by no means
negligible.
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13,0

13I2

I I I I I I ( I f(0 ) =+2[«1+c2»~+«3+c4)fi
+2(c)c3+c2c4)(fzfi) )' ], (22d)

13,0—

E

12,8—

12,6

4P3(2-
-5S1(2-

+P1(2-

4S

where fz and fz are the total atomic absorption oscillator
strengths for the first excited doublet of atoms 2 and B,
respectively (f =f)/2+f3/2). [Note that c; for any par-
ticular f(0) means actually c;(fl;R).]

The quasistatic absorption wing profile can be con-
structed according to the expression

3 2 f;(c3)[R;(co)]
k(co)= NgNg g . (23)

fple c de/dR;
SP1(2

13,4

13I2

l I I I 1 I I I

(b)+
K-Rb

'l—
12,(4-

I I I I I I 1 I I

12 'I 0 16 18 20

The %z and 2V& are the concentrations of atoms 3 and
B, respectively, the A; is the root of the equation
fico=E; (R) Eg(R), —where E;(R) is the interaction energy
of the ith upper state and Eg(R) is the interaction energy
of the ground state, and e, m„c, and A have their usual
meanings.

In Hund's case (c) the molecular absorption oscillator
strengths do not depend on R and are simply proportional
to the statistical weights of the corresponding upper
states:

f(2)=f(1)=2f (0'-) = 6f~ (24)
13,0—

E
LJ

12,8—

Furthermore, all interaction potentials are of the form
E;(R)=C6'R and the quasistatic wing profile is of the
form

0
12,6 -0

4S1
3 2 (gCef /g)1/2

k (co) = NgNgf~
3Pl~ C

I

3/2

where an effective AC6 constant is defined as

(25)

0
~+

12 g-0
I I I I ) I I I f 1

12 1(4 16 18 20

~(A)
FIG. 1. The interaction energies for the K-Rb pair in the

intermediate-coupling region (solid lines) and in the Hund's case
(c) (dashed lines}; (a) 0=1,2 potential curves, (b} 0=0+, 0 po-
tential curves.

sponding quasimolecular wave functions can be obtained.
It is straightforward to evaluate the relevant molecular
absorption oscillator strengths f(Q( +—') for the (vertical)
transitions from the ground state(s) (1,0—+) to the excited
states O' —+'. The expressions we have obtained are

f (2)= 6 [c'1fA+c&B+2c)c2(f~f~)'"]

f(I)= 6 I(c I +c2+c3)f2+«4+cs+c6)fii

(22a)

+—', [(v 2c2 —c3)(2c5 —c6)+v 3c) (c5+3/2c6)

+~3c4(c2+')/2c3)](fzf))))' I, (22b)

f (0+)=+, t (c1+cz)fa +(c3+c4)fz
2 r
3 I C]C3 C2C4

2~2(c)c—4+c2c3)](f~ f~)'

(22c)

gC ff
2

y f (gC(i) )1/2 (26)

2

k(~) = N~Naf~7' I
~~

I

PleC
(27)

where

@=8 081) (b,C' /A')

b, C' = ~ (C(i) )2/5
6

5/2

(28)

(29)

and U is mean relative velocity of the perturbers.

VI. DISCUSSION AND CONCLUDING REMARKS

The evaluation of the C6 constants in Hund's case (c)
[Eqs. (13)], requires the knowledge of the following pa-
rameters: C, Sz, Dz, a, P, y, and 5, defined by Eqs.
(10)—(12) and (15), respectively. The accurate values of
C, a, /3, y, and 5 follow directly from the oscillator
strengths of the first resonance lines and the correspond-
ing energy levels. On the other hand, the evaluation of
the radial sums S~ and D~ results in different levels of

and AC6' ——C6' —C6 .
The results obtained in Hund's case (c) should be appl-

icable for the case of impact broadening too. The absorp-
tion coefficient in the wing of the impact-broadened line
is given by
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accuracy due to usually incomplete knowledge of the
relevant data. Although the convergence properties of the
sums suggest that good results can be obtained from only
a few terms, we have further analyzed our values and
found out that the combination rules

SA (B)SB(A)=SA (A)SB(B)

DA (B)DB( A ) DA {A )DB(B)

(30)

Q2
C6(&=2, 1)= 8', + 9a

C2
C (0=1,0+—)=8' + 3'

(31a)

(31b)

for the states emerging from the (n&P3/2ngSjg2) asymp-
totic level, and

(S~i~~ or D~i~~ means that atom A is in the excited state
and atom 8 is in the ground state) are generally satisfied
within 2% and in the worst single case (Na-Cs) within
9%%uo. On these grounds we have estimated the values of
SRb and DRb (see Table II). First, we have taken

SRb(K) ——S~(Rb) and DRb(K)
——DK(Rb), and calculated

SRb(&b) and DRb(Rb). In the se~o~d step we have calculat-
ed all other S~b and DRb.

From the structure of Eqs. (13) one can see that in the
case a=P and @=5 (the fine structure of atom B neglect-
ed) the Cs constants assume only three different values:

Cs(0=1,0—
) = 8's+ 2C

9y
(31c)
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for the states emerging from the (n&P~r2n~S~q2) asymp-
totic level.

This approximation is exactly the same as that used by
Kamke et al. and from inspection of Table III one can
see that it works well in the case of light-alkali-metal-
atom perturbers, but not in the case of heavier perturbers,
where the fine structure of the perturber's first-excited
doublet should be taken into account.

For the calculations in the intermediate-coupling region
the coupled basis wave functions were used, i.e., the

~
njlm ) representation of the atomic wave functions. The

uncoupled
~

nlmtm, ) wave functions would, of course,
lead to the same results. The uncoupled representation
appears to be more convenient for the inclusion of the ex-

change interaction terms. The spin-orbit interaction is no
more diagonal in that representation, but in some cases it
can be neglected in the first step of the diagonalization of
the effective Hamiltonian, Eq. (1), and a posteriori taken
into account in an approximate way, if needed.
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