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Study of the electronic and magnetic properties of the rare-earth ions
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We have extended the von Barth —Hedin local-spin-density theory to treat the relativistic spin-

polarized case as proposed by Doniach and Sommers. This extension permits us to do actual nu-

merical calculations on atomic and solid-state systems. A technique for integrating the resulting
coupled Dirac equations is presented. As a test the theory is applied to the study of the magnetic
and electronic properties of some rare-earth ions. We analyze the relativistic and spin-polarization
effects on the 4f spin densities and evaluate the polarization effect on the core electrons. Tables of
form factors for the first seven rare-earth ions are also presented.

INTRODUCTION

The importance of including relativistic effects in inter-
preting the magnetic properties of Gd was first shown by
Moon et a/. ' The precise measurements of the magnetic
form factors of metallic Gd by polarized neutron scatter-
ing enabled the determination of the localized magnetic-
moment distribution. It was shown that the width of this
distribution was larger than the nonrelativistic Hartree-
Fock 4f charge density calculated by Freeman and Wat-
son. Moon et al. suggested that this was due to the
larger nuclear screening in the relativistic case, which was
later confirmed in a relativistic-Hartree-Fock calculation
by Freeman and Desclaux. The latter were able to obtain
good agreement with experiment in spite of the fact that
their calculations were nonmagnetic. Further theoretical
and experimental works on the rare-earth metals and com-
pounds gave similar results. ' Spin polarization was not
included in these calculations because of the difficulty in
introducing this effect in the Dirac Hamiltonian where
spin is not a good quantum number.

Our primary interest is in the calculation of the mag-
netic and electronic properties of solids where the
Hartree-Pock scheme is impracticable. Thus, we use a
local-spin-density formalism for treating exchange and
correlation of a many-electron system. This formalism
gives us a set of one-electron equations which are relative-
ly simple to treat numerically. We consider the extension
of this formalism to the relativistic case. A relativistic
spin-polarized density-functional theory was first pro-
posed by Rajagopal and Callaway. This was followed by
the work of MacDonald and Vosko, ' who actually wrote
down the one-electron equations. Two years later
Doniach and Sommers, " guided by the nonrelativistic ap-

proach of von Barth and Hedin, rederived the relativistic
spin-density theory. This latter work produced a practical
theory for atomic or solid-state calculations. In this pa-
per, we revise their theory and use it to do actual calcula-
tions on the rare-earth ions. This required some new nu-
merical techniques to solve two-coupled Dirac equations.
The actual use of these equations in a band-structure cal-
culation will be considered at a later time.

In our calculations we make use of the results of the
theory of the homogeneous electron gas. This theory was
extended to the relativistic case by several authors. We
refer to Ramana and Rajagopal' for a general review of
this subject. In particular, for the spin-polarized case, a
calculation of the exchange energy was first done by Ra-
mana and Rajagopal' ' but their papers contained some
errors. This was pointed out by MacDonald, ' who (using
another theoretical approach) obtained a different expres-
sion for the exchange energy. Recently, Xu et al. ' re-
vised the Ramana and Rajagopal calculations and their re-
sult agrees with MacDonald to first order in (1/c ). We
have used the resulting expressions for the exchange ener-

gy and potential [O(1/ )c] in our calculations. We as-
sume that the higher-order terms are not really important
in applications to atomic or solid-state systems. Finally,
to our knowledge, no expressions exist for the correlation
energy of a relativistic spin-polarized homogeneous gas as
a function of the density and magnetization. In order to
compare with Dirac-Fock results, we include only the ex-
change terms in our calculations and not the nonrelativis-
tic spin-polarized counterpart for the correlation energy.

We wish to mention the fact that there does exist a
semirelativistic theory due to Koelling and Harmon' in-
cluding spin-polarization effects but neglecting spin-orbit
coupling. In our theory there is no such approximation.
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One important consequence of this is that a unique Fermi
surface is generated by our equations.

RELATIVISTIC SPIN-POLARIZED
DENSITY-FUNCTIONAL THEORY

In what follows we describe the fundamental lines of
the extension of the von Barth —Hedin nonrelativistic
spin-polarized theory to the relativistic case.

We consider N electrons in an external potential
W&,(r). Using the 16 Dirac covariant matrices, this can
be expressed as

16

W„„(r)= g tc ™(r)I „„.
M=1

tions of Eq. (6) as follows:

p„(r)= g [@„"(r))'@„"(r),

where the sum is on all the occupied states.
With the help of the chain rule for derivatives and the

use of Eq. (3), we obtain an expression for Vz'„(r) in the
form

~ 5[T«1 p)l

We assume an external potential of the type

Wp„(r) = V'"(r)5p„+ h (r)cr'„, ,2c

We introduce the density matrix
16

p„ (r) = ( q'
~
P„(r)P,(r)

~

q' ) = g p (r)I'„, ,
M=1

where

p (r)=+ —,Tr(I™p)=+—,
'
Q I „,p„,
p, v

(2)

where the first term is the familiar electron-nucleus elec-
trostatic interaction and the second term is the paramag-
netic interaction with an external magnetic field directed
along the z axis. We have not included the diamagnetic
term because in a spin-polarized theory the field is pro-
duced internally only by exchange which has no direct l
dependence.

As for the exchange-correlation potential, one obtains

with the plus or minus corresponding to (I™)= + 1.
Let Ho be the Hamiltonian describing the kinetic and

interaction energy of the electronic system. The mean en-
ergy can be written as

E=(%
~
Ho

~

'P}+g f d r W&,(r)p&,(r) .
lM, v

5E„, 5E„, 5E„,

where

n(r) =Tr(p) = g g [N&'(r))'@„"(r),
occupied

(12)

(13)

The two Hohenberg-Kohn theorems are still valid in the
von Barth-Hedin form: (1) The ground-state wave func-
tion is a unique functional of the density matrix pz, (r).
(2) The ground-state energy is a functional of p&,(r) (de-
pending upon W„,(r); this functional has an absolute
minimum when p& (r) is the ground-state density matrix
of the system. The variation of p„,(r) must satisfy the
constraint

g f d re„(r)=N

m, (r) =Tr(o p) = g g o'„„[@„'(r)]*@,"(r) . (14)
P, v l

occupied

We now make use of the local approximation. An ex-
pression for the exchange energy of the homogeneous gas
as a function of density and magnetization was given by
MacDonald' and Xu et al. '

Let

and states of negative energy are not to be included in the
variation.

Varying the energy of Eq. (4) under the constraint of
Eq. (5), we obtain a one-electron Dirac equation of the
form (in atomic units)

g [cal, p+p„~'+ W„,(r)+ V"(r)5„,+ V„"'„(r)]C",(r)
V

(6)

and define a parameter z by the three expressions

x =(1+z)'~, y =(1—z)'~3,

I [ —,P x +Px(1+P x )'/ —sinh '(Px)]
2P

—fx y]I,

(16)

(17)

where V"(r) is the classical term describing the Coulom-
bic electron-electron interaction and where V&~(r) is the
exchange and correlation potential

g p„„(r')
V"(r)= f d'r' " = fd'r', (7)

/r —r'/ /r —r'/

5E, '

V~', (r) =pv

One can express the density matrix in terms of the solu-

where

P= =—(3m n) ~ a.u.
F 1 2 1y3

OlC C

At the first order in (1/c ), the total exchange energy
E =E'"+E'"', where E" and E„'"' are the Coulombic
and transverse contributions then take the form

E„=— nEF x+y ——P (x +y )—(c} 3 4 4 l 2 6 6

4n p 9
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where

4n P 9
and obtain the result

m/J if k &0
Ckk — —m/(1+1) if k)0 (25)

ea= =1/c a.u.
Pic

SOLUTION IN AN EXTERNAL CENTRAL FIELD

(~+ -,' —m ) '"(~+ -,'+m )'"
Ckk'

l+ —,
' if k~k'.

In the case of a central external potential and a uniform
magnetic field, one must solve the following equation:

g [ca& .p+ f3&~ + V(r)6„„+b(r)cd„]C&"(r)

In order to investigate the form of the solutions of Eq.
(20), one can ask how the wave function g„k m is modifiedn &m

by the magnetic term.
A series expansion for the wave function gives

(20)
Wnk&m + g Cn k m'W'kn 'm'

(i) (27)

where

5E„
V(r) = V'"(r)+ V"(r)+

6n

5E„,b(r)= h+
2c 5m,

(21)

(22)

1 P,I, (r) Xk (»q)
~Q.k(r) X k (~v)

In order to proceed we must calculate the matrix elements
(Xkm I

cr~
I
Xk m ), where o~ is a 2X2 Pauli matrix. One

can easily verify that the matrix elements vanish except
when l=l' and m =m'.

We define the coefficient Ckk as

Ckk' —(Xkm I
~P I

Xk'm ~ (24)

Without the symmetry-breaking term o, the eigenfunc-
tions reduce to the ordinary solutions of the Dirac equa-
tion'

()= ~ ( Ink& m +Cnk&m Vnk2m ) (28)

So we are led to write the solutions of Eq. (20) as follows:

9 nkvd m
+0 nk2m

(i)

nk
&
m+k

&
m ++nk2m+k2m

r ~'Qnk& mX —k~ m +~Qnk2mX k&m—
(29)

where the ink are p„k like but not necessarily a solu-
tion of the nonmagnetic equation. Furthermore the radial
part can be m dependent.

Using Eqs. (20) and (29), one obtains for the radial. solu-
tions a set of two coupled Dirac equations (denoting
P„k as P&, etc.)

Perturbative theory shows that only the terms with n =n'
are important. By neglecting terms of order (1/c), the
series reduces to the term nk2m such that k2&k~ but the
orbital angular momentum lt of the large component of
the nk~m term is equal to the corresponding value l2 of
the nk2m term

a k~ E V(r)P, —2c+ Qi+ —b(r)c k k Q) =0,
Br r C c 1 1

E V(r) 1 —
Im 1

Qi+ Pi ——b(r)ck, k, Pi ——,b(r)ck, k,P2=0

k2 E—V(r) 1 im
P2 —2c+ Q2+ b(r)C —

k k Q2=0,3r r c C 2 2

(30)

a
9r

k2
Q2+

E—V(r) 1 i 1
P2 b(r)ck—k

—Pz — b«)ck k Pi=0
C C 2 2 2 1

These equations must be solved simultaneously, with the
constraints

f, (Pi+Pz+Qi+Qz)«=1

They have two solutions which are the two energies and
wave functions corresponding to the quantum numbers
n, k~, m and n, k2, m in the nonspin-polarized limit.

NUMERICAL SOLUTION
P) (0) =P2(0) = Q) (0)=Q2(0) =0,
P ) ( oo ) =P2 ( oo ) =Q ) ( oo )=Q2( oo ) =0 .

(31)
In this paper we are interested in the case pertaining to

H(r) +0 Afinite field H—(r). is used in the first iteration
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(as in the nonrelativistic case) only to break the degenera-
cy. Thereafter its value is taken to be zero and the system
itself generates an internal magnetic field proportional to
5s„y5~..

In order to start the numerical integration of Eqs. (30)
we must specify the values of P and g on a fixed mesh
for several points at the origin and at infinity. At these
points the internal magnetic field vanishes and Eqs. (30)
decouple into two independent sets of equations which we
can treat by the standard methods. '

Thus the wave function at the origin is expressed as a
series

P;(r)=r '(p +p; r+p; r + . ), i =1,2
Q;(1)=& '(q '+q;"'~+q;"'r'+ . . ), i =1,2

where y; =(k; —Z /c ) and where all the coefficients are
linear functions of p;

For the last points of the mesh we use the asymptotic
orm

P;(r) =A;exp( —pr ),

Q;(r) =8;exp( —pr ),
where

1/2

—2E- E2
C2

(33)

and

P "(r,pP', pz, E)=P "'(r,A „Az,E),

Q "(r,pP', pz ',E)=Q "'(r,A&, Az, E) .
(34)

These conditions, plus the normalization of the wave
function, can only be satisfied for the correct energies and
choice of parameters.

Since Eqs. (30) are linear, the inner and the outer solu-
tions are defined to within a multiplicative constant.
Thus one can take a fixed value for p&

' and multiply
P " and Q

"
by a constant. The same can be repeated with

A2 and the external solution.
However only the ratio D of these two multiplicative

constants need be varied in order to obtain a matching
condition at r . The two constants are determined by the
normalization condition. Equation (34) now becomes

DP "(r~,p ) ',E)=PP"'(r~, A ),E),

DQ "(r~,pP', E)=Q "'(r,A),E) .
(35)

The determination of the parameters is done in the fol-

pA; = —(2c+E/c)8; .

Specifying trial values for the four parameters p P', p P',
A~, Az, one can integrate Eqs. (30) from the origin to
some fixed matching point r~ and likewise from infinity,
obtaining a solution (P ",Q ") and (P "',Q "') respectively,
in the internal and the external region.

In order that the function be continuous at r we must
satisfy the following conditions:

lowing manner. First we require that P'&" /P &"' ——Pz" /Pz"'
at ~=r by varying p'~ '. If it were not for the coup
term we could exactly obtain this condition using the
value of p'& '.

(o) z "~ ~ "~) (o)
1 ~1 (36)

Even though this is not true in our case, we use Eq. (36)
to determine a new value of p~ '. Since the coupling
terms are small, this process converges rather rapidly.

The first and second conditions of Eqs. (35) are now sa-
tisfied with the value of D:

D=P(""(r )/P'P(r~) . (37)

In order to satisfy the third and fourth condition we must
vary A~ and E.

For a given A ~ we can find two energies e& and e2 such
that condition three and four are satisfied independently.
This can be obtained by developing
Qm(r~, E) Q"'(r~—,E)=bg;(E) in a series expansion.
In order that b, g; =0, we use the first three terms of the
series to predict a new value of E. Only for the correct
value of A& will e&

——e2.
If we knew the dependence of e; on A

&
we could find

A
& by resolving the equation

ei(A i ) =ez(A i ) . (38)

CX)

+cx2 =cx3A ) +0,'4
Ai

(40)

in order to predict a new value of A ~. This process is re-
peated until the value of A

&
is found such that e~ ——e2.

The remaining problems are how to choose the value of
A~ from Eq. (40) and how to find the two solutions of
Eqs. (30). The two problems are interelated. In fact the
two solutions of Eqs. (30) correspond to a symmetric or
antisymmetric combination of Eq. (29). The relative sign
of the two functions in Eq. (29) can be included in the pa-
rameter A&. Thus we can find the two solutions of Eqs.
(30) by choosing systematically a positive or negative
value of A &.

RESULTS AND DISCUSSION

We calculated the electronic properties of the first seven
positive trivalent ions of . the rare-earth elements

A& is nearly a multiplicative constant for P& and Q&. It
has the effect of rigidly displacing the values of (Pt, g&)
in relation to (Pz, gz). Its value measures the relative
contribution of the two components of the wave function
(29).

This property of A
~ enables us to guess the dependence

of e; on A
~ following

A')
+0.'2,

A)
(39)

62 = cx 3A ) +cx4 .

For two arbitrary values of A~ we determine the four
values of a. We then set
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TABLE I. (a) 4f eigenvalues, in hartrees, from nonspin-polarized-nonrelativistic (LD) calculations.
(b) 4f eigenvalues, in hartrees, from nonspin-polarized-relativistic (RLD) calculations. (c) 4f eigen-
values, in hartrees, from spin-polarized-relativistic (RLSD) calculations.

(a)

2.5
3.5

2.5
1.5
0.5

—0.5
—1.5
—2.5
—3.5

ssCe'+

1.1257

s8Ce'+

1.0124
1.0000

ssCe +

1.0239
1.0225
1.0210
1.0194
1.0175
1.0153
1.0125

s9Pr +

1.1706

s9pr +

1.0543
1.0395

1.0777
1.0759
1.0740
1.0720
1.0698
1.0673
1.0646

6oNd +

1.2106

6oNd +

1.0906
1.0736

6oNd +

1.1257
1.1235
1.1212
1.1188
1.1163
1.1136
1.1106

(c)

„Pm'+

1.2466

Pm'+

1.1225
1.1031

Pm'+

1.1689
1.1664
1.1637
1.1609
1.1580
1.1550
1.1517

62Sm'+

1.2792

62Sm'+

1.1506
1.1285

„Sm'+

1.2081
1.2052
1.2022
1.1990
1.1957
1.1923
1.1886

63Eu

1.3088

63Eu

1.1754
1.1505

63EU

1.2441
1.2408
1.2373
1.2338
1.2300
1.2261
1.2220

„Gd'+

1.3357

„Gd'+

1.1996
1.1716

640d +

1.2772
1.2735
1.2696
1.2656
1.2614
1.2570
1.2535

—2.5
—1.5
—0.5

0.5
1.5
2.5
3.5

0.9954
0.9932
0.9914
0.9898
0.9883
0.9869
0.9857

1.0213
1.0189
1.0167
1.0147
1.0128
1.0110
1.0093

1.0399
1.0372
1.0347
1.0324
1.0302
1.0280
1.0260

1.0529
1.0499
1.0471
1.0444
1.0419
1.0394
1.0370

1.0613
1.0580
1.0548
1.0517
1.0488
1.0460
1.0433

1.0658
1.0620
1.0584
1.0550
1.0517
1.0485
1.0455

1.0668
1.0626
1.0586
1.0548
1.0511
1.0476
1.0441

TABLE II. Total energies, in hartrees, from spin-polarized-relativistic (RLSD), nonspin-polarized-relativistic (RLD), and
nonspin-polarized-nonrelativistic (LD) calculations.

RLSD

LD

s8Ce +

—8834.02
—8834.01
—8556.52

s9Pr +

—9209.94
—9209.92
—8910.55

6oNd +

—959S.66
—9595.61
—9273.03

„Pm'+

—9991.31
—9991.22
—9644.04

6pSm +3+

—10397.04
—10396.90
—10023.66

63Eu

—10812.97
—10 812.77
—10411.96

„Gd'+

—11239.25
—11238.96
—10 809.01

TABLE III. Exchange energies, in hartrees, from spin-polarized-relativistic (RLSD), nonspin-

polarized-relativistic (RLD), and nonspin-polarized-nonrelativistic (LD) calculations.

RLSD
RLD
LD

s8Ce'+

—179.17
—179.16
—190.13

s9Pr +

—184.01
—183.98
—195.72

6oNd'+

—188.93
—188.86
—201.42

Pm'+

—193.92
—193.79
—207.23

„Sm'+

—198.98
—198.78
—213.14

63Eu'+

—204.10
—203.81
—219.15

64Gd'+

—209.29
—208.89
—225.27

TABLE IV. Mean values of various powers of r from relativistic calculations by the Hartree-Fock (RHF), spin-polarized-local-
density (RLSD), and nonspin-polarized-local-density (RLD) approximations.

RHF
(r ')
RLSD RLD RHF

(r'&
RLSD RLD RHF

(r')
RLSD RLD RHF RLD

s8Ce +

s9Pr +

6oNd'+
6iPm'+
62sm'+

4.462

5.627

6.886
7.555
8.254

4.44S
5.033
5.638
6.264
6.913
7.585
8.281

4 440
5.02S
5.630
6.260
6.915
7.599
8.280

1.309

1 ~ 114

0.9743
0.9175
0.8671

1.427
1.296
1.190
1.103
1.028
0.9641
0.9081

1.437
1.313
1.211
1.126
1.053
0.9891
0.9352

3.964

2.910

2.260
2.020
1.820

5.013
4.142
3.505
3.020
2.641
2.336
2.079

5.113
4.294
3.682
3.207
2.829
2.521
2.276

23.31

15.03

10.55
9;039
7.831

35 ~ 19
26.69
20.99
16.97
14.03
11.80
10.08

36.44
28.45
22.92
18.91
15.90
13.58
11.84
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].0

LU

0.5

r (a.u. )

10

Gd

RLD

LO

5
C3

LU

(5sCe—64Gd). Several types of calculations were made in
order to determine the relative importance of the magnet-
ic effects. We compared the results of the relativistic-
local-spin-density theory (RLSD) with the results of a
nonspin-polarized relativistic-local density calculation
(RLD) and with a nonrelativistic nonspin-polarized local

r (a.u. )

FIG. 1. 4f electron charge densities of (a) 58Ce + and (b)

64Gd + for nonspin-polarized calculations by relativistic-local-
density (RLD) and nonrelativistic-local-density (LD) approxima-
tions.

density calculation (LD). We also compared our calcula-
tions with the nonspin-polarized relativistic-Hartree-Fock
results (RHF) of Freeman and Desclaux. '

Let us first examine the value of the z component of
the total spin, defined as the sum of the mean values of cr,
in the occupied states. We obtain values between 0.97 for
qsCe and 6.96 for 64Gd which is in agreement with Hund's
first rule for filling up the orbitals according to a parallel
spin alignment. Thus, the number of bohr magnetons is
essentially determined by the number of 4f electrons.
This is an important test for our theory, in particular with
regard to the approximate from of Eq. (29) for the wave
function. Consider, for example, the case of Ce. If we
had used only the first term of Eq. (29), we would obtain
a mean value of about 0.7 for cr, . Thus Eq. (29) is an ex-
tremely good approximation to the exact infinite series.
Alternately this shows that the spin polarization is much
more important than the spin-orbit coupling. A more
quantitative verification of this is given in Table I. In this
table we show the one-electron energies obtained from LD
(a), RLD (b), and RLSD (c) calculations. In the RLSD
theory the degeneracy of the orbitals is completely broken.
Thus there are fourteen 4f orbitals that must be progres-
sively filled up in order of increasing energy. The remain-
ing empty orbitals for each element were also included in
the calculation. The RLD calculations [Table I(b)] give
the spin-orbit splitting which can be seen to vary regularly
between 0.012 a.u. for &sCe to 0.028 a.u. for 64Gd. In
Table I(c) one can see the spin-polarized splitting. The
eigenvalues are clearly divided into two groups corre-
sponding to a symmetrical or antisymmetrical linear com-
bination of Eq. (29). Thus the two eigenvalues, belonging
to different groups and corresponding to equal and oppo-
site eigenvalues of J, differ only because of the spin polar-
ization. One sees that these differences do not depend on
the absolute value of J, and vary regularly between 0.03
a.u. for ~sCe to 0.21 a.u. for 64Gd. One can also verify
that for each ion the spread in energy of the two groups is
about the same and nearly corresponds to the spin-orbit
coupling.

The effect of spin polarization on the total and ex-
change energies can be estimated from Tables II and III.

0.03

0.02
C3

0.01

Q 0.00

-0.01

LJ -0.02-

v/
/

/

r (a.u. )

Ce

filled shells ( R L SD ) .

0f shell (R LSD - Rl 0)

0.20

0.1 0

0.00
UJ
L3
CL

-0.10
r (a.u)

(b)

3+

filled shells {R LSD)

4.f shell (RLSD Rl0)

3

FIG. 2. For (a) 58Ce + and (b) 64(pd + radial spin density of the filled shells ( ———) from a spin-polarized-relativistic-local-
density (RLSD) calculation and the difference ( ) between the RLSD 4f radial charge density and the corresponding nonspin-
poiarized-relativistic-local-density (KLD) distribution. The mean values of r (RLSD) for the n =3,4(s,p, d), 5, and 4f shells are also
shown.
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TABLE V. Bessel integrals j„= j„(kr )m4f(r )dr of the magnetic spin moment densities of the 4f electrons divided by the num-
o

ber of eiectrons as a function of (sinI9)/A, (A ).

(sinO)/A,

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20

Jo

0.9454
0.8756
0.7749
0.6595
0.5434
0.4356
0.3409
0.2609
0.1952
0.1423
0.0679
0.0242
0.0003

—0.0115
—0.0162
—0.0170
—0.0157

58Ce'+
0.0099
0.0367
0.0728
0.1099
0.1418
0.1654
0.1799
0.1864
0.1861
0.1809
0.1611
0.1359
0.1104
0.0873
0.0676
0.0514
0.0384

J4

0.0001
0.0009
0.0038
0.0097
0.0186
0.0295
0.0412
0.0526
0.0628
0.0714
0.0831
0.0880
0.0875
0.0834
0.0771
0.0696
0.0617

0.0000
0.0000
0.0002
0.0007
0.0021
0.0045
0.0079
0.0123
0.0172
0.0224
0.0324
0.0409
0.0472
0.0511
0.0529
0.0530
0.0518

(sinO)/A,

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20

Jo

0.9591
0.8945
0.8000
0.6900
0.5771
0.4702
0.3745
0.2920
0.2229
0.1663
0.0846
0.0347
0.0061

—0.0090
—0.0157
—0.0177
—0.0171

0.0092
0.0341
0.0683
0.1044
0.1367
0.1618
0.1786
0.1875
0.1898
0.1868
0.1702
0.1466
0.1214
0.0977
0.0769
0.0595
0.0452

0.0001
0.0007
0.0032
0.0085
0.0165
0.0266
0.0377
0.0489
0.0593
0.0684
0.0817
0.0885
0.0898
0.0870
0.0816
0.0747
0.0672

0.0000
0.0000
0.0001
0.0006
0.0017
0.0037
0.0067
0.0106
0.0152
0.0201
0.0300
0.0388
0.0457
0.0505
0.0532
0.0541
0.0535

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20

0.9651
0.9051
0.8165
0.7119
0.6030
0.4982
0.4027
0.3191
0.2479
0.1886
0.1010
0.0457
0.0127

—0.0055
—0.0145
—0.0179
—0.0181

60Nd'+
0.0085
0.0317
0.0640
0.0989
0.1310
0.1570
0.1754
0.1864
0.1908
0.1898
0.1766
0.1549
0.1305
0.1068
0.0854
0.0671
0.0518

0.0000
0.0006
0.0028
0.0074
0.0146
0.0239
0.0345
0.0454
0.0557
0.0651
0.0794
0.0877
0.0905
0.0891
0.0848
0.0787
0.0715

0.0000
0.0000
0.0001
0.0005
0.0014
0.0032
0.0058
0.0093
0.0134
0.0180
0.0276
0.0365
0.0439
0.0492
0.0526
0.0543
0.0544

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20

0.9689
0.9129
0.8295
0.7300
0.6251
0.5226
0.4280
0.3439
0.2712
0.2099
0.1174
0.0572
0.0201

—0.0013
—0.0126
—0.0175
—0.0187

Pm'+
0.0079
0.0296
0.0602
0.0939
0.1256
0.1520
0.1717
0.1843
0.1906
0.1914
0.1813
0.1618
0.1385
0.1151
0.0934
0.0744
0.0583

0.0000
0.0006
0.0025
0.0066
0.0131
0.0217
0.0317
0.0421
0.0523
0.0617
0.0769
0.0864
0.0905
0.0904
0.0872
0.0818
0.0752

0.0000
0.0000
0.0001
0.0004
0.0012
0.0027
0.0050
0.0081
0.0119
0.0162
0.0254
0.0343
0.0419
0.0478
0.0518
0.0540
0.0548

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20

0.9719
0.9193
0.8405
0.7457
0.6445
0.5445
0.4511
0.3669
0.2933
0.2303
0.1336
0.0691
0.0281
0.0036

—0.0100
—0.0166
—0.0189

62Sm +

0.0074
0.0278
0.0569
0.0893
0.1205
0.1472
0.1677
0.1817
0.1896
0.1921
0.1850
0.1676
0.1457
0.1227
0.1010
0.0815
0.0647

0.0000
0.0005
0.0022
0.0059
0.0118
0.0198
0.0292
0.0392
0.0492
0.0586
0.0742
0.0847
0.0901
0.0911
0.0889
0.0844
0.0784

0.0000
0.0000
0.0001
0.0003
0.0010
0.0023
0.0044
0.0072
0.0107
0.0147
0.0235
0.0322
0.0400
0.0462
0.0507
0.0535
0.0548

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20

0.9745
0.9249
0.8503
0.7596
0.6619
0.5645
0.4723
0.3885
0.3143
0.2501
0.1498
0.0813
0.0366
0.0090

—0.0070
—0.0153
—0.0187

63EU
0.0069
0.0262
0.0539
0.0852
0.1158
0.1426
0.1638
0.1789
0.1881
0.1921
0.1878
0.1726
0.1520
0.1298
0.1081
0.0884
0.0710

0.0000
0.0004
0.0020
0.0053
0.0108
0.0182
0.0270
0.0366
0.0463
0.0556
0.0716
0.0829
0.0893
0.0914
0.0902
0.0865
0.0811

0.0000
0.0000
0.0001
0.0003
0.0009
0.0021
0.0039
0.0065
0.0097
0.0134
0.0217
0.0303
0.0381
0.0445
0.0494
0.0527
0.0546
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(sinO) /1, Jo J4

TABLE V. (Continued).

(sinO) /A, Jo J4

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20

0.9771
0.9302
0.8591
0.7723
0.6779
0.5829
0.4922
0.4088
0.3343
0.2691
0.1658
0.0937
0.0456
0.0150

—0.0034
—0.0135
—0.0182

0.0065
0.0248
0.0513
0.0815
0.1115
0.1382
0.1599
0.1760
0.1864
0.1916
0.1899
0.1769
0.1577
0.1363
0.1149
0.0950
0.0773

0.0000
0.0004
0.0018
0.0048
0.0098
0.0168
0.0251
0.0343
0.0437
0.0529
0.0690
0.0809
0.0882
0.0913
0.0910
0.0881
0.0835

0.0000
0.0000
0.0001
0.0003
0.0008
0.0018
0.0035
0.0058
0.0088
0.0122
0.0202
0.0285
0.0363
0.0429
0.0481
0.0518
0.0541

This effect is seen to vary between 0.01 a.u. for &sCe to
0.29 a.u. for 64Gd.

In Figs. 1 and 2, we compare the different effects on
the radial spin and charge distribution for Ce and Cxd. In
Figs. 1(a) and 1(b), we compare the charge distributions of
the 4f electrons obtained by LD and RLD calculations.
The relativistic expansion of the 4f shell is evident and
corresponds to the results of RHF calculations by Free-
man and Desclaux. In Fig. 2(a), we show the radial spin
density [Eq. (14)] of the filled shells of Ce. In the same
figure we also show the difference between the 4f electron
charge densities obtained by the RLSD and RLD calcula-
tions. The same is shown for Gd in Fig. 2(b). We note
that the 4f radial densities, calculated by Eq. (13), and the
corresponding spin distributions, calculated by Eq. (14),
are very similar. This result is not evident in relativistic

theory and is a strong indication of the accuracy of our
approximation [see Eq. (29)]. Summing the two curves, in
Figs. 2(a) and 2(b), gives the total change in the spin den-
sity of the ions due to spin polarization. We note that the
spin-polarization effect on the 4f charge distribution is
much smaller than the polarization of the filled shells.
The two effects reduce the magnitude of the total spin
density in the outer region of the ions and increases it in
the internal region. This competes with the broadening of
the spin distribution due to the nonspin-polarized Dirac
equation. The position of the peaks in the spin density of
the filled shells corresponds to the localization of the
charge density of the filled shells. We have indicated in
Fig. 2 the position of the mean value of r for the
n =3,4(s,p, d), 4(f),5 shells. In order to compare our re-
sults with the RHF calculations of Freeman and Desclaux

o
TABLE VI. Fourier transforms, as a function of (sinO)/A, (A ), of the 4f electron charge densities

by the relativistic-Hartree-Fock calculations of Freeman and Desclaux. '

(sinO) /A.

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20

58Ce'+

0.9763
0.9096
0.8116
0.6968
0.5785
0.4663
0.3660
0.2800
0.2087
0.1510
0.069&
0.0227

—0.0025
—0.0144
—0.0186
—0.0187
—0.0169

60Nd +

0.9798
0.9224
0.8366
0.7338
0.6249
0.5184
0.4200
0.3329
0.2581
0.1955
0.1029
0.0446
0.0104

—0.0080
—0.0167
—0.0196
—0.0193

62Sm +

0.9823
0.9317
0.8552
0.7620
0.6612
0.5605
0.4652
0.3787
0.3024
0.2369
0.1359
0.0686
0.0263
0.0013

—0.0122
—0.0184
—0.0202

63EU

0.9833
0.9355
0.8629
0.7739
0.6768
0.5788
0.4853
0.3994
0.3229
0.2564
0.1523
0.0811
0.0350
0.0069

—0.0090
—0.0170
—0.0200

0.9842
0.9389
0.8698
0.7846
0.6909
0.5957
0.5039
0.4189
0.3424
0.2753
0.1684
0.0938
0.0442
0.0130

—0.0053
—0.0152
—0.0195



2850 P. CORTONA, S. DONIACH, AND C. SOMMERS 31

TABLE VII. Fourier transforms of the core electron-spin magnetic-moment densities as a function
of (sinO)/A, (A ).

(sinO)/A,

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20

„Ce'+

0.0017
0.0056
0.0095
0.0113
0.0104
0.0075
0.0038
0.0007

—0.0015
—0.0025
—0.0021
—0.0007

0.0002
0.0004
0.0003
0.0001

—0.0001

59Pr +

0.0033
0.0108
0.0185
0.0224
0.0213
0.0162
0.0094
0.0031

—0.0014
—0.0038
—0.0038
—0.0014

0.0004
0.0010
0.0007
0.0002

—0.0002

60Nd +

0.0047
0.0154
0.0267
0.0330
0.0321
0.0254
0.0159
0.0068
0.0000

—0.0040
—0.0049
—0.0019

0.0007
0.0016
0.0013
0.0005

—0.0002

Pm'+

0.0059
0.0195
0.0341
0.0428
0.0426
0.0349
0.0232
0.0115
0.0023

—0.0033
—0.0057
—0.0023

0.0010
0.0023
0.0019
0.0009

—0.0001

„Sm'+

0.0069
0.0232
0.0408
0.0519
0.0527
0.0444
0.0310
0.0170
0.0055

—0.0019
—0.0061
—0.0026

0.0013
0.0031
0.0027
0.0014
0.0001

63Eu

0.0079
0.0264
0.0469
0.0603
0.0623
0.0538
0.0390
0.0229
0.0094
0.0001

—0.0061
—0.0029

0.0016
0;0038
0.0036
0.0021
0.0004

/

64Gd'+

0.0087
0.0293
0.0524
0.0681
0.0715
0.0630
0.0471
0.0293
0.0138
0.0027

—0.0057
—0.0030

0.0019
0.0046
0.0045
0.0029
0.0009

as well as to provide some useful quantities for
phenomenological theories of the crystalline field and hy-
perfine interaction, we have calculated the mean values of
various powers of r for the 4f states (see Table IV).

We have also calculated (Table V) certain integrals of
the radial spin magnetic moment [f j„(kr)m4f(r)dr;
n =0,2,4,6], where j„are spherical Bessel functions.
These integrals are of use by the experimentalists for cal-
culating magnetic form factors as well as to analyze neu-
tron diffraction results. For comparison we include the
results (n =0 only) of Freeman and Desclaux (Table VI).
The agreement is generally good, especially for the heavier
ions (62Sm, 63Eu, 64Gd). Larger differences are found in
5sCe. One can see the effect of local exchange by compar-
ing the results of RHF with RLD in Table IV: the RLD
4f distributions are broader than the corresponding RHF
distributions. The spin-polarization effect competes with
the latter. In gerieral the RLSD 4f charge densities are

between those of RHF and RLD and tend to approach the
RHF results as the number of 4f electrons is increased.
The same general trend is found in the results of the in-
tegrals of the spherical Bessel functions. It should be not-
ed that the RLSD integrals were calculated using the
correct spin distribution m&f(r) and not the charge densi-
ties n4I(r) as in the RHF or RLD theories. Lastly we
present in Table VII the Fourier transforms of the spin
densities of the core electrons.
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