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Cloud of virtual photons in the ground state of the hydrogen atom
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A spinless, nonrelativistic hydrogen atom coupled to an electromagnetic field is considered. The
interaction is taken in the minimal-coupling form, and the ground state of the coupled system is ob-

tained by straightforward perturbation theory. The form of the cloud of virtual photons surround-

ing the atom is studied through the quantum-mechanical average on this state of an appropriately
defined coarse-grained energy-density (CGED) operator 8'(r). The properties of 8'(r) are studied
in order to show that this operator can give a reliable description of the shape of the virtual photon
cloud. The quantum-mechanical average of 8'(r) is obtained analytically and exactly, and the
CGED is shown to consist of an infinite number of spherically symmetric contributions, each ori-

ginating from the set of virtual transitions induced by the vacuum fluctuations between the bare
atomic ground state and all the bare atomic eigenstates belonging to a given subshell. This yields a
shell and subshell structure for the virtual photon cloud, each of them characterized by a different
behavior of the CGED as a function of the distance from the atom. The details of this structure are
studied both analytically and numerically, and the results obtained are compared to those pertaining
to virtual clouds in other fields of physics.

I. INTRODUCTION

The first theoretical evidence that the main contribu-
tions to quantum-electrodynamical Lamb shift in the
atom-radiation interaction are essentially nonrelativistic
was presented by Bethe in 1947, who was also able to ex-
plain mass renormalization in the same terms. ' Relativity
was only used by Bethe to provide an upper limit (cutoff
mc /R to the frequencies of the radiation field which con-
tribute to the shift of the atomic levels in order to avoid
uv divergences. This contribution formed the basis for
successive developments in the theory of nonrelativistic
quantum electrodynamics. %'elton produced a very
elegant explanation of the Lamb shift as arising from the
averaging of the Coulomb potential acting on a bound
electron, due to the random zero-point quantum fluctua-
tions of the vacuum. Starting from an apparently discon-
nected point of view, Van Hove ascribed the divergences
typical of quantum-field theory to persistent occurrence,
around each particle, of clouds of virtual particles, and he
related these cloud effects to the concepts of charge and
mass renormalization, familiar in quantum electrodynam-
ics. More recently Moses was able to include retardation
effects exactly in the calculation of matrix elements and
transition probabilities for hydrogenic atoms, thereby
showing the existence of a natural cutoff at frequencies

c /Qp where c is the velocity of light and ap the Bohr
radius. Au and Feinberg used a Green's-function tech-
nique to investigate retardation effects in the photon emis-
sion and absorption, yielding support to Moses's con-
clusions on the existence of a low-frequency natural cut-
off; their numerical calculations also show that the Lamb

shift, as obtained by the introduction of an abrupt cutoff
at c/ao, does not differ much from that obtained by tak-
ing exactly into account retardation effects. Further sup-
port to Welton's model for the Lamb shift has come from
the work of Dupont-Roc et al. , while Davidovich and
Nussenzveig have used Moses's results and Van Hove's
resolvent approach to obtain a nonrelativistic expression
for the Lamb shift; although their contribution is aimed
at an investigation of the fluorescence line shape, they dis-
cuss at length the nature of cloud effects in the atom-field
interaction and they point out the importance of the so-
called counter-rotating terms in the interaction Hamil-
tonian in relation with these persistent effects. Quite re-
cently Bykov and Zadernovsky have calculated the time-
dependent field originating from spontaneous decay of an
excited atom, thereby proving the retarded nature of this
field, and Grotch has revisited the theory of Lamb shift
and mass renormalization in a retarded theory framework
taking also into account the hitherto neglected cr.B in-
teraction, thereby obtaining a 2.5% agreement with the
best available theories of the Lamb shift. Finally, Dali-
bard et al. have succeeded in relating in a qualitatively sa-
tisfactory way mass renormalization and Lamb shift,
respectively, to the self-reaction field of the electron and
to the vacuum zero-point fluctuations. '

The above discussion, although very schematic and far
from complete, serves to show that in spite of progress
made, little research has been aimed at obtaining an expli-
cit answer in quantitative terms for the shape of the virtu-
al photon cloud in the region of space around an atom in-
teracting with the electromagnetic field. That such a
cloud should exist is more or less implicit in all of the
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work cited above and rather explicitly discussed by Davi-
dovich and Nussenzweig, moreover, some of the time-
dependent properties of the field around an atom consti-
tute the main objective of the paper by Bykov and Zader-
novskii. In the latter case, however, the interest is cen-
tered on the radiation that develops during a process of
spontaneous emission, in which virtual and real contribu-
tions are difficult to sort out; it is clear, however, that if
the total system (atom plus radiation field) is in its ground
state, the contributions of real photons are absent and
cloud effects are only due to virtual photons. A step in
this direction has been performed" by sorting out in the
total energy shift of the ground state of a hydrogen atom
the contributions originating from the field of the cloud
of virtual photons. Although this emphasizes the role of
the cloud, the question of its space dependence has
remained open.

On the other hand, the problem of the detailed form of
the cloud of virtual particles dressing the sources of the
field has aroused a persistent interest in several fields of
physics. Peeters and Devreese' have calculated the polar-
ization charge density induced by an electron in a polar
semiconductor for arbitrary strength of the electron-
phonon coupling, temperature, and external magnetic
field, obtaining an appealing and physically transparent
picture of the polaron. Thomas, Theberge, and Miller'
have incorporated chiral invariance in the MIT (Mas-
sachusetts Institute of Technology) bag model for the nu-
cleon, and have developed an approximately linear cou-
pling theory of the coupling between the three-quark bag
model and the pion field. Thereafter they obtain the
charge densities for the virtual pion field surrounding the
bag and the proton and neutron charge densities, in good
agreement with the available experimental results. Power
and Thirunamachandran' have considered the problem of
the electromagnetic field around a neutral atom. Working
in the Heisenberg representation, they obtain solutions of
the equations of motion for the field operators, valid up to
terms quadratic in the atom-field coupling constant which
they have used to calculate the rate of energy transfer be-
tween two atoms and intermolecular potential energies,
directly related to Van der Waals forces. Although their
work is not directly concerned with the shape of the virtu-
al photon cloud, it is likely that their technique could be
used also to obtain information of this sort.

The aim of this paper is to present a detailed calcula-
tion for the shape of the cloud of virtual photons sur-
rounding a hydrogen atom in the ground state of the cou-
pled system (atom plus photon field). We shall develop
our theory in a nonrelativistic, minimal-coupling frame-
work, and we shall assume a spinless electron. We use
straightforward second-order perturbation theory to ob-
tain the perturbed (or dressed) ground state'of the system,
and we perform our calculation taking full account of re-
tardation effects, in such a way that we do not need any
phenomenological frequency cutoff. In order to describe
the shape of the cloud of virtual photons, we calculate the
quantum-mechanical average on the perturbed ground
state of a field operator 8'(r), which we call the coarse-
grained energy density (CGED), whose properties shall be
defined later on in the course of this paper. In fact, 8'(r)

does not yield directly the density of virtual photons in
space, since, as we shall see, it is rather related to the
space distribution of the energy carried by each photon in
space. Our choice of W(r) to represent the virtual photon
cloud has been based primarily on the fact that the men-
tioned quantum-mechanical averages can be performed
exactly, which is a distinct advantage over other operators
which may be more directly related to the density of pho-
tons, ' but whose quantum-mechanical averages are in
practice more difficult to obtain exactly. Finally, we shall
discuss the results obtained by our approach, elucidating
various aspects of the structure that we have obtained for
our representation of the virtual photon distribution.

II. THE ELECTROMAGNETIC FIELD

Assuming periodic boundary conditions on the surface
of a cubic volume V of space, the usual normal-mode ex-
pansion for the transverse part of the electromagnetic
field yields

Al (r) = A~+(r) + Al (r)
1/2

21TAc

col, V ek& ( aki e +ak& e ),

El(r)=—E~+(r)+E3 (r)
1/2

2Trl6Qlk=l ik r f —ik.r
eki (akl e —

akim e ), (2.1)

Bl (r):—Bj+(r)+Bl (r)

27T'i') k= —l

1/2

(ek, Xk)(ak, e'"' —akie '"') .

and

A f= g f flNkak akim
d k3 (2.4)

Here coj, is the frequency of the vacuum normal modes of
wave vector k (k=k/k) and polarization vector ekl, and
where the a's are the Bose creation and annihilation
operators for the (k,j) normal mode. Consequently, the
unperturbed Hamiltonian of the field is of the form

A f= g RCdkakiakl (2.2)
k,j

In the continuum limit the expressions (2.1) and (2.2) take
the form'

p1/2
Al(r)= c g f eke(akie' '+akie '"')d k,

27T ~ Q) k

1/2
E3(r)=i g f Qcokeki(ak e' ' akie ' '—)d k,

j
(2.3)

gl /2
Bl(r)= —l' g f +elk(ek Xk)

2m Jj
X(ak eik. r

akim e ik r)d3gkj kj
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It is possible to show, using the well-known solutions of
the vector Helmholtz equation' and the properties of
spherical harmonics, ' that a unit'ary transformation ex-
ists leading from the continuum-limit representation of
the electromagnetic field in terms of operators a», to the
spherical-wave representation in terms of operators
a(k, k, , l, m), where A, = 8',M refers to the electric or mag-
netic component of the spherical partial wave of angular
momentum I and z projection m. In the continuum limit
the commutation rules for the field operators in the two
representations are

[a»,a.;1=5(l -1 )5... [a„,a„.,']=0, (2.5)

[a(k, k, , l, m), a"(k', 1,', l', m')] =5(k —k')5gg 5@5~~,
(2.6)

[a(k, k., l, m), a(k', A, ';l', m')] =0 .

In terms of the new operators, the fields are expressed

Ag(r) =2~Pic g f j((kr)Y( o(O, q&)a(k, l,=~,l, m)
l, m

[v lj&+,(kr)Y~~+(O, y) —v'l+ 1j&,(kr)Y&~ (O, q )]a(k, A, = 8', l, m) k' 'dk+H. c. ,21+1

EJ (r)=i2v'Ac g f j~(kr)Y~ p(O, qr)a(k, A, =M, l, m)
l, m

+ [v lj &+,(kr)Y& +(O,y) —v'l + 1j&,(kr)Y&~ (O, y)] a(k, A, = 8', l, m) k dk+H. c. ,2l+1

B,(r) = ~2v —R~ g f j~(kl')Y[~p(O, y)a(k, i,= 8', l, m)
l, m

1
[Wlj&+~(kr)Y&~+(O, y) —Vl + lj& &(kr)Y&~ (O, q&)]v'2l +1

(2.7)

&& a(k, A, =~,l, m) k i dk+H. c. ,

where E and B have been obtained from A in the Coulomb gauge and where j~(kr) are spherical Bessel functions, while
Y~~; (i =+,—,0) are spherical vector harmonics which differ by unessential phase and normalization factors from the
usual ones. ' Finally, the Hamiltonian in the spherical-wave representation is of the form

A f = g f ficokat(k, l,, l, m)a(k, k,, l, m)dk . (2.&)
A, , l, m

III. THE ATOM-FIELD INTERACTION

As we shall see later on, the relevant part of the electron-field interaction in the minimal-coupling version is

e 2eh'~'
j (r).p =—,, g f, j&(kr)Y&„o.pa(k, k =~,l, m )

PlC m&' l m

+ [v lji+i(k, r)Y&~+(O, g) p v'l+lji .i(—kr)Yt~ (8 q» pl-1

2l+1

X a(k, A, = 8', l, m) k'i dk+H. c. , (3.1)

where we have used (2.7). Our aim is to calculate the ma-
trix elements of (3.1) between the ground state

~
&b&oo, jOj ), where @&oo is the ground ls state of the hy-

drogen atom and [0] is the photon vacuum, and an excit-
ed state

~
&&~LM, 1(k,k, , l, m) ) where N, L,M are the usual

quantum numbers of an excited hydrogen state and
1(k,k, , l, m) represents a state of the field with a quantum
of type A, (electric or magnetic) in the state k, l, m. We
have

C»&M

In particular

rla&—
@lop + 10(~) 3/3v'4nap . v'4~

and consequently
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. fi
P I @1~&= —i&~

I @1m&=i r
I @1oo&

ao
(3.2)

After some algebraic manipulations it can be shown that
the relevant matrix elements are

(@NLM, 1(k,l, k, ,m)
~
A;

~
@1oo,I0})

1/2

( 1)M L —1—~ e k —1/2+L (L + 1)
mao m.c

X (RNL I
r 'jL(«)

I R10 &o2., 8'~l L& M, -

We now turn to the evaluation of the matrix element
(RNL

~

r j't (kr)
~ R1o) which can be done starting from

the expressions for the radial part of the eigenfunctions of
a bound state of the hydrogen atom' and by extensive use
of integrations. Since it is useful to distinguish the cases
in which Ez belongs to the discrete or to the continuum
part of the spectrum of the hydrogen atom, we shall con-
sider the two cases separately. Then we have the follow-
ing.

Discrete spectrum:

4 (N +L)!
ao

(2Nkao) [N (1+k a ) —1]
(2L +1)!! [(N+1) +N k ao2]

XF(—,'( —N+L+1), —,( —N+L+2);L+ —,'; 4N k a—/[N (1+k a ) —1] )—:f(N L,k) .

(3.4)

Continuous spectrum:

2C L(2kq) ao +k +q
(RqL

~

r 'j1(kr) ~R1o)=, , (ao +k +q )
(2L +1)!!ao [ao '+i (k +q)][ao ' i (k —q—)]

XF(—,
'

[L +1+i (qao) '], —,
' [L +2+i (qao) '];L + —,';[2kq/(ao +k +q )] )=f(qL, k) .

(3.5)

In these expressions F is the hypergeometric function,
q =v'2E in atomic units, and C~L is the usual normaliza-
tion constant.

(pNLM, 1(k,~, l, m)
~
~;

~ $1oo, [o}&

N, L,M, &++~k —&o

IV. PERTURBATION THEORY X
~ $NLM, 1(k,k,,, l, m) )

We set

ieA

mao 77c

1/2

k '~ v'L(L+1)(RNL
~
r j'L(kr)

~
R1o) f dk( —1) (i)

00 eNL(k)

@~No+~k)

so that (3.3) can be cast in the form

= eNL(k) (4.1) X
I ALM 1(k, t( =@',L, —M) &, (4.3)

( C NLM 1(k ~ l m )
l
~i

I
C'1oo [0})

«') 'eNL(k)nt, 8'Ot, LO, —M (4.2)
INN'L'M' 1(kl ~1 ll ml) 1(k2 l 2 l2 m2)& (4.4)

where fmNo EN Eo. The second-orde——r—correction
~

2)
to $1oo is of O (e ), and yields admixture with two-Photon
states of the form

We remark that the notation used here for the principal
quantum number is X, which we formally treat in this
section as a discrete variable. If the intermediate state be-
longs to the continuum we should use q instead, and
change the sums over X into appropriate integrals. Since
no ambiguity arises here, we shall postpone this change of
notation until Sec. VI.

The first-order correction to the unperturbed ground
state NIoo is

plus a small part
~ $1oo, [0}). We are not going to write

explicitly this correction, since the CGED operator W(r)
in which we are interested is a linear combination of
terms of the form

a (k, k, , l, m)a(k', A, ', 1',m') .

Thus there is no O(e ) contribution to 8'(r) coming from
~

2 ) . However, the second-order correction
~

2 ) is impor-
tant for ensuring normalization of the perturbed ground
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state up to 0(e ) terms because of its
I p{oo, to) ) part.

Therefore, although
I
2) does not contribute to the

COED in practice, the ground state normalized up to
0(e ) is in fact

I P{oo, tOI }+I
1)+ I2}. This also ex-

plains why we have kept only the A.p part in A;, as in
(3.1}, since the first-order perturbation treatment of the
A term would introduce two-photon, 0(e ) corrections
to the ground-state eigenvector, which would yield only
0 (e ) corrections to the CGED.

We shall also need in Sec. V the first-order correction
to the ground state in the plane-wave representation,
which we obtain from (2.1) and (3.1) as

1/2

(aqje
' +al je

' ).ek~ p,ar f -ar .
P1C k'

1/2

1}= . eh'
y 2~Ac

P7ZCQO

(4.5)

(PxL,m, 1(k,j) e'"'ezra r @{oo IOI }
X E~+RCOk —EO

x
I @~L,M 1(k j)} (4.6)

where symbol l(k,j) indicates one photon in the state with
wave vector k and polarization j.

The energy corrections obtained by second-order pertur-
bation theory, with special reference to the role of the vir-
tual photons in determining the Lamb shift, have been
presented in a previous paper, "and consequently we shall
not discuss them here.

V. THE COARSE-GRAINED ENERGY DENSITY

One can then obtain the number of photons within Vi as

nr, ——f p(r, t)d r
1

(5.2)

Expression (4.3) for the correction to the ground-state
wave functions shows clearly that the hydrogen atom is
surrounded by a cloud of virtual photons, which are con-
tinuously absorbed and reemitted in all ranges of frequen-
cy with a spectrum determined essentially by the atomic
structure and by the time-energy uncertainty principle.

A conceptual problem arises in connection with the
possibility of describing the shape of this cloud. In fact,
according to the general theory of Newton and Wigner,
the photon does not satisfy the apparently simple condi-
tions for localizability, while relaxing some of these condi-
tions yields the possibility of defining a "coarse-grained
localizability" within a volume Vi whose linear dimen-
sions cannot be reduced below the wavelength of the pho-
ton one is trying to localize. This has led to the introduc-
tion of a "coarse-grained photon density" defined in terms
of the operator

p(r, t) =ttit(r, t) P(r, t), (5.1)

et {a r rot)—1

k,j

provided V& is smaller than the quantization volume V
but larger than the largest wavelength in the photon field.
Unfortunately, as discussed by Cook, ' p(r, t) as defined in
(5.1) does not satisfy any simple continuity equation of
the form

8t p+V j=O, (5.3)

j=c(@'xp —p'x p),
(5.5)

Cook obtained the continuity equation (5.3), and he was
able to show that @ and P are related to the positive ener-

gy parts of the transverse electric and magnetic fields
which can be obtained from (2.3) as

E+(r) = &'i'g f V'tokens, akje'"'d'k,
277

(5.6)

8+(r) = — A' g Qcok(eqj x k)akje'"'d k,
277

where the transverse symbol has been dropped for con-
venierice of notation. This relation, however, is rather
complicated because it is integral and nonlocal, of the
form

P(r, t)= f g(r r')E+(r', t)—d r',

P(r, t) = f g (r r')8+(r', t)d r', —

with the kernel g (r) defined as

(5.7)

(5.8)

In Cook's theory, the operator representing the number of
photons within a volume V{ is also of the form (5.2},with
the same limitations on V as in Mandel's theory.

The relation between the g and P operators in Cook' s
theory and the electromagnetic field operators leads us to
investigate the possibility of representing the shape of the
photon cloud dressing the atom by directly using electric
and magnetic field operators, which refer to physically
measurable quantities. Thus we use (5.6) and their Hermi-
tian conjugates to define the operator

$V(r) = (E -E++8 8+)1

4m
(5.9)

where j is a photon current density, which should be a
desirable feature for a reasonable photon density operator.
This difficulty was overcome' by introducing a pair of
vector field operators (for an infinite quantization volume)

y(r, t) = [2(2m) ] '~ g f eq aq e'"'
j

(5.4)

p(r, t)=[2(2') ] 'i g f kXek aj, e' ' ""d k .
J

By defining the photon density and the photon current
density, respectively, as

p=4'0+4' 4
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which is related to the energy density of the electromag-
netic field and which is obviously the counterpart of p(r)
in (5.5). It is interesting to compare (5.9) with the expres-
sion for the energy density of the field which, omitting
zero-point energy terms, can be written

I.
fv W(r)d r — gficokaq~aq~

k,J

Vi g f Acokcxg&exp& d k3

J
(5.14)

1 (E'+B')
8m

1= W(r)+ [(E+)'+(E )'+(B+)'+(B )'] .
8~

(5.10)

In view of coarse graining with a cubic mesh of side L,
integration of (E+) and (B+) over a cubic volume
V& Land ——use of (5.6) yields

f [E+(r)] d r

for large V. Thus upon coarse graining the contributions
to the energy density coming from correlations between
photons with different k tend to vanish, and only diago-
nal pairs of operators of the form aqja~J remain, which
seems to support an interpretation of f W(r)d r in terms
of the energy carried by the decorrelated photons within
V).

Next we show that the CGED satisfies an appropriate
continuity equation. Maxwell's equations for the trans-
verse components of the classical field are

V.E =V.B =V j =0 o.=+
~k~k' kj ek'j' kjo'k'j'4' J J

'k+k "d r d k d k',
L3

f [B+(r)] d r
(5.11)

(5.15)

VXE = ——B, VXB =—E + j4m .
C c C

1

where j is the transverse current density. Using the gen-
eral relation

V (axb)=VXa b —a Vxb

v'mk~k (ejj Xk)(eke Xk')&kJ&vJ.
Jj

eE k+k') rd 3& d 3k d 3k
L3

A slight modification of Mandel's argument immediate-
ly leads to the conclusion that the largest contributions to
the k and k' integrations in both expressions in (5.11)
come from the pairs with k'- —k for all k&2m. lL. On
the other hand,

(ekj Xk).( —eqj Xk)= eq~ ejj. — .

we obtain from (5.15)

a (E E+ ) = —4m(j E++j+.E )at

—cV (E+ XB +E XB+)

—(B .B++B B+)

and consequently

a
at

8'+ V.S= —q, (5.16)

and by an appropriate choice of the mesh size, only 8' in
(5.10) yields sizeable contributions to the CGED. For this
reason we call W(r) the CGED of the field.

On the other hand, f W(r)d r can be interpreted as

the energy carried by the photons and localized within
volume V~. To show this, it is convenient to start from a
finite quantization volume V, to obtain E and 8 from
(2.1) to introduce coarse graining with a mesh of side
L (L && V), and then to consider the limit of large V.
We obtain

z W(r)d r= g g V ~k~keaq ev'q'~tq~v'J'

—i(k—k') rd 3d p'.
L3 (5.13)

Using Mandel's argument again, we get

and these main contributions have opposite signs in the
two integrals in (5.11). Consequently

f [E (r)] d r- —f [B (r)] d r, cr=+
1 1

(5.12)
S is clearly the counterpart of Cook's photon current den-
sity, ' and also the Poynting vector in the continuity equa-
tion for the total energy density, while q is the source
term which closely corresponds the density of the rate of
change of the kinetic energy.

Further, we consider the continuity equation

(E +B ) = —j.E—V. EXB
at 8m 4~

(5.18)

where all quantities are transverse, and which is directly
obtainable from Maxwell's equations for the transverse
field. Integration of (5.18) over V& yields

E2+B2 d3q

= —f j Ed r —f EXB ndW, (5.19)

where we have set

S= (E+xB-+E xB+), q=j- E++j+.Ec
4m

(5.17)
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where the last integral is over the surface of V&. Intro-
ducing positive and negative frequency components, we

get

f W(r)d r+ g f [(E ) +(8 )2]d3r8

g

= —f~ qd r —f S ndW —g f j~ E~d3r

[ W(r), W(r')]—:C(r, r')&0 . (5.26)

, ~,kj+k'j' +—k'j'+ —kj

Using

(5.27)

ekj =ekj =e

Substitution of (2.1) into (5.24) yields the expression for
C(r, r') as a linear combination of terms

E XB 'ndW .
4~

Using ihe same procedure as before, we find

(5.20) the quantum-mechanical average of each term (5.27) on

the perturbed ground state

I@'ioo I0) &+11&

[(E )']=—8mj .E —2cV.(E 0&8 ) —28 8

from which

with
~

1 & given by (4.6) can be easily seen to vanish. Con-

sequently &C(r, r') & on the perturbed ground state van-

ishes, and on the basis of the generalized Heisenberg un-

certainty relations one finds

C}t
[(E ) +(8 ) ]=—8m.j E —2cV (E &&8 ) . (5.21)

b. W(r)bW(r') )0 . (5.28)

Integrating over Vi and using (5.12) yields

—f j E d r — f E XB ndW-0. (5.22)
4m

Substituting (5.12) and (5.22) into (5.20), we obtain

f W(r)d r= —f qd r —f S ndW (5.23)

which shows that the continuity equation for the CGED
(5.16) can also be obtained by coarse graining from the
well-established continuity equation (5.18) for the energy
density.

A final point worth mentioning is that the CGED's at
different points in space do not commute, in contrast to
the usual energy density operator. In detail, using the
plane-wave expansion (2.1), it can be shown that

[E (r) E+(r),E (r') E+(r')]
= g f b(r r')[E (r)Eb+(r—') —Eb (r')E+(r)],

a, b

[8 (r).B+(r),8 (r').8+(r')]

Relations of this kind have been shown by Deutsch to be
in general too weak to express properly the uncertainty
principle. A more appropriate expression of this princi-

ple, strictly speaking valid for a discrete spectrum, has
been proposed by Deutsch in the form

2

1+supI I
&4«)14«') & I I

'

(5.29)

where A'(A, B) is an irreducible lower bound in the uncer-

tainty in the result of a simultaneous measurement of A

and B, and where
~

p(r) & is an eigenfunction of operator
W(r). The exact eigenfunctions of W(r) are not easy to
find, but from (5.9) and (2.1) it is easy to see that both
W(r) and W(r') can be written as linear combinations of
terms of the form akjak J . Consequently a tensor product
of coherent states for each mode (k,j) in the fieldeac, h

with a large number of photons, is almost an eigenstate of
both W(r) and W(r'), corresponding to different eigen-
values in the two cases. Thus in (5.29)

= y„fgb(r r')[B. (r)Bb+(r') B—b (r')B,+(r)), —
a, b

[E (r) E+(r),B (r') 8+(r')]
= g h,b(r r')[E, (r)Bb+(r')+Bb —(r')E,+(r)),

a, b

(5.24)

supI I
&4(r)

I
P(r') &

I ) —1

we find again

~( W(r), W(r')) )0 .

(5.30)

(5.31)

[8 (r) 8+(r),E (r') E+(r')]

= g h, b(r r')[E, (r)Bb+(r)—+Bb (r)E,+(r')),
a, b

where a, b =x,y, z and

2~ k, kbf b(r —r')= g~k ~ b— ik.(r—r')e

(5.25)
ik {r—r')

h b(1 —i )= — Qcoks b
— e

k

where cab, is the third-ranked antisymmetric unit tensor.
Consequently

Actually the situation might be more involved than this,
since the eigenvalue spectrum of both W(r) and W(r') is
continuous rather than discrete, and instead of Deutsch's
approach one should use Partovi's generalization of this
theory to the continuum case. This, however, is clearly
beyond the scope of this paper, and consequently we shall
take result (5.31) as an indication that the limitations in
the theory caused by the noncommutation of W(r) and
W(r') are not very severe.

The results obtained in this section lead us to conclude
that the CGED W(r) is a reasonably well-defined physi-
cal quantity, capable of describing in a reliable way the
main features of the photon distribution in a quantized
electromagnetic field.
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VI. SHELL STRUCTURE OF THE PHOTON CLOUD

We are now ready to calculate the space distribution of
the CGED in the ground state of a hydrogen atom, which
we take as

following the discussion of Sec. IV, with
I

1& given by
(4.3). Using (5.9) we have

&1I «E++B B+)
I
1&, (6.2)

I@&= IWi .Iol&+ I» (6.1) where

I
1 & =412c p, f f [~lj i+i(kr)Yi +(o,y) —&1+1ji i(kr)Yim (o,y)]

i. ~ (21+1)(21'+1)

[~lj'i + i(k'r )Yi ~ +(8,+) Vl'+ l—pi, (k'r )Yi.~ (O, y)]

X(1Ia (k, k=8', l, m)a(k', A, =8', 1',m')
I

l&k'i (k') i dkdk'

and

(1
I
B B+

I
1& =4fic g f f [Ji(kr)Ylmo(il y)] [ji «''r»i o(i1 q')]

l, m, l', m'

X (1 a (k, A, =S', l, m)a(k', A, =S',1',m')
I

1&k ~ (k')'~ dkdk'.

(6.3)

(6.4)

On the basis of (4.3), we are thus led to evaluate the matrix element

(1
I
at(k, A, = 8', l, m)a(k', A, = 8', 1',m')

I
1&

f f ( 1)M+M' L L'—
N, L,M,

N', L', M'

eNL (k 1 )~N'L'(k2 )

&'(~NO+~k, )(~N O+~k, )

We have

x (itiNLM, 1(k,k = 8', 1, —M)
I
a (k, A, = 8', l, m)a(k', A, = 8', 1',m')

I
4'N'L'M'» 1(k2 ~= 8 L', —M') & Xdk, dk2 (6.5)

(1(ki,A, =S',L, M)
I

a (k, A, =—8', l, m)a(k', A, = 8', 1',m')
I

1(k2,A, = 8',L' M') &-
= g ( l(ki, A, = 8',L, —M)

I

at(k, A, = 8', l, m)
I
i &(i

I
a(k', A. = 8', 1',m')

I
1(k2, A, = 8',L',M) &

l

=(1(k,A, =S',L, —M)
I

at(k, i,=S', l, m) IOI &( OIIa( k'A, = 'Sl', m)
I

1(k 12IS',L', —M')&

=5(k —ki)5iL5 M5(k' —k2)5i L5 (6.6)

where
I
i & is a complete set of eigenstates of the field. Substituting (6.6) into (6.5) and taking into account the orthonor-

mality of pNLM, we find

I I I ENL ( k )&NL ( k
(1

I
a (k, A, =S', l, m)a(k', A, =8', 1',m')

I
1& = ~l, L ~l', L ~m, —M ~m, —M'

N, L,M ~ (~NO+~k)(~NO+~k')

eNL(k)eNL(k )
5l l6

N ~ (~NO+ ~k )(OiNO+ ~k')
Substituting (6.7) in (6.3) and (6.4), we obtain

(1
I
E E+

I
1&=4A'c g f f [v lji+i(«)Yim+(i) y) —&1+lji—i(«)Yim —(i9 y)]

NLM +
.[v lji+ i(k'r)Yi~+(~, q ) &1 + lj i i(k'r)Yi —(&,q )]

(6.7)

k (k') dk dk',
& (~NO+~k)(~NO+~k )

(6.8)
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OO OO eNL(k)eNL(k')B+ ~1)=4~ & f, f, [jr(«»lmo(~ q»] [jj(k'r»jmo(llq»] k ~ (k') ~ dkdk'.
X,L,M & (~NO+~k)(~NO+~k')

(6.9)

Introducing appropriate sum rules we find

(1 iE .E+i 1)
Oo Oo &Nj «)&Nj(k')g f f [ljj+&(krj)j+,(k'r)+(l +1)ji,(kr)j, I(k'r)] k'i (k')'i dk dk',

N, L ~ (~NO+~k)(~NO+~k')

(1~ &- &+
~

»= g(»+1) f, f J, (kryo), (k'r), "' "' k'"(k )'"dkdk .
N, l ~ (~NO+ ~k )(~NP+ Pjk')

Using (3.4), (3.5), (4.1), and co=ck in (6.10) we obtain

Ae OO OO

(1 (E E+ (1)= r g pl(1+1) f f [(j (rrrr/mc)j (rrrr/mc)+(1+1)jr r(rcr/c)jr r(m r/c)]'
mm apc 0 0

f (E,l, pj)f'(E, l, co')
X COCO de dCO

(COk P+ CO ) (COk P+ CO' )

(6.10)

(6.11)

(6.12)

where we have written z (with E =N or q) instead of gN to emphasize that the sum over intermediate atomic states
becomes an integral in t e region of the continuous spectrum. Factorizing the integrations in (6.12) we find

E- E+
I
»

2

/ /+1 / E, /, co den + /+1 E, /, co de
7T f71 QPC E I COE p+ CO COE p+ CO

Proceeding in the same way, we obtain from (6.11)
2

(1(B B+ 1)= c g pl(i+1)(21+1) f j(E(rc)dm
& m QPC E COE p+ CO

2'

(6.13)

(6.14)

Unfortunately, the expressions in (6.13) and (6.14) can-
not be summed exactly, and one is compelled to resort to
approximations or to numerical computation. The main
features of the photon cloud, however, can be preliminari-
ly obtained by appropriate considerations on the form of
(6.13) and (6.14), and it is these considerations that we
shall try and develop next.

(i) First we remark that in (6.13) and (6.14) the contri-
butions coming from the different intermediate atomic
states are taken into account through the E, which runs
over all possible energies including the continuous spec-
trum of the ionized atom, and through the / summations,
which runs over all permitted angular momentum sub-
shells belonging to the same E shell. At this stage of the
theory, all these contributions add incoherently to give the
total CGED, and consequently the total cloud of photons
can be considered as if arising from an infinite set of
two-level atoms, each consisting of the same 1s atomic
ground level and of the excited /th subshell level of energy
~Ep above the ground state. Some of these ficititious
two-level atoms, i.e., those belonging to different / sub-
shells within the same E shell, have the same AcoEp and
each of them contributes a spherically symmetric cloud;
the shape of this cloud is different for different subshell,
even if they belong to the same E shell and hence have the
same bozo. We shall indicate by (E E+)E j and by

(B 8 )E j the electric and the magnetic contributions
to the COED coming from the E, / subshell, and shall oc-
casionally consider this contribution independently of the
others.

(ii) The E, l subshell contribution obviously depends on
the amplitude of the form factor f(E, /, co). We now
prove that within the same E shell the dominant contribu-
tion comes from the / = 1 subshell in both limits
pjap/c »1 and coap/c «1. We take E=N for simplici-
ty, but the same kind of argument is also valid for E =q.
From (3.13) we have

f (N, l, co)

f (N, l, co)
I /2

(N+1)!(N —l —1)! (2l +1).".

(N —2)!(N + l)! 3

)& (2¹oap/c) '+'[N (1+(jj ao/c ) —1]'+'

F( —,' N + 1, ——,
' N+ —,; —,—;z)

F( ——,N+ —,(l +1),—, N+ —(l +2);l+ —,;—z)

(6.15)

where
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4Ncoa /c

[N (1+co ap/c ) —1]

Since z «1 in both limits, we can approximate as 1 the
ratio of the two hypergeometric function in (6.15). After
some straightforward algebra and other obvious approxi-
mations, we find

coji (cor /c)J f(E,l, co)dco
CUE p+ CO

c(r coj i (cor/c) capf(E,l, co)dco cc
NEp+M r

ap & r & rz/2 . (6.20)

f(N I )
K(coap/c ) t co ))c/apI —I

c

f (N, /, co) K(coap/c) '+', co «c/ap

where

2-I+ 1

K= (2l+1)!!.
3

Moreover, for co-c/ap we find from (6.15)

f (N, l, co) (2l +1)!!Net+If(N, l, co) 3

(6.16a)

(6.16b)

Substituting (6.20) into (6.13) and (6.14) we obtain a fairly
large region of space, external to the atom and up to a dis-
tance of -rE/2, in which the contribution of the E, l sub-
shell to the CGED varies like r . A second conse-
quence of the ansatz is that within the spherical shell
vE/2 &v (rz we have to take the upper limit of integra-
tion in (6.13) and (6.14) to the c/r —cozp. Within this re-
gion of r we can also approximate

Cg)Ep+ CO COE p
r~/2 &r (rF (6.21)

and we can retain approximations (6.18) and (6.19) as
valid. Therefore we obtain

&Ep+ CO
(6.17)

in the integrand. Quite arbitrarily, we take r &rF/2. As
for the Bessel functions ji (cor/c) (with l'=l+ l, l) appear-
ing in the same integrals, within the region r &rz/2 their
argument is & 1; hence they can be approximated as

Zi
j((z)—,„, r &r~/2 . (6.18)

Thus we are 1ed to conclude that within each shell the
dominant contribution to the CGED comes from the l = 1
subshell.

(iii) We now consider the E, / subshell contribution, and
remark that the lifetime of a virtual photon of frequency
co emitted by the atom within this subshell is
r —(co~p+co) '. During this time the photon can reach
the observation point at distance r from the atom only if
cr &r. Thus only photons of frequency co(e/r —co~p
can contribute substantially to the CGED at r. Thus we
make the ansatz that in integrals (6.13) and (6.14) the con-
tribution of the integration in the range from c/r —cozp
to infinity is negligible compared to that in the range
from 0 to c/r —cozp. Thus the CGED coming from the
E,l subshell should decrease noticeably outside a sphere of
radius rz-c/cozp. A first consequence of the ansatz is.hat, for any point inside a sphere of radius r sufficiently
smaller than r~, we can take the upper limits in integrals
(6.13) and (6.14) to be approximately c/r, and coherently
approximate

~g, (~r/c)f f(E, /, co)dco
~zp+

'c' ~Ep coj i (cor/c) f(E,l, co)
p FOE p+ CO

. I +I'+2
r

CC

e

ap C —COg pr vs/2(r (vs

(6.22)

whose leading term is of the form c apr, since in this
range c/r &co~p. Thus we expect a CGED which varies
like r ". In view of the arbitrariness involved in the
choice of rF/2 as the radius of the surface dividing the
two regions of space considered, we expect a rather
smooth transition from the r behavior in the inner
region to the r "behavior in the outer region.

%'e can summarize the results of this section by saying
that, on the basis of semiquantitative considerations, we
expect that the total CGED can be described as consisting
of a linear superposition of spherically symmetric contri-
butions corning from each E,l atomic subshell, the most
important of which for each E is that with l =1. In the
range ap &r &rs, the r dependence of each contribution
should change from r ' to r as we move out-
ward from the atom. In particular the I =1 contributions
should behave like r in the inner region and like r in
the outer. region. %'e shall see that these predictions are
supported by the exact results of Sec. VII.

f(E, /, co) ~ (coap/c)', r & ap .

Using (6.17), (6.18), and (6.19), we find

(6.19)

Moreover, for r &ap in the integrand of (6.13) and
(6.14), we may take co «c/ap, and we can approximate
soap/c «1. Thus we neglect both kap and % ' with
respect to 1 and we neglect both k and q with respect to
a p, thereby obtaining

VII. THE 2P-SUBSHELL CONTRIBUTION

In order to check our semiquantitative predictions of
Sec. VI, here we present the results of an exact calculation
of the contribution to the CGED coming from the 1s~2p
virtual transitions, which can be done analytically. From
(3.13) we have
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f ( 2 1 )
16' k

(9+4k ao) 2 2 d(@=A()+A(2, I'=0, 1,2
(coEp+co)(aP, +ro')'

XF(0, —,'; —', ; —16k ao/(3+4k ao) )
cpj I (d'or /c)

22dCO ~p (~2+~2)2 (7.2)

1 /2
2
3

C CO

ap ((p, +(o )
p

coj ( (a)r /c)
dCO .

((o +(o)(ro +(o )

where co, =3c/2ap plays the role of a high-frequency cut-
off. Using (7.1), the three. integrals appearing in (6.13)
and (6.14) can be written as

After rather lengthy calculations and use of integral
tables we obtain, in terms of the exponential integral
Ei( —x) = —E((x)

1 1 . 1
Ap&

——
2

e"Ei( —x) 1 ——+e "Ei(x) 1+—
4CO2 X X

IT X 1 1 1

2COc X 2 X

1 9 1 „. 4 9
2 +—e"Ei( —x) —1+—+

4 x
—e "Ei(x) 1+—+4 9 9

x x

AP2 ———COE p/CO

4(('oEp+ro~ )

Eo x 1e"Ei( —x) 1 ——+e "Ei(x) 1+—
C X X

—X—ze *

COE pCOc COE p 1 ~ 7T
[e "Ei(x)—e "Ei(—x))— e

(roEo+(p ) (0& 2x 2x

2
COED

2 [si(z)yp(z)+ Ci(z)jp(z) ],
(~Eo+ ~pc )

2 2~Eo/~~ 2 2
2 2 X+2+-

4X COEO+ COc X X

2
COEO

[1—e "(1+x)]
2x (('oEp+('oq )

1 ~Eo/~c 2 „. 1 1 1 1+ —
2 2

——+e"Ei(—x) —1+—— +e "Ei(x) 1+—+4 COEO+ CO X

+ 2 eEi( —x) 1 ——+e "Ei(x) 1+—1 coEococ x . 1 —x 1

2X ((oEo+~ ) X X

2
1 COc 1

2 2
———z[si(z)yp(z) +C((z)jp(z) ]x (Q7Eo+ Qj ) x 2

COED
z[Ci(z)yo(z) —»(z)jo(z)]

COc

COE p

C

3 —X—e
X

COEO/COc
A22 ———

COE p+ COc

9 1+-
,

2x2 4

3 33+ 2+
X X

4 9 9 . . 4 9 9e Ei( —x) —1+—— + —e "Ei(x) 1+ —+ +.
x x X X

3 12+2
COEOCOc

((0Eo+~pc )

coEo 3 1 . 1 3 3+—e "Ei(—x)
, x 2 x x x

—e Ei(x) —+ +1 . 1 3 3
2 x x

3 — 1 3 3—e " —+ +
x x x x

COE p

((oEo+('pe )

3 ~ . 3 3
2

—1 [si(z)yp(z)+Ci(z) jp(z)]+ —[Ci(z)yo(z) —si(z)jp(z)]+Z' Z Z'
3m 1

2 z3
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where x =co,r/c, z =coEpr/c, jp(z), and yp(z) are spheri-
cal Bessel and Neumann functions and

z S111Z
si(z) = ——+, dz',

2 o z'

one is compelled to resort to some approximations in or-
der to have a feeling of the spatial behavior of the 1s-2p
contribution to the CGED. Consequently we consider the
region x »1, we use the expansions

Z I

Ci(z)=y+1nz+ I, dz'
0

(7.4) eX
Ei(x) =

x
1 21+ + +x2

are the sine and cosine integrals, y being the Euler con-
stant.

Expressions (7.3) are analytic and in closed form, but
they are not easy to interpret in terms of more simple
functions. Although it is evident from (7.2) that for each
l'

Ei( —x)=
x

1 2
1 ——+

X
(7.6)

f(z) =Ci(z) sin(z) —si(z) cos(z),

g (z) = —si(z)sin(z) —Ci(z)cosz,
(7.7)

and we keep terms up to O(x ). Introducing the func-
tions

I
~I 21 &

I
~I i I

(7.5) we obtain from (7.3)

2
~EO

STOEP ]
2

(COEp+Co~ ) X

1 1 5 1 1 ~ 1 1 1 29 1
AO$ —

2 +—,A]I —
2
—

7 A2] —
2 22 2 4 2 2 2 ~c

2 2 2 2
CAMEO/Q)~ 1 5 COEO/Co~ 2coEO 1 ~ ~EO22+2222222+2224222

COEQ+Co& (COEp+Co& ) X COEp+Co& (COEQ+Co& ) X (COEp+Co& )

2
1 & 1 ~EO/~c ~c~Eo 1 c cuE0 1
2 2 2+ 2 2+ 2 22 3+ 2 22 g + 2f

co~ 2 x coEp+co~ (coEp+co~ ) x (coEp+co~ ) coq x x

2cOE0/'toe 2cOEO
2 2 2

1 1 1 29 coEQ/co.
2 2 222+222+2222+ 3+ 2 2COEQ+Co~ (COEQ+Co~) (COEQ+Coz) X CogCOEQ X 2 COEQ+CO~

2
~Eo 1 1 3~& 1

2 2 2 f(z) —3 g(z)—— f(z), r »2ap/3 .
(COEP+CO, ) Co, X X' COEQ X'

(7.8)

Even form (7.8) for the coefficients is not very transparent and, although in view of (7.5) one can clearly see the x
dependence predicted in Sec. VI in the region (x »1, z «1), it is not easy to distinguish the x dependence in the
outer region of the sphere r & rE. On the other hand, for r &&rE it is z »1, and we may use expansions

1 2If(z)= 1 — +. .—.
Z Z2

1 3tg(z)=, 1—;+.. . (7.9)

which, after substitution into (7.8), yields

1 1
A02-

CO X

2 2 - 2 4 2
5 &EO/&c 2&ED 2coc /MEO

COE p+ Co~ (COEQ+ COc ) (COEQ+ Co~ ) X

1 ~ 1 1 2
A (2- — — +

~, 2 x ~.~Eox
(7.10)

~22-—
2 2 2 4 2

1 2 1 3m 1 29 ~Eo/~c ~EO ~c /~EO 1

CO& X COgCOEQ 2 X 2 COEQ+CO& (COEQ+Co& ) (COEO+CO& ) X2 2+ 3+ 222222224
from which it is easy to see the exact cancellation of the
O(x ) terms taking place in each of the AI &+A~ 2 terms
and leading to the O(x ) behavior at large distances
from the atom.

In order to have a more complete picture of the photon
cloud, we now resort to numerical calculations from the

( A2) +22 Q) )r2 ~ (E E+ )2~r

3A )(x ~ (8 .8+)2~r

(7.11)

I

exact expressions (7.3). In Fig. 1 we plot the quantities
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0.2

0.1
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FIG. 1. The dashed lines refer to the 2p subshell electric and
magnetic contributions to the CGED of the ground-state hydro-
gen atom. The solid line refers to the total 2p CGED. The
scale is linear on both axes, and ao is the atomic Bohr radius.

10 "

]0 2 10 ' 10' 10

in the range 0&x ~10. Since in this range 2~2 is negligi-
ble with respect to A~ ~, the two quantities in (7.11) are,
respectively, proportional to the 2p-subshell electric and
magnetic contributions to the radial CGED, as is obvious
from (6.13) and (6.14). The two densities are different,
but the maxima of both are in the neighborhood of the
Bohr radius and they display the same general behavior.
In the same figure we also plot the total 2p-subshell radial
CGED

FIG. 2. The total 2p contribution to the CGED in the
ground state of the hydrogen atom. The slopes of the tangents
are —2 and —4, and they intersect at z=1.6. The scale is loga-
rithmic on both axes, and z = 1 corresponds to r =c/coEO.

( A p& +22 p& +33 ~& )x CC ( W(r) )2&r (7.12) rE= 12+9m. /4 c
6+3m' /4 ~gp

c—1.6
Q)Ep

(7.16)

as the sum of the two previous contributions. In Fig. 2
the quantity

[ (~21+~22) +2(~pl +~p2) +3(~11+~12) lz

~ & rV(r) ),~r' (7.13)

is displayed in a doubly logarithmic scale in the range
10 &z &10. The scale has been fixed by assuming
co /cosp= 548. The change in slope around z —1 is from
—2 to —4, in agreement with the approximate estimate
based on the ansatz of Sec. I., and it is seen to take place
gradually over a broad range of z values. The position at
which the tangents to the z and z parts of the curve
cross is, however, a well-defined quantity which can be
taken as a measure of the geometrical boundary of the 2p
virtual photons subshell. This boundary can be analyti-
cally calculated as follows. In the z region the main
part of the CGED is obtained from the first three expres-
sions for A~ ~ in (7.8) as

SENT'

c 18'( ~ 6+ (7.14)
4 ~c

while in the z range we may take the 0 (x ) terms of
A~ 2 in (7.10), yielding

9 2

W. - 12+' c6
2 3 6~Ep~, r

(7.15)

The two straight lines representing-(7. 14) and (7.15) in a
double-logarithmic scale intersect for 8'& ——8'&, that is,
at

The semiquantitative treatment of Sec. VII leads us to
conclude that the boundary of the E, l subshell was
around rE -c/cozp. We see that this prediction does not
compare too badly with (7.16).

As for the contributions coming from the other sub-
shells with l = 1 and different Z, we remark that in both
ranges soap/c »1 and soap/c « 1 it is a good approxima-
tion to set

f (2, l, co) 3/2

f (N, l, co)
(7.17)

and independent of co. Although (7.17) is likely to break
down for soap/c —1, one may hope that the range nonvah-
dity is small. Thus one finds from (6.13) and (6.14) that
(W(r))zz must be approximately given by the same
function of cozp as ( kV(r))zz, scaled by a factor propor-
tional to %, at least for E belonging to the discrete part
of the hydrogen spectrum. Consequently the same argu-
ment leading to (7.16) should be valid also for E =X and
l = 1 in general. Using for ~Ep the well-known expression
of the hydrogen discrete spectrum we obtain that the
outer part of the virtual cloud of photons is dominated by
a series of concentric subshells of radii given by

fK/ pc
r& &

—1.6&2
e X —1

(7.18)

More generally, we are led to the conclusion that the
strocture of the virtual cloud of photons in the ground
state is in fact an "inside-out" mapping of the electronic
structure of the hydrogen atom.
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VIII. CONCLUSIONS

We summarize the results of the work reported in this
paper as follows. We defined a CGED operator 8'(r) in

(5.9), which is related to the energy density of the elec-
tromagnetic field and which appears to be a suitable
operator to describe the distribution of photons in space.
In fact, as shown in Sec. V, J W(r)d r yields the energy

1

carried by the photons within volume V& simply as the
sum of the individual energies of each photon, while
8'(r) satisfies an appropriate continuity equation. We
have obtained the quantum-mechanical average ( W(r))
in the ground state of a spinless hydrogen atom coupled to
the electromagnetic field. This ground state has been ob-
tained by perturbation theory, using the minimal coupling
form of the radiation Hamiltonian. Within these limits,
we have calculated ( W(r) } exactly, and we have shown

that it consists of an infinite number of contributions
which add incoherently. Each contribution can be associ-
ated to the virtual transitions leading from the 1s ground
state to all eigenstates of the bare hydrogen atom belong-

ing to the same subshell. All bare atomic eigenstates, in-

cluding the continuum, contribute to the total ( 8'(r) ), as

implicit in (6.13) and (6.14). From a semiquantitative
analysis of the latter expressions, we have found that each
subshell belonging to the same shell of energy

+shell + I =~~EO

yields a cloud of virtual photons extending out to a dis-
tance of the order of rF ——c/co~0. This can be understood
in modelistic terms by considering that the lifetime of a
virtual photon of frequency co, emitted in a virtual transi-
tion corresponding to an energy difference ficozo between
the atomic states involved, is -(co+co~o) ', hence this
photon can reach out to a distance -c(co+cozo) ' from
the atom. We see that r, =c/cozo coincide with the limit-
ing reach of the low-energy virtual photons. Thus the
whole dressed hydrogen atom can be thought of as being
contained within a sphere of radius c/co2&» —1200 A, the
other virtual Xl-1s transitions yielding shells of virtual
photons of progressively smaller dimensions. Within each
shell, the contributions arising from the various subshells
with different values of / are different from each other,
since the l =1 subshell has been shown to dominate the
others with l&1 and since the r dependence of each sub-
shell changes from r to r "over a fairly broad re-
gion around rE. In particular, exact calculations concern-
ing the 2p subshell have been performed, which show that
the r dependence of the CGED changes from r to r
at r~ —1.6c/co2~ (, .

It may be of some interest to compare the rather corn-
plex shell-structured cloud of virtual phonons around a
hydrogen atom discussed in this paper to the structure of
the virtual clouds arising in other problems with different
physical contexts. As it is well known, the ground state
of a meson field linearly coupled to a static source entails
a cloud of virtual mesons which decays exponentially over
a distance of the order of the Compton wavelength of the
meson. Remarkably, the same qualitative agreement
given above for the photon cloud can be used to explain

this result, since the minimum energy cost to create a vir-
tual meson is -mc, and consequently the lifetime of this
meson is at most -fi/mc . In this time the virtual meson
cannot travel over a distance larger than -A/mc, which
is its Compton wavelength. In the more complicated case,
mentioned in the Introduction, of the cloudy bag model
for the nucleon, ' the charge density of the pion cloud is
obtained as the sum of two contributions p ~ and p ~
which arise, respectively, from the N and b, degrees of
freedom of the three quarks inside the bag. This is analo-
gous to the shell structure in our approach to the photon
cloud, although the situation in the cloudy bag model is
more complicated because the leading contributions to the
charge density arise from the quarks inside the bag rather
than from the pion cloud. In the case of the optical pola-
ron, also mentioned in the Introduction, ' the polarization
charge density does not display any evident shell struc-
ture, which is understandable since the source of the po-
larizing field is in this case structureless, contrary to the
case of the hydrogen atom considered here or to the case
of the MIT bag of the cloudy bag model for the nucleon.
The familiar exponential behavior of the lattice polariza-
tion density at large disances from the electron might
seem rather surprising in the light of quantum field
theory, since one would associate an exponential decay
with a finite mass of the particles in the virtual cloud, and
an inverse power law with massless particles such as pho-
tons or phonons. In the optical polaron case, however,
this exponential behavior is likely to be associated with
the optical character of the phonons contributing to the
lattice polarization, which provides a finite excitation en-

ergy also for zero-momentum phonons.
Finally, we wish to spend a few words in relation to the

work by Power and Thirunamachandran' mentioned in
the Introduction. In our opinion, an approach of the sort
they have developed is complementary to ours, in the
sense that we work in the Schrodinger representation
while their calculations are entirely developed in the
Heisenberg picture. Consequently, we expect that a calcu-
lation of 8'(r) using their technique should give the same
results as in our approach. No comparison, however, is
possible between our present results and those given in
their paper, since most of the latter results have been ob-
tained using the multipolar Hamiltonian, from which it is
natural to calculate the transverse displacement field
operator d(r). This operator, outside the source, is equal
to the total electric field operator rather than to the trans-
verse electric field which we use in this .paper in the defi-
nition of W(r) As a co.nsequence, the r behavior of
the total energy density, which is proportional to the van
der Waals interaction energy at large distances as obtained
by Power and Thirunamachandran, cannot be compared
to our r behavior of 8'(r) at the same distances, be-
cause the former is proportional to d (r) and W(r) is
only a part contributing to it.

In conclusion, the shell structure that we propose in
this paper for the cloud of virtual photons dressing the
ground state of a hydrogen atom seems to be a well-
founded and reasonable concept and perhaps a nontrivial
contribution to the clarification of a the physical meaning
of field-dressed particles.



31 CLOUD OF VIRTUAL PHOTONS IN THE GROUND STATE OF THE HYDROGEN ATOM 2841

ACKNOWLEDGMENTS

Gne of the authors (F.P.) acknowledges interesting con-
versations on matters related to this paper with C.
Cohen- Tannoudji, R. J. Cook, E. Kartheuser, and S.
Lundqvist, and he is pleased to thank E. A; Power for

much encouragement and for his interest in the subject of
this paper. Partial support by Comitato Regionale
Ricerche Nucleari e Struttura della Materia and by Grup-
po Nazionale di Struttura della Materia (Consiglio Na-
zionale della Ricerche) is also acknowledged.

Also at Istituto per le Applicazioni Interdisciplinari della Fisi-
ca, Consiglio Nazionale delle Ricerche, I-90123 Palermo, Ita-
ly.

~H. A. Bethe, Phys. Rev. 72, 339 (1947).
2T. A. Welton, Phys. Rev. 74, 1157 (1948}.
L. Van Hove, Physica 18, 145 (1952); 21, 901 (1955); 22, 343

(1956).
H. E. Moses, Lett. Nuovo Cimento 4, 51 (1972); Phys. Rev. A

8, 1710 (1973};H. S. Hoffman and H. E. Moses, Lett. Nuovo
Cimento 4, 54 (1972).

5C. K. Au and G. Feinberg, Phys. Rev. A 9, 1794 (1974}.
6J. Dupont-Roc, C. Fabre, and C. Cohen-Tannoudji, J. Phys. B

11, 563 (1978).
L. Davidivich and H. M. Nussenzweig, in Coherence and

Quantum Optics IV, edited by L. Mandel and E. Wolf (Ple-
num, New York, 1978), pp. 953—974.

8V. P. Bykov and A. A. Zadernovskii, Opt. Spektrosk. 48, 229
(1980) [Opt. Spectrosc. (USSR) 48, 130 (1980)].

H. Grotch, Am. J. Phys. 49, 48 (1981).
J, Dalibard, J. Dupont-Roc, and C. Cohen-Tannoudji, J. Phys.
(Paris) 43, 1617 (1982).
G. Compagno, R. Passante, and F. Persico, Phys. Lett. A 98,
253 (1983).

~F. M. Peters and J. T. Devreese, Phys. Stat. Sol. 8 115, 285
(1983).
S. Theberge, A. W. Thomas, pnd G. A. Miller, Phys. Rev. D
22, 2838 (1980);24, 216 (1981).

~4E. A. Power and T. Thirunamachandran, Phys. Rev. A 28,

2649 (1983).
R. J. Cook, Phys. Rev. A 25, 2164 (1982); 26, 2754 (1982).
N. N. Bogoliubov and D. V. Shirkov, Introduction to the
Theory of Quantized Fields (Interscience, New York, 1959).

~7P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill, New York, 1953), Vol. 2.

~sC. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Meehan
ics (Hermann, Paris, 1977), Vol. 1 pp. 678 and 679.

'9E. Merzbacher, Quantum Mechanics (Wiley, New York,
1961),p. 196.

2oi. S. Cxradshtein and I. M. Ryzhik, Table of Integrals, Series
and Products (Academic, New York, 1965).

2IL. D. Landau and E. M. Lifshitz, Quantum Mechanics (Per-
gamon, London, 1959), p. 125.

2T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400
(1949).
L. Mandel, Phys. Rev. 144, 1071 (1966).

~R. Loudon, The Quantum Theory of Light (Clarendon, Ox-
ford, 1981),p. 125 ~

2sL. D. Landau and E. M. Lifshitz, The Classical Theory of
Fields (Pergamon, London, 1975), pp. 75—78.
D. Deutsch, Phys. Rev. Lett. 50, 631 (1983).

27M. H. Partovi, Phys. Rev. Lett. 50, 1883 (1983).
2sM. Abratnowitz and I. A. Stegun, Handbook of Mathematical

Functions (Dover, New York, 1964)~

~ E. M. Henley and W. Thirring, Elementary Quantum Field
Theory (McGraw-Hill, New York, 1962), pp. 231—233.

3oT. D. Lee, F. Low, and D. Pines, Phys. Rev. 90, 197 (1953).


