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Recoil contributions to the Lamb shift in the external-field approximation
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The calculation of'recoil corrections to the Lamb shift in hydrogen is carried out by treating the
Dirac electron in the presence of the nuclear Coulomb and convection potentials. The leading Dirac
equation and its solutions were given by Grotch and Yennie many years ago. A systematic deriva-
tion of recoil corrections to the leading Lamb shift leads to results in agreement with previous work.
New terms of order a(Zo, ) m /M are derived by examining recoil corrections to higher-order radia-
tive level shifts. These reduce the theoretical Lamb shift in the hydrogen n =2 state by about 2
ppm. It is expected, however, that additional contributions of the same order will also arise from
corrections to the external-field approximation as well as from nonradiative recoil.

I. INTRODUCTION

The most demanding tests of quantum electrodynamics
are to be found in the comparisons between theory and ex-
periment of results which are sensitive to radiative correc-
tions, since the theoretical analyses of these requires the
full use of renormalization theory. Thus the anomalous
moments of leptons and the Lamb shifts in hydrogenic
atoms have provided fruitful testing grounds for many
years. '

The Lamb shift has had a long history with many
theoretical and experimental refinements, but there are
still small discrepancies between theory and experiment
which require additional work. ' For the Lamb shift in
hydrogen the current theoretical status is indicated by cal-
culations which lead to the results (in MHz)

S=AE (2SI g2 ) bE (2P, )2 ) = 105—7.862

or 1057.884+0.02, depending upon whether one uses the
old rms proton electromagnetic radius of (r )'~
=0.805(11) fm or the more recent value ( r ) '~

=0.862(12) fm for the proton-size correction. The most
recently published experimental results are

S= 1057.845(9)

(Lundeen and Pipkin) and

S= 1057.8594(19)

(Sokolov and Yakovlev).
A comparison of theory and experiment suggests good

agreement when the older rms proton radius is used. On
the other hand, for the more recently published radius, the
theoretical value is somewhat larger. The theoretical
numbers arrived at by Mohr through his numerical cal-
culation have been partially confirmed by computations of
Sapirstein. The analytical results of Erickson, however,
are significantly larger than Mohr's results. This
discrepancy occurs at the level of a(Zct) terms.

The primary purpose of the present research is to study
a part of the Lamb shift problem which has not, as yet,
received the attention which now appears warranted. It is

our intention to systematically analyze the nuclear recoil
contributions to the Lamb shift. Before discussing the
content of the present manuscript and related work, we
will first examine some orders of magnitude appropriate
to the Lamb shift.

Let us first assume that the nuclear mass M is infinite.
Then the Lamb shift calculation entails an analysis of the
radiative energy shifts of an electron bound by the
Coulomb field of the nucleus. The leading term in the
expansion parameter Za leads to energy shifts of order
ma(Za) In(Zct), ma(Za), and ma(Zct) ln(mike„). If
one now relaxes the restriction of infinite nuclear mass
and allows for a finite value, corrections of order
(m /M)a(Za) ln(Za), (m /M)a(Za), and

(m /M)a(Zct) 1n(m/hE„)

emerge. We believe these have already been evaluated
correctly but in the present work we systematically
rederive these results. There are also nonradiative recoil
corrections of order (m /M)(Za) which contribute to
the Lamb shift. These have been worked out by a number
of authors.

Proceeding now to higher-order corrections to the
Lamb shift resulting from lowest-order radiative correc-
tions, we note that there are contributions of order
ma(Zct) . ' It was originally speculated that the modifi-
cation of this result due to finite nuclear mass could be
brought about exclusively through the modification of the
square of the wave function at the origin. Although such
a correction is surely present, it appears unlikely that this
is the only correction. It is our opinion that the Lamb
shift contributions of order (m /M)a(Za) are not
presently known, and hence a major portion of our effort
is to obtain these corrections. In addition to the above
corrections, which we refer to as radiative recoil, there are
also nonradiative recoil corrections of order
(m /M)(Za) as well as rather small corrections of order
(m /M)a (Zct) .

In the present paper we present an analytic calculation
of part of the (m /M)a(Za) radiative recoil correction.
This part is based on the so-called external-field approxi-
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mation. Another publication will deal with additional
contributions of the same order as those presented here,
except that these terms result from corrections to the
external-field approximation. They can most readily be
thought of as radiative corrections to the recoil correc-
tions of order (m /M)(Za) and hence are also of order
(m /M)a(Za) . Further work, not yet completed, will be
devoted to the contributions of order (m /M)(Za) .
These are nonradiative higher-order recoil corrections.

The plan of the present paper is as follows. In Sec. II A
we review a modified Dirac equation and its solution. In
Sec. IIB we discuss the radiative level shifts in the
external-field approximation. Section III contains our
calculation of lowest-order results, that is mass correc-
tions to the leading terms in the Lamb shift. Section IV
provides a discussion of the mass corrections of order
(m /M)a(Za) which result from the external-field ap-
proximation. Section V contains conclusions while an
Appendix contains a brief discussion of the effective
Dirac equation.

in)= 1— [p, W]
1+ypA,

(2.4)

[p, W]= 2—V+2iZar p=. 2V+2ip rZa

= —2V(1+i r p).
=2(1 ip —r)V . (2.5)

Hence,

1+ (1+ir p).V
2M

I+ypA,

I+~
(2.6)

with IV= —Zar, A, =m/2M, and
i

n) the solution of the
Dirac Coulomb problem with m replaced by the reduced
mass p.

In this paper we will find it convenient to use the rela-
tion

II. EXTERNAL-FIELD APPROXIMATION

A. Modified Dirac equation

In the absence of radiative corrections, the hydrogen
atom is well described by the Hamiltonian"

(n
i
=(in))typ

T

1+ypA,
1+(1—ip r) V

2M
(2.7)

2

H~ ——a (p —e A) +Pm + V+
2M

(2.1) where we absorb yp by assuming ( n
i
= [ i n)] yp. In Eqs.

(2.6) and (2.7) we now write
A discussion of Hz is given in the Appendix. To arrive
at this approximate Hamiltonian we assume that the dom-
inant interaction between the electron and the proton
(presumed to be spinless) is due to one photon exchange,
evaluated in the Coulomb gauge. We assume that the pro-
ton can be placed on its positive energy mass shell in all
ladder graphs contributing to the four point function.
Corrections to this assumption must be examined.

In the above equation we note that

(2.2)

in)= inp)+5in),
(n

i
=(n ip+5(n i,

where in both instances the correction term is the part
proportional to V/2M. This decomposition will be used
later.

It is useful to note that the upper and lower com-
ponents of

i
np ) are approximately given by

&o u= ~o

and

e A= — V(p+Kr p) = — (p+p. rr)V . (2.3)
1 1

2M 2M

We refer to (2.1) as the external-field approximation since
we have effectively reduced the Hamiltonian in the
center-of-mass reference system to a one-particle Hamil-
tonian. Thus, the proton produces a four-potential Az
which couples to the electron and also contributes a kinet-
ic energy term p /2M.

The eigenvalue problem for Hz of Eq. (2.1) was studied
by Grotch and Yennie, who found that to leading order in
M ' the eigenvalues and eigenvectors could readily be
found. " The eigenvalues provide the correct reduced
mass dependence to the Dirac energy levels including
mass corrections to the fine-structure separation of order
m (Za) /M. The eigenvectors are given by

I
np ~l = i

np)
CT'P

2m
(2.8)

(g —m) in)= 0

with

(2.9)

and

II =E„—V—p /2M

II=p —eA .

Furthermore, the relations

(2.10)

where
i

n p ) is a two-component state vector with reduced
mass. Thus

i
np) is a nonrelativistic two-component re-

duced mass solution of the hydrogen atom.
In what follows we will find it convenient to write the

Dirac equation in the form
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ieE':—[Il,II'] =( —i V'V) 1+
p'2

p', V+

(2.11)

iee'~"B"=[II', IIJ]= — [(V'V)p~ (V—'JV)p']
M

will also prove useful.

(2.12)

B. Radiative level shifts

Let us now briefly review the formalism for radiative
level shifts in the external-field approximation. Our start-
ing point is the formal expression for the radiative energy
shift of an electron in a state

~

n ), as given by Erickson
and Yennie, FIG. 2. One-photon exchange with radiative corrections to

the electron.

5m—(n
~

n), (2.13)

1+ —po —ie —[a ( —p)+PM]
(2.14)

The first term in Eq. (2.14) represents the double solid line
while the second contains the remainder. This type of

where now IP is given in Eq. (2.10) and
~

n ) is given by
Eq. (2.6). This expression, which excludes vacuum polari-
zation, is shown schematically in Fig. 1.

Before proceeding further let us discuss some of the di-
agrams which contribute to Fig. 1. In Fig. 2 one-photon
exchange diagrams with radiative corrections on the elec-
tron side are illustrated. Such graphs represent approxi-
mate contributions to two-particle propagation and these
graphs enter in a natural way in the Bethe-Salpeter con-
struction of the complete four-point function.

On the proton side (the right side) of a higher-order
graph, we decompose the proton propagators into double
solid lines which give propagation on the positive energy
mass shell while the remainder term denoted by the dot is
the residual correction, as illustrated in Fig. 3. Then if
the proton has four momentum —p" we find

SF( —p")yo= 2vri A+( —p)5—[po+(p +M )' ]

method has been discussed by various authors in a num-
ber of equivalent ways' and some discussion is provided
in the Appendix.

In the external field approximation the proton propaga-
tor is consistently replaced by the first term of Eq. (2.14)
and hence the graph shown in Fig. 4 is approximated as
shown. Since the above procedure is approximate, at
some stage we must study and evaluate all the terms
which are missing as a result of the indicated replacement.

Extending the above discussion to multiphoton ex-
change entails the same basic ideas. Figure 1 contains all
radiative corrections on the electron side to ladder dia-
grams in which the proton is consistently placed on the
positive energy mass shell. The advantage of this ap-
proach is that the residual terms will be explicitly of order
I/M and will therefore involve radiative corrections to
recoil diagrams. The disadvantage is that ultimately this
separation could result in greater complexity in the actual
evaluation of mass corrections.

The present paper consists primarily of the evaluation
of Eq. (2.13). Following the standard discussion of Ref. 8
we convert Eq. (2.13) into

bE„= f dzf dKf (n ~I ~n) —(n ~5m ~n)

(2.15)

FIG. 1. Electron self-energy in the external field.
FIG. 3. Decomposition of proton propagator according to

Eq. (2.&4l.
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terms we are looking for are of order a(Za) m /M.
Since the leading contributions to the Lamb shift are con-
tained in I~ and II we will examine only these. For the
leading terms we find that the separation into various
components I~ =I~, +I~, and IL ——IL )+II.2+ I1.3
+II 4 is not needed since to lowest order the sums are
given in the literature.

Thus,

FIG. 4. An approximation to a diagram in which the proton
propagates on shell.

b.E„(M)= (n
i2'

(n
i

— cr 8+ . a 8 in)2' 2' 2' (3.1)

with

and

g —g+m
7p 3 V (2.16)

with E and B given in (2.11) and (2.12), respectively, and

1 1

b,E„(L)=——f du f dzP(z u)(n ip' —[p', V]
i
n)

(3.2)

D =Ic. k'+2zk—II zH'+zm— ' . (2.17) with

The calculation then proceeds very much like the usual
Lamb shift calculation except now there is an M depen-
dence contained in the states and in the operators. The
reduction of (2.15) proceeds by' separation into the sum of
many terms, ' namely, Il. +I~+Ia +II, +Ic +Id +Ie
+If. In this paper we shall study each of these terms in
order to extract its mass dependence.

and

P(z, u)= —2(1 —z )Q(1 —u)+1 —z

+z(1 —z)(1 —u)+z (1—u)2

2

b, =zm +u(1 —z)2m + V—e„
2p

III. LOWEST-ORDER RESULTS
=zm +u(1 z)H~g . —

In this section we shall present a systematic derivation
of mass corrections to the lowest-order Lamb shift. The

We now turn to the calculation of bE„(M). To order
1/M we can write the leading term as

bE„(M)= (no
i

— cr a VV ino)
2HZ

+ ~&no
I

— a'~v
i no)+ (no

i

— a VV
i
@no) .

2m 2' 2& 2%i
(3.3)

Note that in the expression for E (2.11) we have dropped the V /2M term. Also note that the bra state contains a y .
The odd operators in the above expression connect the upper and lower components of the wave function and hence we
obtain

CX 1
(no

I
a VVXp — (o"Vvo"p o"po"VV}

i
n )—

2m 2mM (2m)
(3.4)

for the first term of (3.3). The terms in (3.3) arising from
the state vector correction will be quadratic in V and will
also involve a momentum acting on the wave function.
These terms are smaller than those considered in this pa-
per [order a(Za) m /M] and hence can be dropped.

We then find from (3.4) that we obtain

a
b, E„(~)= (np

i
+ ~ cr LI 1 dV

2m 2~M 2m dr

, V'V
i
n, ) .

4m
(3 5)
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This expression is easy to evaluate for hydrogen. It gives

4 3

bE (~)=
2m n3 m

a (Za) m 3m
for l =0

2m n3 M
(3.6)

and

4 2

bE (~) a (Za) m p
2' n f71

a (Za) m

2' n

2fPl

M

for l =1 (3.7)
1 1where C] &&2

————, and C~ 3/2—
Thus for the l =0 state the nuclear mass correction

enters through the square of the wave function at the ori-
gin since the V V is localized at the origin. On the other
hand, for l&0 the mass correction contains two pieces.

(i) The first is the usual spin-orbit term which will have
a mass correction contained in 1 —3m /M.

(ii) The second is a spin-other-orbit interaction arising
from the magnetic field of (3.1). This term partially com-
bines with the mass correction of (i), leading to a total of—2m /M.

We now turn to the terms arising from b,E„(L) of Eq.
(3.2). The wave-function corrections will contribute im-
portant terms to be worked out in subsequent sections.
They are not considered in this section. The mass correc-
tions will now enter through the reduced mass factors in
the upper component nonrelativistic state vector

l no) and
also through the presence of reduced mass in H&z.

We now repeat the calculation on p. 298 of Erickson
and Yennie (EY). Using their Eq. (3.20) and dropping
the last term, which is a higher-order correction, we ob-
tain

bE„(L)=——f du(no lp' ' ln
gz uH~~

p(0 u)
1

m/p
1

pm(Za) & p(z u) —p(0 u)od" "olp 2» 2+» + dz ' ' [p', p]lno)m u(Za) zm'

, «o lp'[p' &] lno)3», + —,", +ln 1+
&Ul (Za) M

2 (no
I
p'ln ~ [p', Pj

l
no) ~ —,

'
mm H~~

In the first term we use

(3.8)

2za 4m p (3.9)

while in the second we use

1
( l,l

pmZa ~, ~l )
2(Za)m p

1
p(Za)

(3.10)

where b,e„ is the average excitation energy, including reduced mass factors. Using (3.9) and (3.10) we obtain

4m a(Za) 3m
3m-n'

1 ]]
1 1

Pl

(Za)
5ro+1

p(Za)'
Ae„

(3.11)

thus verifying Eq. 4.1a of Ref. 8 except for the factor of ——, which arises from vacuum polarization.

IV. HIGHER-ORDER MASS CORRECTIONS

In the previous section we presented mass corrections to
leading terms in the Lamb shift. In this section we dis-
cuss and present contributions of order a(Za) m /M.

The calculation proceeds by analysis of the EY reduc-
tion. Special care is needed to retain terms which were
dropped by EY as a consequence of their choice of Hz.
For example, for the infinite mass case, (2.3) and (2.10)
above lead to (2.12), i.e., to noncommutativity of the com-

ponents of H;. Such commutators can, in principle, lead
to new contributions. However, if M tends to infinity
these components commute, and hence such terms would
not have been present in EY.

In the present work we closely follow the operator
reduction of EY, which leads to terms IJ, I~, I„
Ib, I„Id, I„and If. From (2.73) of EY we note the
possibility of an additional term arising from the noncorn-
mutativity of Hp and the field F&, but this turns out to
vanish identically due to the Jacobi identity. The subse-
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quent reduction leads to mass corrections of various ori-
gins. There are some contributions which may arise from
noncornmutativity of Hp and I'", while others
originate when the denominators are reduced and correc-
tions to the reduction procedure are no longer negligible.

Before proceeding to a detailed discussiin of these new
terms, we note that when the nucleus has finite mass the
recoiling nuclear kinetic energy must be added to the elec-
tron kinetic energy. As a consequence of this, the opera-
tor

We will now discuss in some detail the structure of the
contributing terms, the extraction of those parts already
contained in (4.4), and additional new corrections. To
start, consider the terms IL given by

1

IL )
——8(1 z—')z'~' f dk' II, [II',H]Dz D2

(4.5)

H:m —g=—H =p 1+ +2m V+y (4.1)
M

IL 2
—4z——(1—z)II,—[II,g]—1 1 1

(4.6)

is now modified, and hence (Za) integrals on p. 464 of
EY now have denominators which are altered. If A, =O,
then

uz(1 —z)p ~uz(1 —z)p 1+
M

(4.2)

thus leading to an extra factor [1+(m/M)] '~ . On the
other hand, if A,&0, then the denominator in the
parametric integral is modified as

[1—z+A, (1—u)z]

1 1 1I = —4z (1—z)—II —[II II]—
D D ' D D '

where

D=z2m +K—(k —zII) +z(1 z)H z—~, —
Dg=z2m +K —(k —AzII) +z(1 —z)H .

Equation (4.9) is an alternate form of (2.17), where

(4.7)

(4.8)

(4.9)

(4.10)

(1—z) 1+ +A. (1—u)z
M (4.3)

H=m H-
~=II —II =eo'B —iea E

(4.1 1)

(4.12)

In addition to this change, in adjustment (4) on p. 465 EY
terms with —p /2m instead of V will need an extra fac-
tor of [1+(m/M)] ' since the large momentum limit of
V acting on the NR wave function is now the same as—p /2p. This second effect can be trivially included in
the (Za) results tabulated in. Table VIII (EY, p. 493) by
simply identifying those terms (only L —p and ~—p)
which are p Vrather than Vp Vand multiplying them by
4, rather than 3, reduced mass factors. The first effect,
which is due to reduced-mass scaling for binding in the
intermediate state, produces an extra reduced mass factor

1of —, for L H terms, but —cannot be as readily scaled for
the other terms. Nevertheless the integrals can be expand-
ed in m/M and easily evaluated. The total contribution
from the sources discussed above (not including the
overall 1 —3 m /M ) contribution is '

[see Eq. (3.1)].
For each II.& (g=1,2, 3,4) we write II&—II„+Ilz, —

where II& denotes the part coming from the structure
[II,H] while IL z has the form

II' . . [II',g] . The IL,&
terms contain the

lowest-order Lamb shift terms as well as higher-order
corrections. On the other hand, the IL& terms contain
only higher-order terms.

A. IL ~ contributions

To the desired accuracy, for g = 1 we find

1

IJ &

-——8(1 z)z m f—dk p' [Vp']

(4.13)
a(Za)'m' 19 7

n M
( —8+ —,ln2+ —) .2 32 (4 4,) Our procedure for this term is to expand about A, =0 using

the methods of EY. This gives

II. ) ———8(1—z )z m p' [Vp']I 1;I; 1 1

Dp Dp DQ DQ

' dA2—8(1—z )z m f (1—A, ) — p' [Vp'] 2p

zk H —Xz'H'
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we separate the shift correction into two terms, IL1 k and IL1 z where the first of these comes from the first two terms
0

of (4.15) while the second comes from the last two terms. Thus, we have separated Ii. &
into contributions IL & 0, IL & 0

2 0
IL1 p, and IL1.

Using (2.15) it is relatively straightforward to show that to the desired accuracy
1 1

EE(II, o)=—f dz'f du 2u(1 —u)(1 —z )(n ~p' [p', V]
~

n)
vr zm +u(1 z)H—

(4.16)

which agrees with the first term of 3.27b of EY, except that H now includes mass corrections, as does the state vector

~

n ). Specifically, we find

K=2m + V—e„+5K=K~~+5H
2p

with

2

&H= —V +2&, V—&„+ + p Vp+ [p, [p, —iVR']] — cr E&&p+ie 1+ a V
&nP 1 1

~ 2 e V e

2M M 4M M m 4mr

(4.17)

(4.18)

and from (2.4)

~n)= 1+ V
2M

1+/0
~

n ) =
~

n )0+5 n ),+
(4.19)

1+yo
n /=(n/ +

V iZo.'+2M+2M" ='" ~+""~

It is straightforward to show that terms from (4.16) arising from corrections to H~z, namely, oH are too small. On
the other hand, corrections can arise from the state vector corrections of (4.19).

We find that Eq. (4.16) becomes approximately

a l 1~E(Ir'. (,)=-—f dz f du[2u(1 —u)(1 —z )](n ~p' [p', V] ~n)
zm +u (1 z)H~~—

1 1 g, 1f dz f du [2u (1—u )(1—z') ](n
~

Vp'— [p', V]
~
n),

2~M zm +u(1 z)H~~— (4.20)

where the second line comes only from the wave function correction (n
~

V/2M.
The first term of (4.20) gives a leading contribution to the Lamb shift as well as a correction L 1 Hevaluated in—EY.

This correction is now modified by the presence of a reduced mass factor in Hzz as well as reduced mass in
~

n) How-.
ever, these corrections are already accounted for in (4.4) and in the reduced mass factor 1 —3m/M which will also multi-

ply all the a(Za) terms.
The additional term in (4.20) arising from the wave-function correction ( n, may readily be evaluated. For S states it

yields
5 2

&Es{„(I,. )
a(Za) m

L10 3 ~ + 3
n

Next we calculate the shift correction

(4.21)

IL, ~ ~
——16(1 z)z m —f dA(1 —A, ) p' [V,p'] 2

—zk.p+kz p (4.22)

noting that to the desired accuracy we replace II by p. Using the relation of EY

Xzn.
(4.23)

we can write the above as
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S(1—z )z m f dA, (1—A, ) p' [Vp'] (4.24)

To work this out we expand D~ in powers V keeping the full expression for H in D~. The calculation is long and tedi-
ous. It leads to the standard expression for the shift correction with mass corrections contained in (4.4) as well as some
new terms. The leading term in the above-mentioned expansion will have a wave-function correction

cx Zu'QEs~R)(Il )
( ),

(
2

1 2)
n

while the nonleading terms in the expansion also yield a new term

z 5 2

n

The other shift correction is

1

IL, k ———8(1 z—)z m f dA, (1—A, ) p' [Vp'] 2

IIO Ho

(4.25)

(4.26)

(4.27)

To the desired accuracy the insertion factor can be simplified to

(4.28)
2V p /2M 1 j V,p /2M]'

which contains at least one factor of V/M. By a judicious choice of ordering the insertions, a considerable simplification
is achieved. After a long and laborious calculation we find a new contribution

a(za) mEE(IL & g ) = 3 (ln2 ——,
'

) (4.29)

Finally, the last term of IL &
can be put in the form

IL ~
———8(1 z)z —m dA, E„—V— [pj, V]yj

D&
" 2M D&

(4.30)

after dropping some small numerator terms. The term with V on the left will not contribute since yj will either bring in
additional momenta acting on the wave function or will bring in factors of [p, V] through a V expansion of the denomi-
nators. In either case the contribution will be negligible. The E„ term can be shown to lead to zero by symmetrizing the
expression. The p /2M term will yield a contribution and will also require a V expansion of the denominators. After
carrying out all expansions and integrals the result obtained is

Za' m'
(4.31)

n

Adding up the contributions (4.21), (4.25), (4.26), (4.29), and (4.30) we obtain an additional term
5 2a(Za) m (51 2 29)

n 3 ~ 2 16 (4.32)

from IL &
beyond the mass correction contained in (4.4) or the standard 1 —3m/M term multiplying the entire a(Za)

term.

B. IL 2 contributions

We break up IL 2 into IL2 and IJ 2, as for IL &. To the desired accuracy we find that

IL 2
-—4z(1 —z)p' —y [Vp']—1 o; 1 1

D ' D (4.33)

To evaluate this we follow the standard EY reduction. If we expand up M terms from the denominator, these are found
to be too small, and hence we may replace D of (4.33) with

D) zm +If (k —zII) +——z(1 z)H —. —
We perform a shift to

Do ——z m +K—k +z(1 z)H—
(4.34)

(4.35)
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and then include shift corrections. Thus

IL2-—4z(1 —z)p' y [V,p']l 0 i 1 '
i 1 0

2
—4z(1 —z)f dk, p' y [p', V]

0 0 Dp DA, DA,

1 2& II —2zk H
(4.36)

aza' m'~E""i(I' ) = ( —2) (4.38)

In the reduction of the shift correction we find that we
obtain standard terms such as L 2 —p along with mass
corrections contained in (4.4). However, the shift correc-
tion in this case will lead to an operator structure of the
form p V, and hence the state vector correction
5(n

i
=(n

i
V/2M is significant. We find

aza' m'
b E i (Il 2 ) = [4(1 ln2) —1] . (4.37)

n

In addition to this correction, which is a wave function
correction to the shift correction, the leading term of
(4.36) will also have a wave-function correction, which we
denote by b,E '" (Il 2 0 ). We obtain

I&2 ———4z(1 —z) —p'V—0 p p 1; 1 1

2m 2MD D
(4.40)

The calculation of this correction leads to
5 2a(Za) m

n3 M
(4.41)

which, remarkably, just cancels the contribution of (4.39).
Thus it appears that there are no additional corrections

to Ii 2 beyond those mentioned earlier in Eq. (4.4).

C. I& 3 contributions

IL3 is broken up into IL3 and IL3 and an ~ expansion
of the expression is made writing D =D& —z ~. We find
that for II 3 the factor z ~ can be dropped to the desired
accuracy, and that

Combining (4.37) and (4.38) we find the additional
correction from IL2, which is entirely a wave function
correction, to be

IJ.3=4z (1—z) p' 7 [Vp']1; 1 0; 1 1
(4.42)

Di
5 2a(Za) m

n3
(4.39)

Next we need to examine Il 2. After a straightforward
examination of this term we find

We now carry out a shift correction, thus writing
0

L3 L3 0+ L3—p+ L3 —.k

where

(4.43)

0 0 0 0
(4.44)

IL, 3 p
———8z (1—z) f dA, p' [Vp']2 —zk.p+A,z p (4.45)

1

I13 I, = —8z (1—z) f dA, p' [Vp')0

zkp Hp —Xz Hp
2 2

(4.46)

The analysis of Il 3 0 is quite straightforward. It leads
to a lowest-order Lamb shift correction as well as a term
1.3 —H, and these have appropriate mass corrections al-
ready accounted for earlier. We find, however, that there
is also a wave function correction of the type ( n

i
V/2M,

which leads to

aza' m'bEH" i(II3 )= i™
( —21 2 i~ ) . (4.48)

n

What remains we call 5E(IL3 p). It is an involved ex-
pression, consisting of many terms, which when evaluated
gives

Za' m'
n

(4 47)
aza' m'

n
(4.49)

Next we turn to IL3 p and carry out a V expansion of
the denominators. Only the first denominator (at the far
left) will lead to a correction term with an extra V. After
doing the V expansion we carry out the insertion process
where necessary. Structures of the type f(p )p V and
Vg(p )p"V are encountered, the first of which requires a
wave function correction. This correction turns out to
give

~E(IL3—k~ )
3 ( —4 ln2+ —'„)a(Za) m

(4.50)

The shift correction L 3 —ko is first simplified by
rewriting the insertion factors in terms of Vp /2M. Once
this is done the simplification of denominators is more
transparent. No special difficulties are encountered and
the result is
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A)3 M

Collecting all corrections from Il 3 we obtain

(4.51)

Finally, we also need to evaluate II 3. To do this we
find it convenient to use symmetric averaging. Unfor-
tunately, there are many terms which result from this pro-
cedure, but each one of them is not especially difficult.
The end result gives terms that are included in Eq. (4.4)
along with some new corrections, which give

5 2
( z )

(3 ~ + 4 + 192
n

(4.52)

D. IL 4 corrections

The separation of Il 4 into IL 4 and IL4 is similar to that
done for the other terms. We expand II & in a series in ~
but only the zeroth-order term is needed. Then I14 is
handled by shifting the k integration and picking up shift
corrections. We find that

1;1; 1II 40 Sz p' [Vp ] zDp Dp Dp
(4.53)

Il q z
———16z f dA, p' [Vp']

—zk.p+Az p (4.54)

I14, k = —16z f dA, p [V,p ]D D&

zkp Hp —Az Hp
2 2

(4.55)

The leading term (4.53) is quite straightforward and
gives corrections already obtained as well as a new term
from the wave-function correction. This new term is

aZa' m'
A)3 M

(4.62)

5 2
g/s(11 ~ (Ii )

a(Za) m
(

4
) (4.56)

Combining all additional corrections from II 4 we ob-
tain

For IL4 z we carry out the insertion procedure and
find a term L 4—p obtained earlier except that now there
is a wave-function correction to this of

a Za' m'
(4.57)

~E(IL4 p v)= —— ( 4 2+ 40 ) .a(Za) m

n
(4.58)

The other shift correction, Ii 4 k, provides another long
0

but straightforward calculation, leading to a result

II 4 has a term from the V expansion of the shift correc-
tion. We obtain this term, already contained in (4.4) but
now an additional piece is also present

5 2a(Za) m

n 3 ~ 4 + S (4.63)

Thus the total additional II contribution is given by the
sum of Eqs. (4.32), (4.52), and (4.63) and is

5 2a(Za) m
( 31 2 11 1

)4 192 + S
n

(4.64)

We also analyzed a11 other terms, such as
I~, Ig, Ig, I„Id, Id, I„If for additional contributions
not already contained in (4.4). Our conclusion is that all
such additional terms are smaller than those we have re-
tained, and thus the recoil correction from radiative dia-
grams within the external-field approximation appears to
be given by Eqs. (4.4) and (4.64).

aZa' m'
(4.59)

V. CONCLUSIONS

Finally we must also evaluate II 4. After some simplifi-
cation we find that this takes the form

If we combine Eqs. (4.4) and (4.64), we obtain the total
a(Za) m /M external field correction beyond the cus-
tomary 3m/M factor. Thus we find a new term

p 4z 1 21 J 1

Dp Dr'[p' 6 D2 (4.60)
z 5 2

n
(5.1)

p 2z 1 4 1 4z 1 p 1

D2 D2 ~ D D2 D2 (4.61)

The subsequent calculation leads to

We now have an odd Dirac operator and hence contribu-
tions of the correct order can come from the lower com-
ponents of the wave function or from the odd Dirac
operator in D. Taking both of these into account we ob-
tain

For hydrogen in the n =2 state this gives a correction of
—0.0019 MHz or about —2 ppm for the theoretical 2S
correction to the Lamb shift. To the desired accuracy the
2P state correction appears to be negligible.

The above correction is not large enough to resolve the
discrepancy between the theoretical and experimental
values of the Lamb shift. It should be kept in mind, how-
ever, that there are additional radiative corrections to
those given above which result from corrections to the
external field approximation. We are now in the process
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of evaluating these numerically. At the present time we
do not yet know how these will affect the result. Addi-
tionally, it is known that (Za) m /M can also add sig-
nificant corrections from nonradiative processes and an
analysis of these contributions is also in progress.
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6 =60+6oE6, (Al)

where certain momentum (or coordinate) integrals are im-
plicit. Go represents free propagation and K is the sum of
all irreducible interaction kernels for the system. For the
H atom, L is the sum i.ndicated in Fig. 5. The iterative
solution of Eq. (Al) then reproduces the perturbation ex-
pansion of 6 consisting of all graphs, reducible and ir-
reducible.

It is well known that for precise and systematic calcula-
tion of bound-state energies it is often difficult to work
with the homogeneous four-dimensional BS integral equa-
tion corresponding to the four point function (Al). An al-
ternative is to carry out a reduction of this equation by
truncating K so that a solvable three-dimensional equa-
tion results, which contains the dominant binding of the
two particles. Then the remainder of X can be included
by generating the pertubation expansion about this three-
dimensional equation.

Our Eq. (2.1) is just such an equation. Detailed use of
this equation is made in GY and is derived qualitatively
there. A more rigorous and systematic derivation appears
in the work of Gorelick and Grotch, ' Lepage' and, more
recently Bodwin et al. ' have discussed similar equations
without the assumption of a very massive proton. Equa-
tion (2.1) is arrived at by retaining in (Al) only the first
graph of Fig. 5 and also by constraining the proton on its

APPENDIX: EFFECTIVE DIRAC EQUATION

The Bethe-Salpeter (BS) equation for the four-point
function G of a two-particle system formally reads

where

+ V+ +Pm P(r)=EQ(r), (A2)
2M

ZaV= — and 8'= —Zar .
I"

This is an effective Dirac equation for the electron in the
potential V and

eA=—
2M I"I-

4M "'" j'
Also the proton in this procedure brings in a contribution
of p /2M to the Hamiltonian. The eigenvalue problem
for the above equation is discussed in GY. Here, let us
note only that in the nonrelativistic regime, Eq. (A2),
reduces to the Schrodinger equation with reduced mass,
and that if M~m it reproduces the Dirac-Coulomb
equation.

Energy level shifts

In the derivation of (A2) all but the leading irreducible
kernel were neglected. In principle, therefore, energy
shifts will occur due to the additional irreducible kernels
as well as due to the off-shell proton terms in the ladders
obtained by repetition of the leading kernel (Fig. 5). If all
these perturbation kernels are called AE, then the sh'ifts
are given to first order in bK, by

AE„=i(n
~

bÃ
~

n ),
where

~

n ) satisfies (A2), i.e.,

(8—m)
~

n ) =0.
The present paper considers the energy shifts (see Fig.

1) of relative order Za(m/M) that come from the quan-
tized radiation field of the effective electron of Eq. (A2).
In Fig. 1 the dark internal solid line represents the exact
electron propagator for an electron in the external field
satisfying (A2). Graphically, this line can be decomposed
as shown in Fig. 6. Such a separation is analogous to the
familiar decomposition into one-potential and many-
potential parts in the usual Lamb shift (M~ oo ) calcula-
tion. This indicates what perturbation kernels Fig. 1 in-

positive energy mass shell everywhere. Therefore, the
ladder graphs for the electron-proton interaction are in-
cluded in this leading order approximation.

In the c.m. system, the equation for the wave function
takes the form

1 1~'P+
2M I~ P I I+ 4

[~'P [P,W]l

~ ~ ~

FIG. 5. Irreducible contributions to the kernel E.
FIG. 6. Expansion of electron propagator in the external

field.
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corporates. The perturbation kernel for this can be writ-
ten as

( ~) a d k /i 1
l 7 JLC

I
4~3 k~+ip g —k —m+ie

Rather than expanding the propagator of the effective
electron in a series, as suggested by Fig. 6, we have adopt-

ed, for the extraction of terms of the order of interest, the
procedure of EY.

We only note here that the energy shift can be written
in terms of matrix elements between eigenfunctions of Eq.
(A2) in the following manner. We have b,E„
=i &n

~

ddt
~

n &. We insert complete sets of two-particle
momentum eigenstates in the c.m. system to get

~&.=fd'p3 fd'pi&n
I p3 P3&&P3& P3 I

i~
I pi —Pi&&pi —Pi I

n &

=fd'~3 fd'~ it. (p3) & P3 —P3 i
~~

i pi —pi &4.(pi»

where g is a four-component spinor in the electron space and a two-component spinor in the space of proton. The am-

plitude b.K is written following the standard Feynman rules.
The important perturbation kernels that result from having the proton in the ladder graphs off-shell as well as the ir-

reducible kernels that give rise to contributions of the order a(Za) (m /M) now arise from two-photon exchange dia-

grams.
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