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The multiconfiguration Dirac-Fock (MCDF) method is used to calculate excitation energies,
Lande g values, and hyperfine-structure (hfs) constants for the lowest multiplets of the 4f 6s con-
figurations of neutral rare-earth atoms. Although no adjustable parameters are used, the results are
in rather good agreement with experiment. The calculated excitation energies and dipole hfs con-
stants (using the known moment values) differ from experiment by typically 5%, and the g values

by 0.1%. Relative to quadrupole moment values determined from muonic-atom hfs or Coulomb ex-
citation, the calculated electric-quadrupole hfs is typically (30+2)% too large, consistent with a
Sternheimer shielding factor (not included in the MCDF calculations) of R4f ——+0.23. The calcu-
lated J dependence for all four observables is generally in good agreement with experiment for the
ground multiplets. Particular cases where the MCDF results are less accurate are identified and dis-
cussed.

I. INTRODUCTION

The fine and hyperfine structure (hfs) of the neutral
rare-earth elements have been studied with a variety of
techniques over the years. Among the more fruitful of
these have been the traditional methods of optical and
radio-frequency (rf) spectroscopy, ' and more recently,
high-resolution laser spectroscopy. Within the last few
years the latter two techniques have been combined in the
atomic-beam laser-rf double-resonance technique, which
is capable of both extremely high sensitivity and resolu-
tion.

Although a number of electron configurations lie low in
the neutral rare earths, for simplicity we will limit our-
selves in this study to the 4f 6s configurations which
give rise to the ground and lowest excited states in most of
these atoms. " Because of the substantial separation of the
ground multiplet from other terms of the same parity, the
lowest levels are normally rather close to the L-S coupling
limit. Since only one electron shell (4f) is open, one
would expect the hfs to be relatively simple to interpret, at
least qualitatively.

Two main approaches may be used in attempting to
understand systematically the substantial amount of fine-
and hyperfine-structure data now available for the low-
lying terms of the 4f 6s configurations. the first
method may be called the semiempirical or adjustable-
parameter method. In this approach numerical eigenvec-
tors are obtained for the states of interest from least-
squares multiparameter fits to the experimental fine-
structure energy separations. The composition of each

state is thereby described in terms of a linear combination
of the states of the L-S configuration under consideration.
The hyperfine interaction is then treated as a first-order
perturbation according to the effective operator method,
and for each state the eigenvector is used to evaluate the
expectation values of the hyperfine operators, treating the
individual interaction strengths as adjustable parameters.
This now classical method has been used for many years
in the analysis of hfs. ' lt has the virtue that the hfs
splittings can be predicted for as yet unstudied states with
surprising accuracy. The disadvantage is clearly a less-
than-rigorous understanding of the physical details of the
interactions.

The second approach to understanding the observed hfs
is to calculate it from first principles and then to try to
learn from any differences with experiment. As hyperfine
interactions are sensitive to electron correlations as well as
to relativity, atomic hfs provides important tests for ab
initio atomic-structure theory. For light atoms where rel-
ativistic effects are weak, the configuration interaction
(CI) method and the diagrammatic many-body perturba-
tion theory (MBPT) (Ref. 10) have been successful in
studying atomic hfs. For heavy atoms such as the rare
earths, there are hardly any ab initio hfs calculations re-
ported to date. Instead, the usual approach is to calculate
the hfs radial parameters with the configuration-average
Dirac-Fock (DF) method and then to compare them with
those obtained from the semiempirical effective-operator
method mentioned above.

In this work the multiconfiguration Dirac-Fock
(MCDF) method is used to study the 4f 6s hfs in neu-
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tral rare-earth atoms. The MCDF method is a relativistic
self-consistent-field calculation which is, in principle,
applicable to any atom regardless of its size. Also, elec-
tron correlations can be taken into account by including
the dominant configurations in the calculations. We shall
restrict ourselves to first-order hyperfine interactions in
this study. Thus, in calculating the hfs, the distortions of
the electron shell by nuclear moments (e.g. , the Sternhei-
mer shielding)" are not included in the calculations.

It is important in assessing the success of an atomic-
structure theory to test it on several observables since each
is sensitive to different types of configurations and dif-
ferent features of the wave functions. The observables
chosen for comparison with the MCDF theory are the ex-
citation energy E, the Lande g value g~, the magnetic di-
pole hfs constant 3, and the electric-quadrupole hfs con-
stant 8. These quantities have been measured precisely
for a large number of low-lying 4f 6s levels of the neu-
tral rare earths. the atomic-beam magnetic-resonance
technique used in a large number of early measurements'
of hfs and g values has largely been superseded in recent
years by the laser-rf double-resonance method. ' The
much greater sensitivity of the newer technique has made
it possible to study a number of more highly excited (and
consequently less well-populated) metastable levels. This
has allowed measurement of the hfs in all members of the
ground term for most neutral rare-earth atoms, thereby
testing the J dependence of the hfs interactions critically.
The newer data are vital for carrying the study through
the second half of the 4f shell where the much greater
statemixing can give the theory a more rigorous testing.
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in which a=(~o) is the Dirac matrix, Yt,~' represents the
vector spherical harmonic, ' e =

f
e

f
is the magnitude of

the electron charge, and the index j refers to the jth elec-
tron of the atom. For simplicity, we shall drop the elec-
tron index j in subsequent discussions. Defining the mag-
netic dipole hyperfine constant A by

I VJ(J+1)(2J+1)
the magnetic dipole hyperfine energy 8'~& is then given
by the familiar formula

In the magnetic dipole case (k =1), the nuclear dipole
moment pt (in units of the nuclear magneton
pN

——eA'/2m~c) is defined as

Wxti ——A(I J) =3 K/2, (6)

II. THEORY

In this work, MCDF eigenenergies and wave functions
are calculated from a program developed by Desclaux. '

Specifically, the Coulomb interactions between the elec-
trons are included in the self-consistent-field calculations,
while corrections for the Breit interactions are treated as
first-order perturbations to the total energies. The MCDF
wave functions

f
JMz ) employed here consist of all possi-

ble jj-coupled states that arise from the 4f 6s electronic
configurations. They are used to form eigenstates

IJFMF ) of the hyperfine Hamiltonian, with I and J be-
ing the total angular momentum of the nucleus and the
electron state, respectively, and F=I+J.
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Here, C~"'=v'4'/(2k+1) Yt~, with Yt~ being a spherical
harmonic, and the sum goes through all electrons. Defin-
ing the electric-quadrupole hyperfine constant B by
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where K =F(F + 1) I (I + 1)—J—(J+ 1).
In the electric-quadrupole case (k =2), the nuclear

quadrupole moment Q is defined as

A. Hyperfine interaction

The relativistic hyperfine Hamiltonian is given by

H„„=+M~"~T'"~,
k

the electric-quadrupole hyperfine energy 8'E2 is then
given by

B 3K(K+1) 4I(I +1)J(J+1)—
2 2I(2I —1)2J(2J—1)

where M' ' and T' ' are spherical tensor operators of rank
k, representing the nuclear and electronic parts, respec-
tively, of the interaction. In first-order perturbation
theory, hyperfine energies W(J) of the fine-structure state

f JMz) are expectation values of Hht, such that

B. Lande g factor

In a homogeneous magnetic field B, the interaction
Hamiltonian is given by

8'=pea A=pea ( —,BXr) .
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H' = —N.B2

where'

(12)

In terms of a scalar product of two first-order tensors, we
have

and drop the principal quantum number n for simplicity.
The reductions of the single-particle matrix elements into
angular factors and radial integrals are straightforward.
We only show the results here:
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Comparing Eqs. (4) and (13), the similarity between the
tensor operators Tq" and Nq" is obvious.

The Lande g factor gJ is defined by the magnetic mo-
ment p of the atom in state

~ JMz ) as
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with pz ——eA'/2mc being the Bohr magneton. Since the
interaction energy W=(H') =( —p B)=gzpz(J 8),
one can make use of the projection theorem' to show that

2p~ VJ(J+1)(2J+I)

Because of the quantum electrodynamic corrections, the
electron g factor g, is not exactly 2 but is
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The angular functions are given by
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This leads to a correction to the interaction Hamiltonian'

b,H'=0. 001 160pgPX 8, (17)

where P= (0 ~ ) and X= (o ~). If we define the operator
hN" byq

ENq" ——g bp'q" ——g PXq, (18)

then the correction to the Lande g factor is given by
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C. Radial matrix elements

Angular recoupling programs are set up to reduce the
matrix elements (J

~
~T '~ J ) and (J

~ ~

N" '~
~

J ) to terms
that involve single-particle orbitals only. The Dirac wave
function for an individual electron is given by
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where n, sc, and I are the principal, angular, and magnet-
ic quantum numbers, respectively. In particular,
K=+(j+—,

'
) for j= l+ —,, with I and j being the orbital

and total angular momenta of the electron.
The functions P and Q are the large and small com-

ponents of the radial wave function, while the function

Q„(r)=+C(l & j;m —qqm)Yt q(r)Xq (21)

is the electron spinor in the I.SJ coupling scheme, with
Xq=(0) or (&) for q = —,

' or ——,, respectively. In the fol-
lowing we use atomic units in evaluating matrix elements
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m(l (, l2, 13)= . l if I&+l2+l3 even

0 otherwise (28)

and the radial functions are given by

[r"]„„=f r (P„Q, +Q„P„)dr,

(r")„„=f r (P„P„+Q„Q„)dr .

(29)

(30)

III. COMPARISON OF MCDF
AND EXPERIMENTAL RESULTS

Table I lists the experimental and MCDF values for the
excitation energies, g values, and hfs constants of low-

From the angular functions it is obvious that there is no
contribution from closed shells in first-order perturbation
calculations. Second-order effects such as the diamagnet-
ic corrections' and the Sternheimer shieldings" are not
considered here. We note that second-order hfs correc-
tions which arise from the nondiagonal terms
8'(J,J')=(IJFMF ~Hht, ~IJ'FMz) can be calculated in
the MCDF approach in much the same way as the diago-
nal first-order hfs terms are calculated. A MCDF study
of the second-order hfs for the Li ion has been reported
before. ' In our present case, however, we neglect the
second-order hfs corrections as they are very small in size
due to the large fine-structure splittings compared to the
hyperfine splittings.
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TABLE I. Comparison of MCDF values of the excitation energy E (in cm '), g factor gJ, and hfs constants A and B (in MHz)
with experimental values for 4f 6s configurations. The difference between theory and experiment (MCDF —Expt. ) in percent is
given by A. The MCDF A values assume the measured values of the nuclear dipole moments. The first MCDF B value given uses
the nuclear quadrupole moment value Qhr, that leads to best-fit agreement with the measured hfs B's. For some atoms the true Q
value is known (through muonic-atom hfs or Coulomb-excitation studies) and it is used to calculate a second MCDF B value which is
listed below the best-fit value. The typically 30% difference is consistent with a Sternheimer shielding factor of R4f ——+0.23. The
information on nuclear moment values is summarized in Table II.

Atom

141Pr

Configuration

4f 6s

Label

4
I9/2

4
I11/2

4
I13/2

4
I15/2

Observable

E
gJ

B

E
gJ
A

B

gJ

B

E

B

Expt.

0.00
0.731 06'

926 209
11 878»b

1376.60'
0.965 13'

730 393»
—11.877»

2846.75'
1.106 38'

613.240»"
—12.850»

4381.10'
1.19799'

541 575»
—14.558»"

MCDF

(0.00)
0.729 19

959.80'
—12.206"

1265.49
0.965 00

758.61'
—11.909

2676.49
1.106 91

636.54'
—12.716"

4202.50
1.198 93

560.15'
—14.371

(0.0)
—0.26
+ 3.6
+ 2.8

—8.1

—0.01
+ 3.9
+ 0.3
—6.0
+ 0.05
+ 3.8
—1.0

—4.1

+ 0.08
+ 3.4
—1.3

43Nd 4f 6s 'I4

5I

5I

E
gJ

B

E
gJ

B

E
gJ
A

B

E
gJ
A

B

A

B

0.000
0.603 29 'g

—195.652 '"
122.595 '"

1128.056'
0.90047 'g

—153.679
1 i5.743'

2366.597'
1.069 91

—130.611
119.291

3681.696'
i.i75 38'

—117.604
129.291

5048.602'
1.245 27

—110.476
143.952

(0.000)
0.601 38

—205.28'
120.91

1038.773
0.900 07

—16]..28'
115.20

2227.887
1.07048

—137.05'
119.82"

3537.273
1.176 66

—123.33'
130 34

4925.230
1.247 05

—115.78'
144 41

(0.0)
—0.32
+ 4.9
—1.4

—7.9
—0.04
+49
—0.5

—5.9
+ 0.05
+ 4.9
+ 0.4

—3.9
+ 0.11
+49
+ 0.8

—2.4
+ 0.14
+ 4.8
+ 0.3

'4'Sm 4f 6$ 7F

7F

'F2

F3

E
gJ
A
B

gJ
A
B

E
gJ

0.00

292.58'
1.498 39"'"

—33.493'3 "
—58.688"'k

811.92'
1 49779'3"

—4i. i 86'~"
—62.229"'"

1489.55'
1.497 07"'"

(0.00)

237.03
1.499 20

—33.77'
—58.88

693.54
1.498 87

—40.71'
—62.33

1327.82
1.498 43

(0.0)

—19.0
+ 0.05
+ 0.8
+ 0.3
—14.6
+ 0.07
—1.2
+ 0.2
—10.9
+ 0.09
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Atom Configuration Label

TABLE I. ( Continued).

Observable Expt. MCDF

Fg

F

E
gJ

B

E
gJ

B

E
gz

B

—50.243"'"
—33.668'"'"

2273.09'
1 49625|j k

—59.707'j'"
21.241'" "

3125.46'
1.495 32'"

—69.136'
100.608

4020.66'
1.494 17'

—78.360'
203.373'

—49.56'
—33.66

2100.37
1.497 90

—59.41'
21.48

2969.50
1.497 22

—69.61'
1Q1.Q2

3884.71
1.496 31

—79.70'
203.06"

—1.4
—0.0
—7.6
+ 0.11
—0.5
+ 1.1

—5.0
+ 0.13
+ 0.7
+ 0.4
—3.4
+ 0.14
+ 1.7
—0.2

151Eu 4f76s' 'S7 E
gJ

B

0.00
1.9935'

—20.052'
—0.701'

(0.00)
1.996 29

—19.158'
( —0.701)
—0.786

(0.0)
+ 0.14
—4.5

(0.0)
+ 12.1

159Tb

161D

4f96s2

4f 106s 2

6H 15/2

6H 13/2

6H 11/2

H9/2

6
H7/2

6
H5/2

gz

B

gJ

B

E
gJ

B

gJ

B

E
gz

B

E

B

gJ

B

0.000
1.325 13"

673.753"'"
1449 330"'"

2771.675'
1.276 25"

682.9»" b

1 167.489""

4670.455'

728.998'
967.997'

6174.925'

0.00
1.241 60 '

—116.231"'"
1091 577 '

(0.00)
1.326 88

738.57'
1451.54
1866.83

2583.22
1.277 49

750.44'
1170.14"
1504.92

4475.09
1.201 13

799.00'
961.43"

1236.50

5906.06
1.071 61

907.70'
801 94

1031.38

6988.07
0.83042

1139.43'
754.29"
970.10

7780.38
0.298 43

1676.93'
881.98

1134.32

(0.00)
1.243 13

—122.93'
1099.80

(0.0)
+ 0.13
+ 9.6
+ 0.2

+ 28.8

—6.8
+ 0.10
+ 9.9
+ 0.2

28.9

—4.2

+ 9.6
—0.7

+ 27.7

—4.4

(0.0)
+ 0.12
+ 5.8
+ 0.8
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Atom Configuration Label

TABLE I. ( Continued).

Observable Expt. MCDF

1439.54

4 (%)

+ 31.9

'I4

E
gJ

B

E
gJ

B

E

A
B

E
gz

B

4134.23'
1.17346~

—126.787 '

1009.742P'

7050.61'
1.071 55"

—139.635'
960.889'

9211.58'

—161.971'
894.027'

10925.25'

—205.340'
961.156'

3829.83
1.17446

—133.99'
1015.02d

1328.55

6691.78
1.071 04

—148.42'
954.32

1249.11

8862.39
0.904 93

—173.40'
906.85'

1186.98

10 534.78
0.611 37

—220.38'
940.14

1230.55

—7.4
+ 0.09
+ 5.7
+ 0.5

+ 31.6
—5.1

—0.05
+ 6.3
—0.7

+ 30.0

—3.8

+ 7.1

+ 1.4
+ 32.8

—3.6

+ 7.3
—2.2

+ 28.0

165Ho

167Er

4f Qs

gf "gs'

4Iis/2

4I~3/2

4I

I9/2

'H6

H5

H4

3Q

E
gJ

B

E

A

B

E
gJ
A
B

E

B

E
gJ

B

E
gJ

B

E
gJ

B

0.00
1.195 15q

800.583q
—1668.089q

5419.70'
1.104 89q

937.209q
—1438.065q

8605.16'
0.982 93q

1035.140q
—1052.556q

10695.75'
0.857 69q

1137.700'
—494.482'

0.000
1.163 80'

—120.487'"
—4552.984'"

6958.329'

—159.522'
—4119.767'

10750.982'

—173.431'
—2429.382'

5035.193'

(0.00)
1 ~ 19646

836.77'
—1621.87d

5069.86
1.105 71

977.91'
—1409.93"

8440.99
0.975 63

1101.13'
—1152.04'

10 874.97
0.769 32

1309.37'
—1070.64

(0.00)
1.164 76

—123.60'
—4642.02
—5883.02

6654.47
1.032 13

—163.63'
—4221.76d
—5350.42

11 054.94.
0.967 63

—175.17'
—2173.15
—2754. 13

6178.21

(0.0)
+ 0.11
+ 4.5
—2.8

—6.5
+ 0.07
+ 4.3
—2.0

—1.9
—0.74
+ 6.4
+ 9.5

+ 1.7
—10.3
+ 15.1

+ 116.5

0.0
+ 0.08
+ 2.6
+ 2.0

+ 29.2

44

+ 2.6
+ 2.5

+ 29.9

+ 2.8

+ 1.0
—10.5
+ 13.4
+ 22.7
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Atom Configuration Label

TABLE I. ( Continued).

I

Observable Expt. MCDF 4 (%)

3F

Fp

gJ

B

E

B

E
gJ

B

—121.840'
518.628'

12 377.534'

—143.489'
1238.415'

13 097.906'

—167.147'
1686.564'

1.10074
—127.77'

2.01
2 55m

14024.43
1.082 25

—144.80'
1252.82"
1587.75

15 413.70
0.712 55

—175.53'
1481.28"
1877.29

+ 4.9
—99.6
—99.5

+ 13.3

+ 0.9
+ 1.2

+ 28.2

+ 17.7

+ 5.0
—12.2
+ 11.3

'"Tm 4f 136$2 2
F7yz

2
F5y2

E
gJ

B

gz

B

0.000
1.141 19'

—374.138 ' '

8771.243' .

—704.649'

(0.00)
1.141 85

—376.79'

8563.90
0.855 45

—708.43'

(0.0)
+ 0.06
+ 0.7

—2.4

+ 0.5

'See Ref. 19.
bSee Ref. 1.
'See Ref. 20.
dSee Ref. 21.
'See Ref. 4.
See Ref. 22.

gSee Ref. 23.
"See Ref. 24.

'See Ref. 25.
'See Ref. 26.
"See Ref. 27.
'See Ref. 28.

See Ref. 29.
"See Ref. 30.
'See Ref. 31.
"See Ref. 32.

"See Ref. 33.
'See Ref. 34.
'See Ref. 35.
'See Ref. 36.
"See Ref. 37.
"See Ref. 38.

See Ref. 39.

lying' 4f 6s states of neutral rare-earth atoms. The
atom, with its nuclear mass number, is identified in the
first column, and the electron configuration and atomic
state are given in columns 2 and 3. The atomic state
given is that of the principal component of the eigenvec-
tor. Column 4 specifies the particular observable for
which data are given in columns 5, 6, and 7. The experi-
rnental values are given in column 5, the MCDF values
are given in column 6, and the departure of the MCDF
value from the measured value (in %%uo) is listed in the final
column. The experimental errors are not given, but are in
all cases much smaller than the differences between
theory and experiment. Data are given only for the light-
est atom in those cases where experimental results are
known for two or more odd-3 isotopes.

Calculation of the MCDF values of the hfs constants 2
and B requires knowledge of the corresponding nuclear
moments pz and Q. The values used for the dipole mo-
ments are the directly measured values, determined in
most cases by atomic-beam triple resonance. The values
used are listed in Table II. Except for ' 'Pr, they are all
taken from the compilation of Fuller' to ensure consisten-
cy with regard to the diamagnetic shielding correction.
The ' 'Pr value is from Lew. ' The ' Tb value is from

(31)

electron paramagnetic resonance all the others are
from atomic-beam magnetic resonance. '

Since the spectroscopic nuclear electric-quadrupole mo-
ment is not accurately known for most nuclei, a different
approach is used. For all atoms the Q value was con-
sidered unknown and adjusted to give the best least-
squares fit of the MCDF to the observed B values of all
members of the ground term (for ' Ho the I»2 state was
ignored in the fit because of the large errors in the calcu-
lated values of the observables).

In Table I this best-fit B value is given first. For some
atoms the Q value has been precisely determined by
muonic —x-ray hfs or Coulomb-excitation studies, thereby
avoiding Sternheimer shielding effects. In these cases the
true value of Q is used to produce a second MCDF B
value which is listed below the least-squares-fit value in
Table I. The difference of typically 30%%uo between the two
B values is a direct measure of the distortion of the elec-
tron core by the nuclear quadrupole moment (Sternheimer
effect). In the usual expression the true quadrupole mo-
ment Q is expressed in terms of the apparent moment

Qhf by the relation"
1Q=

I ~ Qht. .
nl
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TABLE II. Nuclear moment information for the atoms studied. Here, p~ are the measured nuclear

dipole moment values (in units of p~) used in the MCDF calculations of the hfs A values, and Qhf„

Q~,~, and Q,b, are nuclear quadrupole moment values in barns (10 cm ). Qhf, are the quadrupole
moment values that, together with the MCDF radial calculations, lead to a best fit to the observed hfs
B values. Q„„d are the quadrupole moment values predicted from the Q„q, values and the assumed
Sternheimer shielding factor R4f =+0.23. Q,b, are the spectroscopic quadrupole moment values deter-

mined by muonic-atom hfs or Coulomb-excitation methods, and 6 are the differences between the
predicted and the observed Q values ( Q„„d—Q,b, ) in percent. The discrepancy for "'Eu arises from the

quadrupole hfs measurement being made in an atomic S state and is discussed in the text.

Nucleus Qhfs Q.b. 4 (%)

141@

143Nd

'4'Sm
151E

159Tb

161Dy
165H

167Er

'"Tm

4.136'
1,063 c

—0.8129"
3.4631"'
2.008 '"

—0.4792 "

4.125"'
—0.5647 '
—0.2310 "

—0.051
—0.459
—0.203

0.504
1.113
2.017
2.596
2.817

—0.066
—0.596
—0.263

(0.655)
1.445
2.619
3.371
3.658

0.561 '~

1.432'
2 64k

3 57m

3.565'

{—17.0)
—0.9

0.8
5.6

—2.6

'See Ref. 19.
"See Ref. 1 ~

'See Ref. 36.
See Ref. 26.

'See Ref. 41.

See Ref. 42.
~See Ref. 43.
"See Ref. 44.
'See Ref. 45.
'See Ref. 46.

kSee Ref. 47.
'See Ref. 48.

See Ref. 49.
"See Ref. 39.

Since the B values are proportional to the Q values, this
may be modified to read

1B= Bhf, .
1 —R„I

(32)

In this expression, B&~, is the B value inferred from atom-
ic hfs (listed first for each atom in Table I), while B is the
value (listed below Bht„or omitted if unavailable) calcu-
lated from the true value of Q. The 30%%uo difference is
consistent with Rqf ——+0.23 as found by Childs and
Cheng. Table II gives Qhr, (column 3), the predicted
(true) Q value determined by letting R4f = +0.23 (column
4), and the measured value of Q (column 5). The agree-
ment between columns 4 and 5 is excellent for ' Tb,
' 'Dy, ' Ho, and ' Er. The poor agreement for ' 'Eu
presumably arises from the difficulties, both experimental
and theoretical, of evaluating the (nuclear) quadrupole
moment in a rather pure (atomic) S state for which the
extremely small quadrupole hfs arises only through depar-
ture from L-S coupling. If the eigenvector picks up some
non-4f character, the appropriate Sternheimer factor may
deviate from R4f ——0.23 and the predicted Q values would
be different from that listed in column 4 of Table II. In
view of these uncertainties the apparent 17%%uo discrepancy
for ' 'Eu is not surprising and the relevant entries in
Table II are put in parentheses.

In general, we see from Table I that the agreement be-
tween the MCDF values and the measured values is ex-
tremely good in spite of the lack of adjustable parameters.
The excitation energies are predicted to typically 6%, the

g values to 0.1%%uo, the A values to 5%, and the B values
within 2% (not counting the 30%%uo Sternheimer effect
which is omitted in the MCDF treatment).

The J dependence of the calculated values is also rather

good. Thus, for example, the range in the ' Sm B values
from —58 ( F&) to +203 MHz ( F6) is accurately
predicted by the MCDF theory. For the same atom, the
L-S—coupling model predicts gq

——1.501 16 independent
of J, but a small J dependence results from state-
dependent admixtures. The J dependence of the calculat-
ed g values is in good qualitative agreement with experi-
ment as shown in Fig. 1. Residual discrepancies presum-
ably are due to the diamagnetic corrections' which are
second-order effects and are not included in this calcula-

LS LIMIT

l.500—

147

Jg SfTl

l.490
I

I I

4
J VALUE

Flax. 1. J dependence of the Lande g factor in the 4f 6s FJ
ground term of ' Sm. State-dependent admixtures perturb the
L-S—limit prediction gJ ——1.50116 for all J. The observed J
dependence is reproduced qualitatively by the MCDF theory.
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tion. If the corrections calculated in Ref. 17 are applied
to our MCDF values in Fig. 1, the agreement with the ex-
periment is dramatically improved. Unfortunately, how-
ever, the authors did not list the diamagnetic corrections
separately from the relativistic corrections already includ-
ed in our MCDF results.

The MCDF results do not, of course, reproduce the ex-
perimental results perfectly. From Table I we see that the
MCDF excitation energies are too small in every case ex-
cept for the I9~2 state of ' Ho and for the higher excited
states of ' Er. The region of poorest agreement between
theory and experiment is near the end of the shell at high
excitation; this is exactly where state mixing is most criti-
cal. The g values and hfs constants are also calculated
less accurately in this region, clearly indicating that con-
figuration interactions are stronger for these states. In an
effort to improve the MCDF results for the excited levels
of ' Er, the basis set was greatly expanded to include the
4f' 6s5d, 4f"6p6s, and 4f' 6p configurations. The
use of such expanded basis sets did not significantly im-
prove the agreement with experiment for any of the ob-
servables, and it is of the greatest interest to understand
why. At this point, it is not even clear whether the ab-
sence of as yet unidentified key configurations is the
source of the discrepancies or whether the problem is
more fundamental. It is hoped that this paper will serve
to stimulate further work in this area.

The calculated A values are too large in most cases but
are very close (typically within 1%) to the measured
values in ' Sm even though the calculated energies for
these same states are much further from experiment than
those for any other atom studied. It is worth noting that
eigenvectors that are excellent for reproducing experimen-
tal values of the hfs constants may not be as good for
predicting the excitation energies, and vice versa.

IV. CONCLUSIONS

The MCDF theory has been used to calculate the exci-
tation energy, g value, and hfs constants for all levels
within the ground 4f 6s multiplets of the neutral rare-
earth atoms. The j-j configurations included are limited,
except as mentioned below, to those necessary to repro-
duce the 4f 6s configurations. Except for this trunca-
tion, however, there is no arbitrariness or adjustability in
the theory; all the results follow directly from first princi-
ples (the nuclear moments are taken from experiment).

In comparing the calculated values with the experimen-
tal ones (many of which have been obtained only within
the last two years), one typically finds agreement for the
excitation energies and hfs 2 values to about 5%, the cal-

culated excitation energies are in most cases too small and
the 3 values too large. That the calculated g values agree
with experiment to about 0.1% is not very surprising, as
they are relatively insensitive to changes in the wave func-
tions.

For those atoms for which the nuclear quadrupole mo-
ment is accurately known one finds the calculated hfs B
values are about (30+2)%%uo too large. This is a direct mea-
sure of the Sternheimer shielding and is not taken into ac-
count in the MCDF calculations. On the assumption that
the shielding factor R4f is constant throughout the 4f
shell (as it appears to be), the "true" quadrupole moment
is predicted (Table II, column 4) for each of several nuclei
for which there are as yet no measurements. New mea-
surements to test these predictions would be of great in-
terest.

As the relativistic effects are included nonperturbative-
ly, the J dependence of the MCDF results is remarkably
close to the observed for all four observables ( E, gJ, A,
and B) studied. This gives considerable confidence in the
way the theory predicts L-5—state admixture and greatly
simplifies the calculations of spin-orbit corrections.

In view of the limited basis set chosen, the high order
of agreement between theory and experiment is remark-
able. The region of poorest agreement with experiment is
near the end of the shell at high excitation energy. This is
presumably due to stronger electron correlation effects in
more-than-half-filled shells. These difficulties are well il-
lustrated by the data for the "I/]/p 9/2 levels of ' Ho and
the H4 and I'4 levels of ' Er. It appears that a few key
configurations are missing in our calculations; whether
they involve inner-shell vacancies (core polarization) or
only outer electrons is not clear, although semiempirical
calculations have suggested ' that core polarization plays
only a very minor role in the hfs of 4f+6s~ configura-
tions. Identification of these configurations in future
MCDF studies will certainly enhance our understandings
of electron correlations for rare-earth atoms.

Considerable experimental data exists for more complex
electron configurations of the rare earths and may well
provide a useful subject for subsequent studies. In most
cases the states involved are more highly excited than the
4f+6s levels considered here, and the greater admixtures
expected would present a still more challenging test of the
ab initio theory.
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