
PHYSICAL REVIEW A VOLUME 31, NUMBER 4 APRIL 1985

Further results on the equipartition threshold in large nonlinear Hamiltonian systems
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Numerical simulations show the existence of an ergodicity threshold in the Fermi-Pasta-Ulam o. model.
This feature is common to a large class of nonlinear Hamiltonian systems.

In a recent paper' on the Fermi-Pasta-Ulam (FPU) P
model, we reported the numerical evidence of the existence
of an equipartition threshold in the case of large number N
of degrees of freedom. The main result is that equipartition
of energy is obtained when the energy density e =E/N of
the system is greater than a critical value e, which does not
depend on the number N of degrees of freedom.

The persistence of the equipartition threshold for large
values of N and for a very long, though finite time is a
relevant physical result independent of the lack of
knowledge on the infinite-time behavior. An important
point is to understand if the results that we found are relat-
ed to the particular functional form of the Hamiltonian of
the FPU P model or are "generic" properties of nonlinear
Hamiltonian systems with many degrees of freedom. A par-
tial answer to this question can be found in Ref. 1 where we
studied a FPU P model perturbed by random quenched
fluctuations of the nonlinear coupling constant, i.e., given
by the Hamiltonian

where @; are the values of the discretized field, m. ; the
canonically conjugated moments, and P; a random
quenched variable of given mean value equal to P. We
found that the two systems with P; = P and P; random have
the same statistical behavior.

The existence of stochasticity thresholds in other non-
linear Hamiltonian systems (such as discretized versions of
nonlinear Klein-Gordon equations, one- and two-
dimensional Lennard- Jones lattices ' P FPU, etc.) is
strongly hinting for a model independence of the results re-
ported in Ref. 1 even though equipartition and stochasticity
thresholds do not coincide.

In the present paper we report the results of a numerical
investigation of the Fermi-Pasta-Ulam n model. The aim of
this study is to test the model independence of the main
result of Ref. 1. The FPU u model is described by the fol-

where the symbols have the same meaning as in Eq. (1).
We adopted periodic boundary conditions putting @t= @~+~,

and as initial conditions m;(0) = @,(0) = 0 and

NI2

@;(0)= g A„(0) cos +8„(0)sin
n= 1 N N

with the assumption that the only nonvanishing coefficients
are those A„(0),8„(0) with n 6 (n, n + (An —1)]. The ini-
tial conditions for @; are chosen in such a way that at t = 0
the energy of the system is uniformly distributed only
among 5 n normal modes whose wave numbers are
n, n + 1, . . . , n + (5n —1). During the time evolution of
the system the mode-mode coupling due to the nonlinear
potential in the Hamiltonian (2) yields an energy sharing
between all the normal modes. If in a finite time it happens
that each normal mode reaches the same average energy
value —2EO/N (Eo being the energy at r = 0) then equipar-
tition of energy sets in and the system displays an ergodic
behavior (fully developed stochasticity).

We observed that for low-energy density values nonequili-
brium (i.e., far from equipartition) stationary states can be
reached from generic initial conditions, each nonequilibri-
um state displaying different spectral properties according to
the initial conditions. On the contrary, the equilibrium
spectrum W'„'"= (A„+8„),„, where ( ),q indicates the mi-
crocanonical average, is unique so that we introduced a
spectral entropy as equipartition indicator. To define this
spectral entropy we use at any time the following Fourier
decomposition:

N/2

g, (r) = X A„(r) cos +8„(r)sin
n=1 N ! !

(4)

lowing Hamiltonian:

N

2' + 2 (4 —%+i)'+ —(4 —4;+t)', (2)
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so that the energy of each normal mode is

E„(t)= ~ {A„'(t) +B„'(t) + r „'[A„'(t)+B„'(t)]I

where co„=2 sin(mn/N). Now define p„(t) as

NI2

p„(t) = (E„(t))r g (Ek(t)) r (6)

0.8

0.6

where (E„(t))r is the harmonic energy of the nth mode
averaged in time as foliow s:

t+ T/2

(E„(t))r = — „dt'E„(t') (7)

0.4

0.2

where T is chosen to be much greater than the lowest
period of the harmonic part of the system to smear out
short-time-scale fluctuations. We define the following spec-
tral entropy

0.01 0.1 1.0

N/2

A (t) = —X p„(t) lnp„(t) ~ 0
n=1

(8)

FIG. 1. Time asymptotic value of the spectral entropy vs energy
density. The value of the coupling constant a has been set equal to
0.1. Circles stand for W = 64, n = 2, hn = 4; crosses stand for
X = 128, n = 4, An = 8; triangles stand for N = 256, n = 8, An = 16.

to obtain for each asymptotic stationary state a pure number
~(oo) which measures the degree of equipartition of the
system. In fact, the quantity of Eq. (8) is maximum when
all the weights p„have the same value, that is, when
equipartition of energy among the normal modes takes place
and M (~)= A,„=ln(N/2); on the other hand, when
the system is completely harmonic A (~)= P'(0) is
found. As we discussed in Ref. 1, ~(~) can also provide
a rough estimate of the dimension of the subspace of phase
space that is spanned by the phase trajectories of the sys-
tem; in a sense the effective number of degrees of freedom
("active modes") can be estimated as

q(t) = [4 ..—~(t)]/[~ .. ~(0)1 (10)

which no longer suffers the N dependence of the maximum
value of P (~). q varies between 1, i.e. , perfect harmoni-
city of the system, and 0, i.e., complete equipartition of en-
ergy.

Numerical simulations have been made for different
values of the number of degrees of freedom, i.e., N = 64,

' 128, 256; these values are powers of 2, thus allowing the
use of a fast Fourier transform (FFT) to perform the com-
putation of A„(t), B„(t),and consequently of q(t).

Changing initial excitations we used n ~ N and 4n 0I- N, so
that the wavelength of the lowest excited mode was kept
constant as well as the density An/N of initially excited
modes. The latter condition is introduced to simulate the
usual thermodynamic )imit of equilibrium statistical
mechanics where the number of particles and the volume
both become arbitrarily large at finite constant ratio.

The numerical integration algorithm used is the standard
leapfrog algorithm:

y, (t + ht ) = 2$; (t) —y; (t —b, t ) + (At )'F, {y~(t))

W,tt—- exp[2A (~)]
As we are interested in the behavior of the system at fixed
energy density values as a function of N, we introduce a
normalized spectral entropy

where F; = —dH/'dP;.
The time integration step is At = 0.1.
A typical relaxation time of P'(t) to its time-asymptotic

value is about 10, while in the worst situations, that is,
when the energy density has a value which is close to the
critical one, it can be as large as 4 & 10 . The smoothing
time T has been chosen equal to 3 & 1O'. In Fig. 1 we report
the behavior of q(~) vs e=E/N which is obtained adopt-
ing n =N/32 and hn = N/16 and changing the number N of
degrees of freedom. It is well evident that the different
values found for q(~) lie on the same curve independently
of N so that the same critical energy density value e, is ob-
tained as an equipartition threshold.

Thus, we have verified that the main result of Ref. 1
holds also for the FPU n model. In view of the results in
the quoted references' and here reported, it seems
reasonable to conclude that the existence of an ergodicity
threshold is model independent. Another very important
and still open question is the following: Have we observed
at e & e, a true nonequilibrium state or rather a metastable
situation with a very long relaxation time? It is evident that
the answer can hardly be given with the aid of numerical
simulations. It could happen that for e & e, and large N
these nonlinear Hamiltonian systems behave similar to the
amorphous systems in which the equilibrium is reached
only after very long times. Moreover, amorphous systems
show a hierarchy of relaxation times according to the prop-
erties which are under consideration. This point deserves a
more careful investigation which is now in progress.

The phase space structure of the nonergodic "phase" has
been analyzed in more detail in Ref. 7.
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