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The role of fluctuations is studied in the locally attractive and locally invariant center manifold for a sys-

tem which is a truncation of Hopf's model for hydrodynamic turbulence. The anlaysis is carried out in a
regime where the system sustains a hard-mode instability and the real part of the Floquet coefficients does
not chapge sign. The Gaussian width of the time-independent factor of the probability density is shown to
measure the subordination of the fast-relaxing degree of freedom. A physically meaningful equation is

derived relating the Gaussian width, the intensity of the additive noise, and the external control parameter.
The characteristic curves of the reduced Fokker-Planck equation are the limit cycles derived from bifurca-
tion theory.

I. INTRODUCTION

The center-manifold approach to analyze fluctuations in
systems displaying dissipative structures was implemented
by a number of people: Knobloch and Weisenfeld classified
the instabilities according to the normal form of the sys-
tem Fernandez and Sinanogiu have identified the dissipa-
tive structures occurring in open reactive systems operating
far from equilibrium with center manifolds. 2 5

In a recent paper, these authors have considered a
dynamical system capable of sustaining a hard-mode insta-
bility under a Ginzburg-Landau regime but such that when
the real part of the Floquet exponents changes from nega-
tive to positive, the Torus-type bifurcation can no longer be
described by the Ginzburg-Landau equations. 5 This model
is a trurication of. Hopf's system for fluid dynamic tur-
bulence. Since the system is already in the Poincare nor-
mal form, the separation between the fast-relaxing degree of
freedom from the Haken's order parameters is straightfor-
ward and becomes evident if one considers that the Jacobian
matrix is in Jordan normal form.

The center-manifold equation is obtained by adiabatic el-
imination and the time-independent factor of the probability
density functional is a Gaussian peaked at this center mani-
fold. The inverse of the distance from its maximum to its
inflection point gives a measure of the local attractivity of
the center manifold. (The more spread the probability is,
the less attractive )It will. be shown in this paper that this
Gaussian width is dt'rectly proportional to the root square of the
intensity of the additive noise and inversely proportional to the
root square of the bifurcation control parameter. A result
which agrees with the intuitive picture that the local attrac-
tivity of the center manifold should decrease with the inten-
sity of the noise.

The Jacobian matrix being in the Jordan normal form at the
nontrivial stationary state X= (0, 0, v ):
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v c (r —8, -r+8) (4)

The real part of the Floquet exponents of the limit cycle do
not change sign (it remains negative) in the open interval

~ ~ v ~ ~. It was proven in an early paper that the bifur-
cation can, in that interval, be described by the Ginzburg-
Landau equations. 5 This description does not hold for a
more extended interval since, beyond v= ~ a Torus bifur-
cates and the real part of the Floquet coefficients becomes
positive.

To analyze the role of fluctuations for the interval where
Eq. (4) is valid, we consider the coupling of Eq. (1) with ad-
ditive white Gaussian noise 5 correlated on the fast-relaxing
degree of freedom X3. This perturbation obeys the relation

(u(t)) =0; (u(t)u(t')) =2d&(t —t')

One can identify the order parameters as X~ and X2 and the
fast-relaxing degree of freedom as X3 (cf., for example, in
Hakens). After a relaxation time of the order of the re-
ciprocal of the damping constant (v '), we have, as a
consequence of the adiabatic elimination approximation

X3=0
This relation gives as the center-manifold equation

X3= F(X),X2) = ~v+ [~v' —(X$ + X2 ) ]'t2;

II. CENTER MANIFOLD

The following dynamical system is already in the Poincare
normal form:

X] (V 1 )Xj X2+ X]X3& Xp X]+ (v 1 )X2+ X2X3

X3 = v X3—(Xf" + Xj + X$ )

The quantity d is the intensity of the noise. The center
manifold is tangent at the steady state to the eigenspace of J
with associated eigenvalues + i. It contains the recurrent
solutions of the system. In the deterministic limit d 0,
the time-independent part of the probability density is the
Dirac delta peaked at X3=F(X~,X2). The relation being
valid after a relaxation time of the order v
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III. FOKKER-PLANCK EQUATION
AT THE CENTER MANIFOLD

The general Fokker-Planck equation for the probability
density functional P(X1,X2,X3, v, t) reads

the center manifold given by the coordinates Xq and X2.
This has to be so to allow for the continuous flow of proba-
bility about the center manifold [cf. (1)]:
L (X3) = (g/~)' 'exp( —g(X1,X2) [X3 F(X1 X2) ] } ~ (&)

rJ,P = —rl, (X,P) —8 (X P) —8 [[X —u(t) ]P}

+ d~x3~x3~ (6)

Since the width g becomes infinitely large for d=0 (cf.
below), it is a valid assumption that, in the sense of the
theory of distributions,

The time-dependent factor obeys a reduced Fokker-Planck
equation in the order parameter space. ' Therefore, X3 is
given by Eq. (4):

'r), T= X28», T X18» T—9», [—X1F(X1,X2) T]

8,,[X,—F(X,,X,) T] . (7)

The time-independent factor L(X3) is a Gaussian whose
width should be parametrically dependent on the position in

l

'P (X)L (X)dX3 = Ir (X1 X2 F(X1 X2) )

W (X)8 (X3—F(X1,X2) ) dX3

for any qr(X) of square integrable.
Equation (9) is valid, of course, only for small noise in-

tensities. g(X1,X2) =g(0, 0)+ O(1), and we denote the
average inverse width g(0, 0) by gp.

The integration of Eq. (6) with respect to X3 (fast degree
of freedom) will be performed using the relation (9):

i), T= [ —(T'g)8», g] [ —TX1—X2+ X1F(X1,X2) ] T 8», ([—TX—1
—X2+ X1F(X1,X2)] T}

(T'gi)»2g) [X1 TX2+ X2F(X1ix2) ] T i)»2[[X1 TX2+ X2F(X1~rx2) ] T}

—T"rJ», [~X3 (X$ + Xj + F—') ]+d(B»,B», T—2gT) (10)

We have considered the integrated form at the bifurcation
value of the parameter v = T.1

A comparison between relations (7) and (10) gives for
the average inverse width

gp = ~d ' (at the bifurcation point)

gp= v/2d (for T» v ~ T)

Relation (11) justifies the assumption given in Eq. (9). The
distance from the maximum of L (X3) to its inflection point
is k= (2g) '/', a quantity parametrically dependent on the
slowly relaxing degrees of freedom.

The average quantity k ' provides, as we have stated in
Sec. I, a measure of the local attractivity of the center mani-
fold. We arrive at the desired formula:

k —1 (2g )1/2 (v/d)1/2 (12)
(Roughly speaking, the local attractivity increases as we
depart from the bifurcation value T and decreases, as ex-
pected, when the noise intensity increases. )

The characteristic curves of the reduced Fokker-Planck
equation are precisely the limit cycles analytically found in
previous work by Fernandez and Sinanoglu:

(v —~) —(Xj + X$ ) = 0
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