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Density analysis of the neutron structure factor and the determination
of the pair potential of krypton
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We propose a method of analysis of the density behavior of the experimental neutron scattering struc-
ture factor which permits us to derive directly from the experimental results an "experimental" pair poten-
tial. We apply the method to the recent results of Teitsma and Egelstaff in krypton gas and derive a pair

potential which is in good agreement with the empirical potential of Barker et al. Some discrepancies in the
0

range 4 & r & 8 A are noted.

gp(r) =exp[ —pU, (r)] (2)

and g~(r) is the coefficient of the first density correction,
which depends on both the two- and three-body potentials.
In expression (2) p = I/ks T, U2(r) is the pair potential, and
r is the distance of a generic pair of atoms.

The static structure factor S(k) of a fluid, which can be
measured precisely by means of neutron scattering, is
directly related to the Fourier transformation of g (r) as

S (k) = I + p Jf[g (r) —1]e'"'dr

Therefore, the S(k) of a low-density gas can also be writ-
ten from Eqs. (1) and (3) as a pow'er series with respect to
p, i.e.,

S (k) = 1+So(k) p + Sg (k)p'+ 0 (p')

where

So(k) = J [go(r) —1]e'"'dr,

S~(k) = J gq(r)e'"'dr

From Eq. (4) it is clear that a measurement of S(k) in a
gas as a function of density p at fixed T would permit a
direct measurement of Sp(k) and S~(k) if the density re-
gion which is explored is such that terms of order 0 (p3)
are either small or even negligible.

The experimental measurement of Sp(k) would then per-
mit the determination of gp(r) by means of the simple

It is well known that the pair distribution function g (r) of
a monatomic gas at low density can be expressed as a series
expansion with respected to the density. ' For the case of an
homogeneous low-density gas system at temperature T,
g (r) assumes the form

g(r) =go(1)+pgg(r)+0(p'),
where

Fourier transformation

g p(r) = 1+ —, Jl Sp(k) e -'"'d I
(2m)'

and, therefore, the determination from the experiment, of
the isotropic pair potential

U2(r) = —ks T Ingp(r)

Andriesse and Legrand have performed a measurement
of S(k) in a limited range of k values at low density
(2.52X1027 atoms/m3) in 3pAr and derived a pair poten-
tial. ' However, their density was not low enough to allow
the many-body contributions to be neglected; therefore they
were obliged to apply a correction based on the hypernetted
chain (HNC) and Percus- Yevick (PY) approximated
theories. Moreover, they performed a termination of S(k)
to high-k values based on an arbitrary smoothing procedure.

Here we will demonstrate that the derivation of a pair po-
tential, from density measurements of S(k) alone, is possi-
ble if accurate data are available. Only recently Teitsma and
Egelstaff4 '~ have performed an experiment which allows
the application of this procedure. They have measured
S(k) for 0.2~ k~4 A ' of krypton gas at room tempera-
ture ( T= 298 K) with high precision and for 15 densities.
However, in the analysis of the data they focused attention
on the determination of the importance, for the quantity
S~(k), of the three-body irreducible potential U3(1] f2 r3)
assuming a known form for the pair potential U2(r). Egel-
staff, Teitsma, and Wang+b~ have extracted So(k) by extra-
polating c(k) = [1—I/S(k)]/p to p=0, but they used a
theoretical form for So(k) for k ) 4 A . In this Brief Re-
port, we will show that the krypton data of S(k) permit the
application of the before-mentioned procedure, in order to
extract Sp(k), and consequently U2(r), directly from the
experiment.

For our purposes it is convenient to analyze the behavior
of the quantity [S(k)—I]/p, see Eq. (4), as a function of
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p. The procedure is the following. Since the experimental
S(k), as given in Ref. 4(a), have an average accuracy better
than 0.5%, we have assumed this accuracy as a constant re-
lative error. We have performed a weighted least-squares fit
of the experimental data, at fixed k, of [S(k)—1]/p to
polynomials in p of zeroth, first, and second order. Then
we have chosen, for each k value, the polynomial which
gave the highest degree of likelih'ood based on the value of
X'. The choice, Pased on this criterion, shows that the data
for 1.7 & k & 4 A are best fitted by a constant (zeroth-
degree polynomial), the data for 0.65 & k & 1.7 A are
best fitted by a linear function (first-order polynomial), and

0
the data for 0.2 & k & 0.65 A are best fitted by a quadrat-
ic form (second-order polynomial). Figure 1 shows the
quality of the fit fop a value of k in each of the three re-
gions. This behavior of the degree of the fitting polynomial
versus k is similar to what has been found in the depolar-
ized interaction-induced light scattering (DILS) where the
scattering cross section in gases has the same property with
respect to the frequency v and the density p.

This fact indicates that within the experimental errors, in
the range of densities studied, for values of 1.7 & k
& 4 A S (k) is determined only by two-body correlations;

in the region where 0.65 & k & 1.7 A three-body correla-
tions are also important, while for 0.2 & k & 0.65 A
correlations of higher order that three must be considered if
the range 0 & p & 6&&10 ' atoms/m' is used. [The second
region extends to lower k if c(k) is used in place of S (k).]
This is the counterpart, in k space, of a property that also
the g(r), represented by Eq. (1), has with respect to r and
p. In fact, the larger the value of r that one considers in

Eq. (1) the larger the number of terms that one mus't retain

in the series expansion.
Figure 2 shows the behavior of So(k) that we have ex-

tracted from the experimental data of krypton with the
above-mentioned fitting procedure and turns out to be very
similar to the one already obtained by Egelstaff, Teitsma,
and Wang with a similar fitting procedure. The second
step is now to perform the Fourier transform of So(k) and
derive go(r). So(k) is extracted from the experiment in a
finite range of k; therefore, some kind of extrapolation
must be applied to So(k), both toward zero and high-k
values, in order to perform a reliable Fourier transform.

The interpolation toward the zero-k value is readily done,
since the value of So(k =0) is known from the equation-
of-state data' and also the form of So(k) between k =0 and

0
k =0.2 A does not appreciably affect the values of go(r)
in the region of the peak, which is of interest here. We
have performed this interpolation by means of a parabola in0 ]k2 which fits the data between 0 and 0.4 A

The extrapolation toward high-k values is more important
and must be discussed in some more detail. The Fourier
transform of a structure factor (truncated at k =k, ) for
which the So(k) is different from zero for k & k„ is appre-
ciably affected by this truncation, giving rise to a g, (r)
which shows a lowering in the maximum and spurious oscil-
lations at high r in comparison to the true g(r). [Here we
have indicated with g (r) the Fourier transform of the full
S(k) while g, (r) is the Fourier transform of the truncated
S(k).] This is easily verified performing a calculation on a
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FIG. 1. Experimental values and best-fit line as a function of
density, of the function [g(k) —1]/p for threy different values of
k: 1.9 A t (circles); 1.3 A t (squares); 0.55 A t (diamonds).
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FIG. 2. The behavior of Se(k) lim~ p [S(k) —1]/p as a func-
tion of k. All the points but the first three are derived by the fitting
procedure described in the text. The low-k points have been
derived by interpolating the behavior of Sc(k) by means of its k 0
value (compressibility) as explained in the text. Dots are the exper-
imental data, the solid line refers to theParker er al. potential, and
the broken lines refer to our potential (see text).
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model g(r) and S(k), for example, for a Lennard-Jones
(LJ) potential.

In Refs. 4(a) and 4(b) an extrapolation procedure of the
experimental structure factors, based on a known pair po-
tential, was adopted in order to derive information on the
pair and triplet potentials.

Here, since our primary purpose is to demonstrate that we
can extract a good potential by using only the experimental
results of $0(k), we will not assume any known potential of
krypton and will adopt an iterative procedure starting only
from the experimental results. This procedure is based on
the following observation. If the experimental data do ex-
tend to sufficiently high k (in the case of krypton, for which0
measurements have been performed up to k —4 A ) even
though the data do not allow a direct inversion procedure,
almost complete information on the gp(r), and consequently
on the pair potential, is contained in the truncated experi-
mental results for r ~ 27r/k, . Here, k, indicates the value of
k for which the experimental So(k) is truncated, for
example, in the case of the experiment on krypton
2~/k, = 1.57 A.

%e need then to find a model-independent general pro-
cedure with which to extrapolate the truncated So(k) in or-
der to properly extract a go(r); this procedure will damp
down the Fourier oscillations and increase the magnitude of
the peak of g, (r).

The procedure we propose, is the following.
(1) We Fourier transform the truncated experimental

So(k) and derive a zeroth order gtol(r) =g, (r).
(2) From this g (r) we define two parameters a.o and eo

as follows. o.o is the value of r for which g~o~(r) =1, while
eo is —ks T Ing, „, where g,„ is the peak value of g (r).

(3) We use a model potential parametrized by o.o and eo
to construct a pair distribution function whose Fourier
transform is used to extrapolate the experimental So(k) and
obtain an Sot'l (k).

(4) We Fourier transform this Sot'' (k) to derive a first
order g"'(r).

(5) We repeat points (2)—(4) starting from g~'~(r) and
iterate the procedure until g~"~(r) =gt" '~(r).

(6) At this point we identify the pair distribution function
g" (r) with the true, low-density go(r) and derive the ex-
perimental pair potential from Eq. (8).

The above-mentioned iteration procedure has been ap-
plied starting from the So(k) of krypton with three different
model forms for the potential, namely, the 9-6 and 12-6
Lennard-Jones potentials given by

~9 ~ &6*

U9 6(r) = e
27 Q 0 (9)
4 r r

'12 ' '6
(7 a '

(10)

Figure 3 shows, as an example, the behavior of the
g'0'(r), which is our starting point together with the succes-
sive g"'(r), g'"(r) when Eq. (10) is used for the model
potential. On the same plot gt3~(r) would be coincident
with gt2l(r). From the figure the fast convergence of the
procedure is also clear.

Figure 4 shows the three potentials as they result from
the iteration procedures performed with the three different
model forms. They are shifted for convenience and each
one is compared with the empirical potential due to Barker
et al. 7 On the scale of the figure, if plotted together the
three potentials would be hardly distinguishable except in
the region of the bottom of the well. Their behavior is
similar to that of the Barker et al. potential, which was
derived from a completely different large set of experimen-
tal results. If one would plot the relative differences of our
three experimental potentials with respect to the empirical
one, it would be found that the relative differences for
1.0 ( r/a- ( 1.9 show that the "experimental" potentials are
always within a few percent in agreement. In addition they
agree with the Barker et al. potential within —5% in the
lower part of the well, while they show a discrepancy of the
order of —3% of e in the region around 1.6a-. This is
—15% of Us(r= 1.6a ), and this discrepancy is observed
also in comparison with the Aziz potential.

In Fig. 2 we also compare the experimental behavior of
So(k) with that derived by means of the Barker et al. poten-
tial and by means of our three experimental potentials. The
three So(k) derived from our three experimental potentials
are not distinguishible from one another on the plot while
the one derived with the Barker et al. potential differs from

and the multiparameter potential of Barker et al. defined as

Us(r) = eUs'(r) (11)
with

r = 1.121a-

where the various constants in U~ were taken from Ref. 7
and a- and ~ are the parameters used in the iteration pro-
cedure. A plot of the three potentials (9), (10), and (11)
on the same scale (i.e., in units a =e= 1) would show the
large differences of their attractive parts.

0. 8 1.2 1.6 2. 0 2. 4 2. 8

r / (3.573 R)
FIG. 3. The behavior of the various g " (r) for the case of the

12-6 LJ extrapolation, the solid line is the Fourier transform of the
"crude"- experimental So(k),g 0 (r). The dashed line is the first
iteration g (r) and the dotted line is the second iteration g (r).
The following iteration, g~3~(r), would be undistinguishible from

g (r) on the scale of the figure.
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FIG. 4. The three experimental potentials derived by neutron
scattering data are shown on the figure (dotted line). Each one is
compared with the theoretical Barker et al. potential {solid line).
The plots are shifted for clarity and represent (from top) the poten-
tial obtained by using the 9-6 LJ potential model for extrapolation
of So(k), the one obtained by using the 12-6 LJ, and the one ob-
tained by using the Barker et al. potential model.

the experimental data at low-k values.
As a conclusion we can summarize the results of our

analysis as follows.
(1) A pure two-body structure factor Sp(k) which is relat-

ed only to the pair potential can be derived from experi-
ments in low-density gas phases.

(2) The high-k extrapolation procedure of the experimen-
tal $0(k), which is necessary in order to derive a go(r) from
the Fourier transformation, can be performed starting only
from the experimental So(k) data and a model form for a
potential which is used for the extrapolation.

(3) When an iteration procedure is applied in order to
derive go(r) and U(r) from So(k), the final result for U(r)
in the region of the well is practically independent on the
model form used for the potential from which we start the
iteration, if the experimental So(k) is extended towards suf-
ficiently high-k values.

(4) We have shown that our procedure, when applied to
the experimental So(k) of krypton, gives a pair potential
which agrees reasonably well with the one derived by Barker
et aI. from a large set of different physical quantities.

(5) The advantage of our method is that it does not
depend upon either an assumed mathematical form for the
potential or on fitting constants to experimental data. This
is especially important over the intermediate range (4-8 A)
of r, where the long- and short-range expressions for U(r)
are joined together in the conventional method. It is not
surprising, therefore, to find the largest relative discrepancy
between our results and previous potentials over this range.

We conclude that the experimental determination of the
structure factor in low-density gases and the analysis of its
density behavior can become a new experimental method
for the direct determination of pair potentials in atomic sys-
tems and isotropic "effective" pair potential for simple
homonuclear molecules.
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