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Chaos and nonlinear modes in a perturbed Toda chain
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The role of spatially coherent modes in a chaotic state of the damped and driven Toda chain is investigat-
ed with the help of the scattering transform.

In many chaotic (or turbulent) systems spatially coherent
nonlinear modes seem to play an important role. However,
these modes are difficult to define analytically. Frequently
one only knows about the presence and nature of a coherent
mode when a "lump" appears in one's data! Until they are
more precisely defined, possible uses for these coherent
modes, e.g. , to provide a description of low-dimensional at-
tractors, remain speculative.

When the dynamical system is a perturbation of a com-
pletely integrable nonlinear wave equation the situation is
clearer: solitons become natural candidates for the coherent
states. Even in these cases, however, since the integrable
system can be strongly perturbed, the practicality of
representing a field in a soliton basis must be carefully in-
vestigated. Are the number and properties of the solitons
which comprise the field sufficiently stable that the
representation is useful?

Such questions can be answered with a numerical pro-
cedure which transforms the field to its soliton representa-
tion. ' This numerical transform is just being developed
and has only been tested for mild perturbations with regular
data and responses. Here, we take the transform in the
simplest and most developed framework (the periodic Toda
lattice) and extend its use to both irregular data and strong
perturbations. Specifically, we use the transform to study
two examples: (i) the appearance of a coherent spatial state
from a chaotic one, and (ii) the dynamics of the lattice sys-
tem under the presence of an external inhomogeneous force
and dissipation.

Self-organization of a turbulent (or random) state into a
state of spatial coherence (order) is an important
phenomenon shared by many nonlinear dissipative systems.
A possible theoretical description of this process4 is as fol-
lows. Let X(t) denote the state of the system at time t. In
the absence of dissipation, X satisfies a nonlinear, consera-
tive evolution equation that possesses several constants of
motion ((Ii(X)). In the presence of dissipation, these in-
variants I&(X) will decay at different rates. We assume Io
decays slower than I~, I~ slower than I2, and so on. Thus,
as time increases, the nonlinear dissipative system dynami-
cally evolves into a state that satisfies the following minimi-
zation problem: minimize Iq(X) subject to the constraint
that Io(X) is invariant. The organized state X„s is a solu-

tion of this minimization problem. If, in addition, the non-
linear dissipative system possesses a cascade from high spa-
tial wave numbers toward lower wave numbers, one expects
the organized state to exhibit spatial coherence. Of course,
on the longest time scale governing Io(X) the organized
state will eventually disappear.

This scenario for self-organization has been successively
tested in magnetohydrodynamics4 5 and two-dimensional
Navier-Stokes flow. 6 Hasegawa, Kodama, and Watanabe
observed that the Korteweg —de Vries (KdV) equation, per-
turbed by dissipation, provides a simpler testing ground for
these ideas. There the authors use beautiful, albeit heuris-
tic, reasoning to argue that a random state of the periodic
KdV equation will, in the presence of small dissipation,
self-organize into a soliton wave train with the largest
wavelength that the system can support. The numerical
checks of this conjecture are somewhat indirect (as given in
Ref. 8); here, we want to give direct evidence in a discre-
tized Korteweg-de Vries system.

The specific model we discuss is the Toda lattice with
periodic boundary conditions under the influence of an
external driving force and damping. It has several advan-
tages for the questions we want to ask about the importance
of coherent structures: first, the discrete nature of the
model removes any doubts about the effects of discretiza-
iion of a partial differential equation; second, the system
without perturbation (driving and damping) is completely
integrable with the help, e.g. , of the scattering transform.
Furthermore, the scattering transform provides us with a
natural set of coordinates which can give direct information
about the existence and nature of coherent spatial struc-
tures. The formalism for using the transform as a numeri-
cal device for measuring the soliton content in any given
state has been developed elsewhere. ' The purpose of this
paper is to implement this device and use it to confirm
directly the scenario of Ref. 8 and test the behavior of the
system in the presence of perturbations.

The Toda equations with weak dissipation take the (nor-
malized) form

n —1 n e n n+1(0 —M ) (N —M ) (1)
where u„denotes the dissipation and f„ the external forc-
ing. (n) labels the Toda particles and a "dot" signifies a
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time derivative. We have used two types of nonlocal dissi-
pation, linear and quadratic, with corresponding coefficients
'g) 'and 'g2'.

The external force was chosen to be sinusoidal with ampli-
tude y and frequency co, and spatially inhomogeneous:

f„=y sin(r0 t )5„ t

Using the numerical methods described in Ref. 2 we in-
tegrated the Toda equations and, at successive instants in
time, measured the configuration [u„(t),u„(t) ] with the
discriminant measuring device defined and developed in
Ref. 1. In addition, we implemented a procedure to calcu-
late the zeros arid areas between the zeros of the discrim-
inant which are related to the velocities and actions of the
excited modes (see Ref. 1). This procedure determines pre-
cisely the soliton and radiation ("phonon") content in the
configuration at each time t.

The self-organization process should apply to many soli-
ton systems that are perturbed by dissipation, for example,
to the Toda lattice. %e studied a 15 particle lattice and used
a high-temperature heat bath to generate the random initial
conditions. Precisely, we chose initial conditions of the dis-

placement u„=O at lattice sites with the initial velocities u„
each chosen independently from a Maxwell distribution with
temperature T= 1. Total linear momentum was zero.

For the run sho~n in Fig. 1 we set g2= y =0. Changing
the form of dissipation did not qualitatively alter the results.
The run that we have depicted is typical. Figure l(a) shows
the discriminant of the initial data. Following the rules of
Ref. 1 we notice that all modes are appreciably excited—substantial high-frequency radiation and a few long-
wavelength, coherent soliton modes. Because of the dissi-
pation, the discriminant changes with t Fi.gures 1(b) and
1(c) show the temporal evolution: notice that as time in-
creases the high-frequency radiation modes (for which zeros
of the discriminant are close to zero; see Ref. 1) decay; the
higher their frequency the faster their decay. By time 15,
only two long-wavelength solitons running to the right and
two long-wavelength solitons running to the left remain in
the configuration; at later times only two solitons remain
and continue to decay slowly. Thus, self-organization does
indeed occur, and its evolution is quantitatively measured
by the discriminant.

Obviously, since only the difference of two adjacent coor-
dinates enters the nonlinear Toda potential, a homogeneous
external driving force will not produce chaos but merely
move the center of mass. This is in contrast to local non-
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FIG. 2. Zeros Z, (t) of the Toda discriminant as function of time
with corresponding action greater than 0.05 (g~=0.4, q2=0.0,
y=0.5). Solid line: —Z(t) of the soliton moving to the right.
Broken line: Z(t) of the soliton moving to the left.

linearities as, e.g. , in the case of the sine-Gordon poten-
tial. ' " In addition, because of the presence of dissipation,
any initial spatial structures will smooth out and the system
is then no longer influenced by the nonlinearity of the po-
tential. Therefore, in order to see interesting spatial
behavior, we have to use an inhomogeneous driver. This
can bc done in many different ways; here, we have chosen
to drive one particle only [see Eq. (3)]. The change of
dynamical response as the inhomogeneity of the driver is
varied has been studied elsewhere. '

The shortest chain one can study, namely, with just two
particles, '3 reduces, due to periodic boundary conditions, to
the motion of a single particle in a Toda potential with
damping and driving forces. Note that in contrast to many
other nonlinear potentials we do not have a metastable state
(local maximum or sepratrix) here, except perhaps at infini-
ty. We have found that the system goes chaotic via a
period-doubling bifurcation for moderate driving ampli-
tudes, whereas for high amplitudes we typically find inter-
mittent behavior. ' ' There is a clear analogy between a
ball bouncing on a vibrating table and this single-particle
Toda problem. The former has been studied in detail. '

To investigate many-particle effects, we have chosen a
chain consisting of 15 particles and kept the damping
(g t0.4, ) 720) and driving frequency fixed (a~ = 0.6).
The only parameter we varied was the driving amplitude y.
We started with flat initial conditions; i.e., u„= u „=0.
After integrating for approximately 10 periods of the driver
we examined the soliton content of the profile with the help
of the discriminant technique (see Ref. 1). The results are
shown in Figs. 2 (y=0.5) and 3 (y= 50). For both values
of y we find periodic behavior of the chain. This can be
seen in the time evolution of the scattering data (see Figs. 2
and 3) and from phase plane plots and Poincare sections for
the behavior of any single particle on the chain as well (not
shown here). We find that for low driving amplitudes only
a few modes are excited, these modes being spatially
coherent modes as one would expect from the results of the
first case above. Figure 2 shows this periodic motion of the
soliton modes; the actions of the few excited phonon modes
are smaller than 0.05. This picture changes drastically as we
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FIG. 3. Selected zeros Z, (t) of the discrlminant as function of
time (pi=04, g2=0.0, y=500). Solid line: —Z(t) of the fastest
soliton moving to the right. Broken line: Z(t) of the fastest soli-
ton moving to the left. Dotted line: a typical phonon mode.
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go to higher driving amplitudes. Not only do the velocities
of the solitons become larger, but also all degrees of free-
dom are excited (including phonon modes). In Fig. 3 the
time dependence of only selected modes is depicted. As in
the case of small driving amplitudes we can clearly see the
periodic nature of the response. [Owing to a low-order in-
terpolation scheme in evaluating a figure such as Fig. 1(a),
not all maxima have precisely the same height. ]

So far our studies have not revealed chaotic many-particle
response. It seems that large driving amplitudes will be
necessary to generate chaos in a Toda chain. At such large
amplitudes the chaotic configuration, or even a locked
periodic configuration (as in the case above), cannot be
described by a few Toda modes, since the dynamical system
is too large a perturbation from the Toda lattice. One situa-
tion in which the extended Toda system can be described by
a few Toda modes is where damping dominates potential
sources of chaos. This is already the case for the self-
organization process above. The results presented here for
the Toda chain are in contrast for those found for driven,
damped nonlinear Klein-Gordon equations. ' "' In those
cases a few solitary wave modes can accurately describe
even chaotic states. Further studies with more than the 15
particles used here are in progress to clarify this striking
difference.
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