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Dynamics of SU(1,1) coherent states
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We derive the most general Hamiltonian which preserves the Perelomov SU(1,1) coherent states under
time evolution. It is shown that the Hamiltonian of the degenerate parametric oscillator from nonlinear op-
tics, which does not preserve ordinary coherent states, does preserve the SU(1,1) coherent states under
time evolution.

I. INTRODUCTION

Over the years there have been many studies on the time
evolution of the coherent states of the harmonic oscilla-
tor. ' These states, also known as the ordinary coherent
states, are associated with the algebra consisting of the
operators a, a, and I such that [a,a ]=I. Of particular in-
terest has been the determination of the Hamiltonian opera-
tor for which an initial coherent state remains coherent
under time evolution. In Refs. 1-4 using a variety of
methods, it is determined that this Hamiltonian has the
form

H(t) = (cot)
'aa+ f (t)a'+ f'(t)a +p(t)

where co(t) and p(t) are real and f(t) is a complex func-
tion of time, otherwise arbitrary. That Eq. (1.1) is deter-
mined by several different methods is a reflection of the
fact that the ordinary coherent states may be generated in
several ways: (1) as minimum uncertainty states, (2) as
eigenstates of the annihilation operator, and (3) as states
displaced from the ground state via the operator D (z )
= exp(za —z'a ), where z is a complex number. The states
generated by these three methods are equivalent and have
the property that for the Hamiltonian of Eq. (1.1) they fol-
low the classical motion in the usual two-dimensional phase
space.

The notion of generalized coherent states arises in the at-
tempt to find quasiclassical states for systems whose Hamil-
tonian cannot be cast into the form of Eq. (1.1).' Of partic-
ular interest here are those states associated with the Lie
group SU(1,1) whose generators and unitary irreducible
representations (UIR) have long been known to produce
the spectrum of a number of quantum systems. Previous-
ly, we have studied path integrals represented in terms of
the SU(1,1) coherent states (CS) for systems where the
Hamiltonian could be expressed as a polynomial in the gen-
erators of the group. We have also obtained a useful phase
integral approximation based on the notion of large
(number of dimensions) as a semiclassical limit. 'o These
calculations, however, were performed without regard to the
most general form of the Hamiltonian which leaves an ini-
tial SU(1,1) CS coherent under time evolution. It is this
problem which is to be addressed in this paper. Further-
more, we show that our results are applicable to a problem
in nonlinear quantum optics, namely, that of a degenerate
parametric oscillator. "

The SU(l, l) CS to be employed in this paper are those of
Perelomov, '2 which are generated via a displacement-type

operator, rather than those of Barut and Girardello, ' which
are eigenstates of the lowering operator. (The different def-
initions in this case lead to nonequivalent sets of states. )
The reason for our preference is discussed in Ref. 7.

In Sec. II some necessary properties of the states are
given, and the most general coherence preserving Hamil-
tonian is derived. Comparision with the classical equations
of motion on the relevant (curved) phase space is made. In
Sec. III an example is given: the degenerate parametric os-
cillator as mentioned above.

II. COHERENCE PRESERVING HAMILTONIAN

The Lie algebra of SU(1,1) consists of the generators Eo,
K+, and K satisfying the commutation relations

[Ko.K + ] = + K+, [K-.K+ ] = 2Ko (2.1)

The Casimir invariant is given by

C =Ko —~(K+K +K K~) (2.2)

which for a UIR has the eigenvalue k(k —1), where k is
the so-called Bargmann index. ' Our interest will be con-
fined to the representation known as the positive discrete
series, S' + (k ), where the states In, k ) diagonalize the
compact generator Ko as KoIn, k) = (n +k) In, k), where
n =0, 1, 2, . . . and k & 0. The operators K+.and K act
as raising and lowering operators, respectively, within
&+(k), i e., K In k)~ In —1 k) and K+In k)
~ In+1,k).

Following Perelomov, ' the SU(1,1) CS are defined as

If,k) =D(~) IO,k),
where

D (u) = exp(oK+ —a"K )

(2.3)

gK+ yKO —f K=e +e e (2.4)

and where n= —~r e ', g= —tanh(~r) e ', and

y=ln(1 —I/I ). These states have most of the properties
of the ordinary coherent states. In particular, they are
nonorthogonal and over complete. The overlap of two
states Ig', k) and If",k) gives the reproducing kernel as

K„(g",g') = (g",k Ig', k)
= (I —

I
g" I')'(I —

I
g'I')" (I —$'"4') '", (2.5)
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such that

Kt, (g", 0') = J d pa(g)Ka(g", g)Ka(g, g'),
where

(~) 2k —1 d g

Also unity is resolved as

(2.6)

(2.7)

We now show that these equations are consistent with the
corresponding classical equations of motion. These equa-
tions may be found in the continuous limit of the propaga-
tor when expressed as a path integral over SU(1,1) CS. For
the Hamiltonian of Eq. (2.13) one has the propagator as

Gt, (g",t", (', t') = &g",k
~
T exp —i J, H„h(t)dt ~g', k)

(2.16)

I = „dt «(() 14,k& &N, k I
. (2.8)

To obtain the Hamiltonian which preserves coherence, we
adopt an argument used by Stoler' for ordinary coherent
states. This makes use of the displacement operator defini-
tion. For a particular k sector, ~0,k) is the ground state.
We then find the most general Hamiltonian H~ which
preserves the ground state under time evolution. The
coherence preserving Hamiltonian H„h is then obtained by
transformation with the displacement operator D (a(t)) of
Eq. (2.4). One obtains

H„=D( (t))H, D'( (t)) —'D( (t))—D'( (t))

where

(2.17)

(( 0 H') ——~~(4, 0",t), (2.18)

with

where T is the time ordering operator. As discussed in Ref.
7, this may be expressed as the path integral

~k(t, (",t ) = &4,k IH..h«) I(,k ) (2.19)

IC —yICO —gE +D (0, )=e e e

with the Baker-Hausdorff-Campbell formula

e"Be "=B+[A,B]+—&[A, [A,B]]+

(2.10)

(2.11)

one obtains

D (a)K DO(a) = (cosh' )Ko+ ~ e '~ (sinhr )K+

+ 2
e'~ (sinhr)K (2.12a)

D(u)K D (a) = (K —2$KO+ /2K )/(1 —
~g~ ) . (2.12b)

Then, using these results, from Eq. (2.9) one obtains

H =A (t )Ko+f (t )K +f' (t )K —+p(t ), (2.13)

where

A (t ) = a (t ) cosh' + 21m(gg')/(I —
~g ~ ), (2.14a)

(2.9)

The ground state ~O, k) evolves with Hg into ~O, k),
which, to also be a ground state, must satisfy the require-
ment E ~0,k), =0 implying that ~O, k),~ ~0,k). And since
~0,k), must satisfy the Schrodinger equation, one must
have K Hg~0, k), =0 so that ~O, k), is an eigenstate of Hg.
Thus we choose Hg as Hg = a (t )Eo+p(t ), where a (t ) and
p(t ) are arbitrary functions of time. Other Hermitian
operators such as Ko of K+K might be added to Hg as
they would also preserve the ground state as an eigenstate
under evolution. However, the transformed Hamiltonian
from Eq. (2.9) will not preserve arbitrary coherent states.

Now with D (n) given in Eq. (2.4), so that

(1—(g)')' BA BB BA BB
2ik Bg Bg' Bg' Bg

(2.21)

1 BA BB 9A 9B
k sinhr BP Br Br B@

(2.22)

The phase space here is a curved one —the Lobachevskii
plane. (We have corrected a minor error in Ref. 7.)

With the matrix elements of the SU(1,1) generators given
by

&a,k IKola, k &
= k (I+ le I')/(I —le I')

= k cosh7

&g, k IK+ lg, k) = 2k/'/(I —~g[')

= —ke'~ sinh7

&g, k IK- lg, k) = 2k&/(I —l(J')
= —ke '&sinhv

one obtains

(2.23a)

(2.23b)

(2.23c)

[A (t)(1+ ~g~ ) —2f (t)g —2f'(t)g]+p(t)(I- I&i')

(2.24a)

The Euler-Lagrange equations lead to the equation of
motion (Hamilton's equation)

(2.20)

where

f'(t) =~a (t)e '4'sinhr+ig/(I —(g~') (2.14b)
= k [ A (t ) coshr f (t )e'4' sinhr-

—f'(t)e '~sinhr]+p(t) (2.24b)
From Eq. (2.14b) we obtain the equations for @ and j. as

P = a (t ) —2 Re [f(t )e'~]cschr

r = —2Im[f (t)e'~] (2.15b) g= —iA (t)g —~if'(t)g' —,'if(t)—The equations of motion yield2.15a

(2.25)
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or in terms of Q and r we have

@=A (t) —2Re[f (t)e'~] coth7

i = —21m[f (t)e'@]

(2.26a)

(2.26b)

SU(1,1) may be realized as

K+=~(a )',1

E =~a

(3.2a)

(3.2b)

Note that Eq. (2.26b) is the same as Eq. (2.15b). Equation
(2.26a) may be converted to Eq. (2.15a) by the substitution
of A (t) from Eq. (2.14a), thus demonstrating the con-
sistency between Eq. (2.15) and (2.26).

Kp= ~(a a +aa )

H (t) = 2o)KO+ 2K(K~e ~'"'+ K e""')

(3.2c)

0.3)

III. EXAMPLE OF THE DEGENERATE
PARAMETRIC OSCILLATOR

In this section we present. an example of a system which
possesses an SU(1,1) CS preserving Hamiltonian. This ex-
ample comes from nonlinear quantum optics: the degen-
erate parametric oscillator. The Hamiltonian for this system
1s

H (t ) = cuba a + ~ [e '"'(a ) + e~'"'a ~] (3.1)

where the pump mode is treated classically (the factors
(e —' "') and K is a coupling constant. The significance of
this Hamiltonian is that it is predicted to produce photon
antibunching and to generate squeezed states. Indeed, the
SU(1,1) CS seem to be a special class of squeezed states.

This Hamiltonian has previously been treated with the or-
dinary coherent states in Ref. 11; the propagator was
evaluated by path integration over these states. Note, how-
ever, Eq. (3.1) is not of the form (1.1) and thus does not
preserve ordinary coherent states. But the generators of

(= —2i cup —i xe '"'g —i ae (3.4)

This nonlinear differential equation may be solved to give

(= e '"' '" tanh[~(t —t;) ] (3.5)

where t; is some initial arbitrary time. The differential Eq.
(3.4) is very similar to one that occurs in the path integra-
tion with the ordinary coherent states of Ref. 11. Note that
in the limit ~ 0, Eq. (3.3) reduces to the Hamiltonian of
the harmonic oscillator. The solution of Eq. (3.4) is then
g = foe ~'"', where (o is a constant, which agrees with Ref.
7. Note that the solution in Eq. (3.5) reduces, as K 0, to
the particular case when $0= 0.

In another work we shall discuss the application of the
SU(1,1) CS to the degenerate parametric oscillator more
fully, including the path integration of its propagator in
these states.

(where an additive constant has been dropped), which is of
the form of Eq. (2.13) with 3 =2', f(t) =2e ""', and
P(t) = 0. The classical equation of motion is then

R. J. Glauber, Phys. Lett. 21, 650 (1966}.
C. L. Mehta and E. C. G. Sudarshan, Phys. Lett. 22, 574 (1966).
D. Stoler, Phys. Rev. D 11, 3033 (1975).

4Y. Kano, Phys. Lett. 56A, 7 (1976).
5See M. M. Nieto and L. M. Simmons, Jr., Phys, Rev. D 20, 1321

(1979); 20, 1332 (1979); 20, 1342 (1979).
B. G. Wybourne, Classical Groups for Physicists (Wiley, New York,

1974).
C. C. Gerry and S. Silverman, J. Math. Phys. 23, 1995 {1982).
C. C. Gerry, Phys. Lett. 191$, 381 (1982).

C. C. Gerry, Phys. Lett. 1428, 391 (19&4).
C. C. Gerry, J. B. Togeas, and S. Silverman, Phys. Rev. D 28,
1945 (1983}.

See M. Hillery and M. S. Zubairy, Phys. Rev. A 26, 451 (1982),
and references therein.
A. M. Perelomov, Commun. Math. Phys. 26, 222 (1972).
A. O. Barut and L. Girardello, Commun. Math. Phys. 21, 41
(1971).

4V. Bargmann, Ann. Math. 48, 568 (1947).


