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Thermodynamics near the correlation volume
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I present and test three simple thermodynamic fluctuation rules which may in some cases hold for sub-
systems of infinite systems with volumes less than the correlation volume. Tests at volumes near the
correlation volume are made in the two-dimensional square ferromagnetic Ising model by Monte Carlo
simulation. Fluctuations into the metastable and spinodal regions are discussed. Aside from difficulties
apparently resulting from the small volumes used in the simulations, the rules are found to work well.

Thermodynamics is generally done in the infinite-volume
limit. The application of thermodynamics to finite subsys-
tems of infinite systems has been less studied, particularly
at volumes approaching the correlation volume. A prelim-
inary report of such a study is given in this paper. I present
and test three thermodynamic fluctuation rules which in
some cases may hold down to microscopic volumes where
there are no longer enough constituents in the system to
justify a continuous thermodynamic approximation. In par-
ticular, these rules may hold at volumes less than the corre-
lation volume.

The rules at issue in this paper have been presented be-
fore as part of a new thermodynamic fluctuation theory. '
The aim here is to restate them with different emphasis
and, for the first time, to test them directly down to volumes
near the correlation volume in an interesting system, the
two-dimensional (2D) square ferromagnetic Ising model.
The computations will be made by the Monte Carlo method.

The first rule, which seems to be standard, defines the
thermodynamic state of a finite subsystem at some time.
For a simple magnetic system, ~ regardless of the volume,
the energy per volume and the magnetization per volume
have a mechanical meaning as well as a thermodynamic one.
This is the basis of Rule (1).

(1) At some time, given a finite subsystem A ~ with

volume V', energy density u', and magnetization density
m', all other intensive parameters of A shall be the same

as those of an infinite system with the same densities.
Consider now an open subsystem A~ of an open subsys-

tem A~ of a system A~ . The volumes V2, Vi, and Vo of
1

all three systems are fixed in time. The system A~ is part

of an infinite system in thermodynamic equilibrium. Rule
(2) deals with fluctuations.

(2) At some time, the probability of finding Ai in some

range of thermodynamic states, given the thermodynamic
state of A ~, , is independent of the state of A~ .

Denote by

a2 ai
P V V da2

the probability of finding the state of Av between a2 and

a2+da2 given that the state of A~, is ai. Here, "a"
represents (u, m). If V2 is much larger than the correlation
volume g (ap) of Ai, the probability density in Eq. (1) is

given by the well-known formula

a2 ai 1P V V
= Jg(ai) exp — g„„(ai)b,ag'~a&

2m at 2ht ""

where 5a/ =—a( —a f', ls t = V2
' —Vi —',

(2)

g„„(ai)=—— 9 s
Qa&Qa" a=ai

(3)

s = s(a) is the entropy per volume, and g(ai) —= detg(ai).
The probability density in Eq. (2) depends on Vi and V2

only as At. This translational invariance appears in the new
thermodynamic fluctuation theory in all volume regimes. '
I present it as the third universal thermodynamic fluctuation
rule.

(3) The probability distribution in (1) depends on volume
only as ht.

With rules (1)-(3), and requirements of consistency, the
new thermodynamic fluctuation theory can be constructed
from Eq. (2) by using the mathematics of continuous Mar-
kov processes. 5

Rules (l)-(3) were tested for the case where A& is an in-
0

finite square 2D ferromagnetic Ising model with nearest-
neighbor interactions and critical temperature T, = 2.269.
The external magnetic field of A y was set to zero

throughout. I computed primarily second fluctuation mo-
ments, which, by rule (3), should depend on volume only
as ht. I proceeded by Monte Carlo simulation. The system
A& was simulated by a finite grid A, with periodic boun-

0 0
dary conditions. If Vo is large enough, A will behave as a

finite subsystem of A~. The systems A~ and A~ were

studied as subsystems of A
0

For a given temperature To of Ay, two different ways

were used to ensure that Vo was large enough. The first
consisted in computing the heat capacity by means of a fluc-
tuation formula, as described in Ref. 6, and comparing with
exact results. ~ The second method was by computing the
second fluctuation moments of an imbedded 10& 10 subsys-
tem. Provided Vo is large enough, these moments should
be independent of Vo. It was found that Vo =40&40 was
large enough for temperatures explored in this work. This
volume was used in al1 subsequent calculations.

The state of a finite subsystem may certainly fluctuate
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into the metastable region, but if this region can be handled
as an analytic extension of the stable region, which is not
clear, there appears to be no impediment to applying rules
(1)-(3) here, at least for fluctuations not so large as to
force a phase transition. In the spinodal region there is no
hope of applying thermodynamics in the sense of this paper.
In an attempt to avoid this difficulty, I pose the following
question: Does a fluctuating thermodynamic subsystem
avoid the spinodal region?

To address this question, I simulated a subsystem Av of
1

an infinite system for three values of V1 at T0=2.35,
where9 g(ao) =16. I recorded (ut, mt) after every sweep of
A . One thousand sweeps of A were made for each V1.

0 0
The starting conf1guration was a random lattice; the first
200 cycles were discarded to allow A to equilibrate. 400

0
points for each V1 are displayed in Fig. 1. Though the
boundary of the spinodal region is not known, it seems that
the spinodal region is avoided even for V1=10&10. For
V1=10X10, it appears that roughtly 1% of the points do

make it into the spinodal region, but I believe that this fail-
ing of thermodynamics is due to the lack of spins in V1 and
has nothing to do with being less than the correlation
volume of Av.

One wonders what rule bars the thermodynamic state of a
subsystem from the spinodal region. I make the following
conjecture: the probability of finding a subsystem in a state
where its volume is less than its correlation volume is negligible.
Provided that the metastable region can be viewed as an an-
alytic extension of the stable region, it appears that the
correlation volume goes to infinity as the spinodal curve is
approached. Thus, systems of all volumes are barred by
this rule from crossing into the spinodal region.

I shall now focus on translational invariance [rule (3)] by
introducing a subsystem Av of Av and examining fluctua-

1

tions in a2 for given values of a1. To do this, Av, was al-

lowed to fluctuate freely inside A and a "window" of
V0

width 0 was established such that the value of a2 was
recorded after a sweep of A if and only if

0

aa —0 ((ha't )') 't'~ a't ~ a(0 + 0 ((ha', )') 't' (4)

vi = 40 x 40
T = 2.350
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FIG. 1. Distribution of thermodynamic states (ut, int) for
T0=2.35 and three values for V1. The state a0 of Av is indicated

0
with a "+"sign. The solid curve is the phase separation curve.
The spinodal curve is not shown, but it appears that few points fall
into the spinodal region.

I focused on testing rule (3), and centered the window at
aa(= (at) ) to keep things as simple as possible. For given
T0, V1, and V2, as 0 gets smaller, the second fluctuation
moments of a2 should reach a limit. The inserts in Fig. 2
show the dependence of ( (5u2) 2) 't and ( (6m2) ) ' on 0
for a specific case. A limit seems to be attained as 0 gets
small. To simulate V1=~, a2 was recorded after every
sweep of A

0
For particular To and V1, a sequence of systems Av was

2

examined. The first 200 sweeps of A in each run were
0

discarded. Results are sho~n in Fig. 2. As can be seen,
second fluctuation moments with the same To fall reason-
ably well on the same curves when plotted against At, in ac-
cordance with rule (3). First fluctuation moments also
behaved properly. In each case, (a2) = (at) = ac.

The most significant deviation from rule (3) is in
((b, m2)2) tt2 for cases where Vt and V2 are nearly equal to
each other. The insert in Fig. 2 show such a case; the limit
reached by ((hm2)2)' 2 as Q goes to zero is about 20% too
low. I believe that the explanation lies in large fluctuations
of the magnetization m( in the system A & /A ~ when Vt

and V2 are nearly equal. It is easy to show that fluctuations
cannot satisfy Eq. (2) all the way in the limit as V2 goes to
Vt, if Vt is finite, because fluctuations in m) and u) would
exceed their maximum possible values (i.e., with spins com-
pletely aligned or disaligned). It is also easy to show that
for given ht, fluctuations in m) and u( decrease with in-
creasing V1 and V2', therefore, this effect appears to be asso-
ciated with the small volumes used in this study.

The test above concentrated on rule (3), but it also pro-
vides evidence for rules (1) and (2). Rule (1) defines the
thermodynamic state of a finite subsystem. Without this,
rule (3) has no meaning. Hence, the success of rule (3)
supports rule (1). Rule (2) is tested indirectly because fluc-
tuations in a2 behave correctly on constraining only a1 and
ao. A direct test of rule (2) (the next step in this research)
would vary a0 at fixed a1 and attempt to show that fluctua-
tions in a2 are not affected.
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PIG. 2. second fiuctuation moments of az, at fixed a i, as a function of Jht for several values of To and vt. As Jht goes to zero, each

curve passes through the origin, which is located at a different position for each To to facilitate plotting. The vertical scale for both graphs is

given in the middle; the origin should be placed appropriately. The straight lines are exact results for small ~t. as deduced from Eq (2)
The length of the computer runs varied. The shortest run with a finite V~ was for TO=2. 1 and V~=30&30 where 4000 cycles were made
with 0 =0.2, which caught 5% of the sweeps in the window. The longest run was for TO=2.5 and V~=20X 20 where 40000 cycles were
made with 0 =0.06, which caught 0.3% of the points in the window. Points with the same T~ fall reasonably well on the same curves. The
inserts in the left figure show for a specific case how the fluctuation moments reach a limit as 0 is decreased. The dashed lines show the ex-
pected limiting values.

In conclusion, the test of thermodynamics for small sub-
systems of the 2D Ising model has turned up some good
evidence in its favor. I had hoped to do more at volumes
less than the correlation volume, but this requires tempera-
tures closer to the critical point, larger grids, and much

longer computer runs. It was beyond the scope of the
present study.

I thank Mike Frame for useful conversations.
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