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Bases for the hydrogenic quadratic Zeeman effect
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A simple relationship between the two spherical bases In»m) and Inlm) is presented and is used to

deduce the relative parity and the large-n behavior of the former. Approximate energy levels obtained in

these bases from perturbation theory are compared with the eigenvalues obtained by diagonalizing the

first-order perturbation matrix.

&NtN2m IAz'INtN2m) = q'
~

(NtN2m IL, INtN2m) = m

&NtN2m IA„+A„ INt + 2Np + 2m )

(2)

(3)

= —&NtN2m ILX2+ Lr2INt + 2N2+ 2m )

= —[(Nt +1)'—m']' '[(N +1)'—m ]' '
(4)

where n nt+n2=+ lm I+1, Nt=2nt+ lm I+1= n +q,
N2=2n2+ Im I+1= n —q, and q =

2 (Nt —N2) = nt —n2. Itl

is important to note in connection with the operator A that
the replacement of L~ +L~ by Ax +A~ changes the sign of
the off-diagonal matrix elements but leaves the diagonal

I

Motivated by the approximate symmetry' of the qua-
dratic Zeeman effect, Labarthe3 introduced the I n Xm )
basis, where X is associated with the operator
A= (A„,A„,L, ), and found them useful at low magnetic
fields. Herrick explored this approximate symmetry by
utilizing the elliptic cylindrical coordinates on a sphere in
four-dimensional momentum space and concluded that the
O(3)» symmetry is strong at all levels but breaks down for
low value of m and ~. Zimmerman, Hulet, and Kleppner5
made comparisons of the In km) basis and the Clark basiss
with their M basis by evaluating overlapping integrals.
Their results revealed that the Labarthe and M bases pro-
vide better approximations to the exact eigenstates than the
Clark basis. As a continuing effort in the study of quadratic
Zeeman effect, we first present in this report a simple rela-
tionship between the ~num) and Inlm) bases in position
space, from which their relative parity and large-n behavior
can be deduced. We then compare the first-order
Rayleigh-Shcrodinger expansion coefficient E~ for the ener-
gy levels in these bases with the exact coefficient obtained
from the degenerate perturbation theory by diagonalizing
the first-order perturbation matrix.

We begin by giving the following matrix elements of L
and A, which can be calculated in terms of the SO(4, 2)
generators in the oscillator representation:

& NtN2m I
Ax'+ Ay' INtN2m &

= &»»m I Lx'+ L,'INt»m &

= 2(n —q —m —1)2 2 2

matrix elements invariant. Next we expand the two spheri-
cal bases in terms of the parabolic basis as follows:

I nlm ) = g«; IMq;) (5)

Inxm) = Xa»;IMq;) (6)

&n Xm IA In am &
= l»(X+ 1) = ga»i &Mqi I A IMqI&

+ ga»;a»g&Mq;IA IMqj)

(8)

where qj
——q; + 2. The matrix elements in Eqs. (7) and (8)

are those given in Eqs. (1)—(4), which indicate that the ma-
trix elements in the second sum of these equations differ in
sign only. It becomes evident by letting I and X taken on
the same numerical values that the coefficients are related
as follows:

a), =aII. I =1.3 5

a],;= —aII, I'=2, 4, 6, . . . .

Thus, we have established the simple relationship between
the two spherical bases, namely, the signs of the their ex-
pansion coefficients in Eqs. (5) and (6) change alternately
as the value of q; goes from —(M —1) to + (M —1). As a
consequence, the sign changes give rise to a mixing of states
with I values differing by + 2, which is the characteristic of
the quadratic Zeeman effect. As examples, we give below
the relationship explicitly for states in the M = 3 and M = 4
manifolds. For M = 3,

where aI; and a),; are the Clebsch-Gordon coefficients,
IMq&=lrrtlr2m& with M=rt —Iml and q=nt —n2 Th. e
sum in Eqs. (5) and (6) is taken over all possible values of
q;=0, +2, +4, . . . , + (M —1) for odd values of M and
q; = +1, +3, +5, . . . , + (M —1) for even values of M.
For given n and m, M is a constant and in each M manifold
there are M states. Using these expansions, we can write
down the following matrix elements:

&nlm IL Inlm &
= I (I + 1)= g«, &Mq; IL IMqi)

+ g«, «J &Mq, IL'IMq, ), (7)

Inn —3n —3) „= (2n —3) '[Inn —3n —3) +2(n —1)' 2(n —2)' Inn —ln —3) ]

Inn —2n —3)»= Inn —2n —3)

Inn —ln —3)„=(2n —3) '[2(n —1)' (n —2)' Inn —3n —3) + lnn —In —3) ] (13)
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and for M=4,

(nn —4n —4) q= (2n —3) '~ (2n —5) '~ [3' ~nn —3n —4) +2(n —1)' (n —3)' (nn —ln —4) )

[nn —3n —4) t, ——(2n —3) '~ (2n —5) '~ [3'~ [nn —4n —4) +2(n —1)' 2(n —3)' ~nn —2n —4) ]

[nn —2n —4) „=(2n —3) '~ (2n —5) '~ [2(n —1)'~2(n —3)' 2(nn —3n —4) —3' 2[nn —ln —4) ]

[nn —ln —4)q = (2n —3) '~ (2n —5) '~ [2(n —1)'~ (n —3)' (nn —4n —4) —3' [nn —2n —4)]

(14)

(15)

(16)

(17)

The above is valid for all values of n ~3 or n ~4 for
M=3 or M=4, respectively. The results show that the
parity remains the same for even values of M while the par-
ity is reversed for odd values of M. It is also seen as is evi-
dent in the examples that the l mixing diminishes as n in-
creases and as n ~ the ~nb, m) basis states tend to be hy-
drogenic with the order in I and the order in P in the mani-
fold reversed. This property is shared by the exact eigen-
states that diagonalize the first-order perturbation matrix. 7

The Clark states, however, do not have this property. Their
I-mixing remains significant as n ~. This provides a
plausible explanation for the reason why the Labarthe basis

I

better approximates the exact eigenstates than the Clark
basis as concluded in Ref. 5.

To compare the approximate energy levels, we compute
the first Rayleigh-Schrodinger expansion coefficient EI for
the energy. This is done by using the diagonal matrix ele-
ments, which are th|: expectation values of the perturbation,
given by Gallas' and Herrick" and the first-order eigen-
values ~ " for M ~ 4 in Ref. 7 together with the relation-
ship El=nb. t'~/8. For n = 5, m =0, and M=5 we solve the
following secular equations for the eigenvalues.

Doublet:

TABLE I. Comparisons of the first Rayleigh-Schrodinger ex-
pansion coefficient for the energy.

A. —1520K, + 385 200 = 0

Triplet:

X —2780K. + 183 960K.—273 384 000 = 0

(18)

1

3

nlm

200
210
211
300
310
320
311
321
322
400
410
420
430
411
421
431
422
432
433
500
510
520
530
540
511
521

, 531
541
522
532
542
533
543
544

201 616
201 716
201 816
201 916

Ej

28
12
24

138
72
60

144
72

108
432
240
240
176
406
288
192
432
240
320

1050
600
643
550
407

1200
771
600
429

1157
750
492

1000
600
750

230229
199038
170571
144 162

num

210
200
211
320
310
300
321
311
322
432
420
410
400
431
421
411
432
422
433
540
530
520
510
500
541
531
521
511
542
532
522
543
533
544

201 916
201 816
201 716
201 616

EI

28
12
24

156
72
42

144
72

108
522
304
150
112
499
288
173
432
240
320

1321
870
529
280
250

1286
840
514
360

1179
750
371

1000
600
750

230432
199234
170568
143 565

Exact EI

28
12
24

157
72
41

144
72

108
523
309
149
107
500
288
172
432
240
320

1173
749
427
201
131

1287
845
513
355

1179
750
471

1000
600
750

230 440
199243
170 360
143 958

The three sets of EI are given in Table I. It can be seen
that for all singlet levels in the manifolds M = 1 and M = 3
the three approaches give identical results. In fact, it can be
shown that for M = 1, l = A. = m = n —1,

E~ = n (4n" 7n —3n)/(4—n —4n —3) = n A.
t' /8

where'2

X
' =8n (n+1)

(20)

(21)

where"

X
' =8n(n+5)(n —2) (23)

In the case of the doublets in M =2, 3, 4 and the triplets in
M=5, the order of / and the order of A. are reversed as
mentioned earlier and the Labarthe basis gives remarkably
good results for all values of M included in this report re-
gardless of the values of m and A. . Except for the singlet
levels, the ~nlm) basis yields poor results' for small values
of n. As n becomes large, say n =20, the results become
equally good. This is consistent with the related facts that
the quadratic perturbation can be scaled according to 1/n4
and as n ~ the ~nb. m) basis tends to be hydrogenic and
the off-diagonal matrix elements in Eq. (4) becomes much
smaller than the diagonal matrix elements in Eq. (1). This
seems to suggest that the expectation values become almost
identical because the wave functions become almost identi-
cal for highly excited states. For the singlet levels, the ex-
pectation values are identical because the wave functions are
exactly identical.

We believe that the conclusions based upon our findings
are valid in general for the quadratic Zeeman effect in hy-
drogen.

and for M = 3, I = A. = n —2, m = n —3,

Et = n (4n 71n +—135n —50)/(4n —12n + 5) = n X ' /8

(22)
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