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A free-energy density functional for a system of hard spheres is derived on a semiempirical basis.
It is constructed to reproduce the thermodynamics and direct correlation function of a homogeneous
fluid and then is tested in two highly inhomogeneous situations: the hard-wall —hard-sphere inter-
face and the hard-sphere solid. The results are very good in both cases, showing that this density-
functional model may be used with advant'age in the study of the hard-sphere model by itself, or
used as a reference system in a perturbative analysis.

I. INTRODUCTION

Wertheim's solution' for the correlation functions of
hard spheres in the Percus-Yevick approximation was a
milestone in the theory of liquids. The results for this
system were used as the starting point to develop and test
perturbation theories ' and more sophisticated integral
equations for realistic models. At the present, one could
say that there is a satisfactory understanding of most of
the thermodynamics and structure of homogeneous simple
liquids. Perturbation theories were also applied to inho-
mogeneous systems ' but the knowledge of the structure
and thermodynamics of inhomogeneous systems of hard
spheres was much poorer, and the only feasible treatment
for the hard-sphere reference system was the local-density
approximation. This approach gives reasonable results for
the surface tension and density profile of the free-
liquid —vapor interface, but in a wall-fluid surface there is
a strong short-ranged structure which is lost if the refer-
ence system in the perturbative analysis is treated with a
local-density approximation. The most successful ap-
proach to this problem was the wall-particle integral equa-
tions, which usually give good results for the structure
of the fluid near the wall, although they failed in some
specific situations' due to the inconsistency in the ther-
modynamics of this treatment. " For the same reason the
integral equations also failed to reproduce the exact rela-
tion between the density of fluid at contact with a hard
wall and the pressure in the bulk fluid.

It is much easier to include the correct thermodynamics-
of homogeneous systems in density-functional theories,
where the intrinsic free energy is considered as a function-
al M[p(r)] of the particle distribution p(r). The problem
now is to design a model for W[p(r)] which gives good
account of the main characteristics of the real system.
Nearly all the attempts to devise a free-energy functional
start from the local-density approximation and add some
nonlocal corrections. ' ' These treatments give good re-
sults for weakly structured density distributions, p(r), as is
the case for the liquid-vapor interface or for a fluid in a
weak external field, but they are not applicable to a
strongly structured p(r), because if a local-density term is
present it would lead to unphysical estimations of M[p].
A different approach was suggested by Nordholm and

co-workers, ' who used a nonlocal entropy for the inho-
mogeneous hard-sphere fluid, in terms of the excluded
volume and described as a generalized van der Waals
theory. A similar free-energy functional, although with a
somehow different justification, was used to study the
problem of complete wetting of a hard wall by a gas' and
to describe the crystallization of a liquid, ' problems in
which the short-ranged repulsion plays a crucial role. The
results obtained there were promising, giving the correct
qualitative behavior and even a fairly good quantitative
estimation with a very simple prescription for W[p].

In this paper a free-energy density functional for hard
spheres is developed on a semiempirical basis, following
the preceding ideas and trying to get a quantitatively good
description of a hard-sphere system in any possible situa-
tion and, at the same time, making it possible to use it for
the description of the reference system in a perturbative
analysis of any realistic model. The requirements im-
posed are, first of all, to recover the well-established re-
sults for the thermodynamics of the homogeneous fluid;
second, to describe the structure and thermodynamics of
highly inhomogeneous systems; and finally, to be a con-
sistent density functional, so that any exact functional re-
lation can be applied and the theory can be used both in a
variational procedure or through the exact minimum prin-
ciple for the equilibrium density, given by the Euler-
Lagrange equation

5~ [p] + V,„,(r) =p,
5p r

where V,„,(r) is the external potential and p the chemical
potential.

II. THE FREE-ENERGY FUNCTIONAL

The simplest free-energy functional one can develop is
the local-density approximation

~t D[p] = f dr p(r)P(p(r) ), (2, 1)

where P(p) is the free energy per particle in a homogene-
ous system with density p. The idea behind (2.1) is quite
simple: A particle at r is supposed to be affected by only
the particles around it, in a range given by the interaction;
if the range of the interparticle interaction is much small-
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a;d[p]=kT f drp(r)g;d(p(r)) (2.3)

is the free-energy functional for an ideal gas, which is ex-
actly given by the local-density treatment, and the interac-
tions are treated through the excess from ideal-gas free en-

ergy per particle,

&g(p)—:p(p) —p;d(p), (2.4)

taken locally in the smoothed p (r), so that the dangers of
a purely local treatment of a narrow peak in p(r) are
avoided.

To complete the prescription for M [p] in (2.2), one re-
quires a criterion for constructing p(r) from p(r). In pre-
vious attempts' ' we used the formula

p (r) = f dr'p(r')w(
~

r —r'
~
), (2.5)

er than the typical length for variations in p(r), the system
can be divided in small pieces of nearly constant density
and each one of these pieces can be treated as part of a
homogeneous system. The function tP(p) used in (2.1) is
easily obtained from the equation of state.

Unfortunately, the assumption of smooth variations of
p(r) in the range of the interactions is only valid for fluids
in very weak external fields, like gravity, and in the ab-
sence of first-order phase transitions. To approach more
interesting interfacial problems, one has to improve the
local-density approximation by adding some nonlocal
corrections. In this way one gets the square-gradient ap-
proximation' and more refined treatments like the Ebner
and, Saam free-energy functional. ' However, this route is
restricted to not-too-strong inhomogeneities because, if
p(r) reaches very high peak values, the use of any local
treatment involves the evaluation of f(p) for a very large

p and the behavior of a homogeneous system with such
large density would be dramatically different from the
real system and may even by impossible to achieve, as is
the case for hard spheres with a homogeneous density
larger than the close-packing limit.

The alternative we have followed before is, i6 in the spi
it of the generalized van der Waals theory of Nordholm
and co-workers, ' is to introduce the nonlocality of the
free-energy functional through a smoothed (or coarse-
grained) density distribution p (r), which is at each point a
nonlocal functional of p(r}. Any narrow peak in the real
density distribution p(r) will be smeared down in p(r),
which can be imagined as the mean density around a par-
ticle in r in a volume somehow related with the range of
the interactions. The free-energy functional is taken as

M [p]=M;d[p]+ f drp(r)bP(p(r)), (2.2)

be in reasonable agreement with the established theories
for the structure of bulk liquids.

In the case of hard spheres this reasoning leads to the
simplest choice for w(r) as a step function:

3 —3o, r(o.
~(r ) = 4m.

0, r~a. (2.7)

where 0. is the hard-sphere diameter. This choice repro-
duces through (2.6) the discontinuity in c(r) at r =o,
predicted by the Percus-Yevick approximation, but it
overestimates the range of c (i), especially at high density,
by adding a negative tail for cr & r & 2o.

The use of the functional (2.2), with (2.5) and (2.7), for
very inhomogeneous systems like the hard-wall —hard-
sphere interface' and the hard-sphere solid' leads to
qualitatively correct results, but the overestimation in the
range of w(r} produces too large a separation between
layers of fluid close to the wall in the first case, and be-
tween the lattice positions in the second, giving a lower
mean density for the fluid phase than that observed in
computer simulations. '

If the prescription (2.7) for w(r) is substituted by

0, r&0

2~0 (PO) 5p(r)c( /r —r'f )=-
kg T 5p(r') p,

the range of c(r) seems to be underestimated and the
mean density of the hard-sphere solid at coexistence with
the fluid is too large.

To reach a really good description of c(r) we have to
allow for a density-dependent weight function in (2.5). It
would be easier to introduce the dependence on the
smooth p (r), rather than in p(r), so that we assume

p(r)= f dr'p(r')w(
~

r —r' ~;p(r)), (2.8)

which has to be considered as an integral equation used to
define p(r) from p(r).

The density dependence of the weight function intro-
duces some new terms in the direct correlation function
obtained from W[p] through (2.6). Beside those obtained
with the simpler prescription of density-independent
m(r), ' now we have from (2.2), evaluated for a homo-
geneous system with density po,

w(r) being a normalized weight function, independent of
the density, which was chosen to give a sensible response
function of the system from a homogeneous density distri-
bution. This is equivalent to saying that the direct corre-
lation function, derived from (2.2) as

~0 (po~po f d „5p(r") 5p(r")
kg T 5p(r) p, 5p(r')

~4'(Po) p d
„5'p(r")

(2.9)

5(~[pl —~d[p] }
c(r, r') =-

k~ T 5p(r)5p(r')
(2.6)

and evaluated for a homogeneous density p(r) =pa, has to

b,P'(po) and b,P"(po) being the first and second derivatives
of b,g(po). The functional derivatives of p (r) with respect
to p(r') are easily obtained from (2.8) as
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and

5p (r)
5p(r') «

=w ( (
r —r'

~ po) (2.10)

52 — lf
= w'(

~

r"—r ~,po)w(
~

r"—r' ~,po)5p(r)5p(r') p,

0.5

+w'(
[

r"—r' [,po) w(
[

r"—r [,po),
2.0
t'/g

w (r,p) =wo(r)+ w, (r)p+ w, (r)p'+ (2.12)

where the normalization condition for w (r,p) at any den-
sity,

f w(r, p)dr=1, (2.13)

implies that wo(r) is normalized and all the higher-order
terms have zero integral

f w;(r)dr = .
!

1, i=0
0, i =1,2, . . . . (2.14)

By introducing (2.12) in (2.9) together with the virial
expansion of b,P(p) one gets the powers of density series
for c(r) in this theory, which can. be compared with the
results obtained in the cluster expansion. Term by term,
equalities will provide information on the coefficients in
(2.12). Thus, from the zero-order term we get

wo(r) = 6(o —r),3

4mo.
(2.15)

6(x) being the Heaviside step function. This exact ex-
pression for wo(r) is the simple step weight (2.7) used in
Ref. 15, so that our earlier theory corresponds to the
zero-order term in the density expansion of w (r,p).

The equivalence between the first-order terms in (2.9)
and in the virial expansion of c (r) for hard spheres gives
the following equation: I

20wo(r)+8wi(r)+10 f dr'wo(r)wo(r+r')

+8 f dr'wo(r')w, (r+r')
3

r ~ r
8 —6—+—

0 0
6(cr —r), (2.16)

wo(r) being known from the zero-order term, (2.15). This
is an integral equation for wi(r) which can be easily
solved numerically by Fourier transforms, to factorize the
convolution between wo(r) and wi(r). The result for this
exact first-order term in (2.12) is shown in Fig. 1; it is

(2.1 1)

where w'(r, p) is the derivative of w (r,p) with respect to p.
In the earlier theory, ' with a weight function independent
of p, the last term in (2.9) vanishes and c(r) is given in
terms of w (r) and its self-convolution. Now, a new term
appears with the convolution of w (r,p) with its derivative
with respect to p.

The first step to determine the function w(r, p) is to as-
sume that it has an analytic dependence on the density
and to expand it in a power series

-0.5—

FIG. 1. The first-order weight function as described in Eq.
(2.16). The inset shows the oscillating structure of the tail.

nearly linear for r & o and has an oscillating tail for r & o.
which decays exponentially. A polynomial approximation
is given in the Appendix.

In principle this process could be carried on for higher-
order terms, getting each time an integral equation for
w;(r) involving the preceding functions wj(r), for j &i,
and the i-order term in the virial expansion for the exact
direct correlation function. The process would also re-
quire the exact virial expansion of b,P(p), which can be
easily obtained from the well-known series for the pres-
sure of the hard-sphere fluid,

k~T exact

3673 3 353+5g + n + q + o ~ ~

600 50

=4~+592+6.121666~3+7.0694+

hg(p) 2
k~ T (1—g) (1—g)2

we find that its series expansion,

(2.18)

Ad)(p)
4g +5g2+ 6g3+ 7q4+

k~T
(2.19)

agrees with the exact (2.17) only for the first two terms,
being the next integer approximation for the others. We
should note here that the volume integral of c(r) in this
theory is completely determined by the function hP(p),
through the compressibility rule

f c(r)dr=
I 2b@ (po)+hP"(p)p (AT

1 d (p —Bid)

pkg T dp
(2.20)

as is easily obtained from (2.9)—(2.11) by using the nor-
malization of w(r, p), (2.13). That means that the use of

(2.17)

where g =no. p/6 is the volume fraction. However, if we
want to use in (2.2) the free energy per particle derived
from the quasiexact Carnaham-Starling (CS) equation of
state, -
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the Carnaham-Starling equation of state to fix b,P(p) as in
(2.18) will be inconsistent with the exact virial expansion
for c(r) for order higher than 1 and that invalidates the
term-by-term identification used to get w;(r), for i )2.
On the other hand, we know that the difference between
(2.18) and (2.17) is small for all the known terms in (2.17)
and, in fact, for high values of the density the compact
formula (2.18) is much better than any truncated series ex-
pansion with the exact coefficients, as implied by the ad-
jective "quasiexact" usually applied to Carnaham-Starling
equations of state. We thus advice keeping b,f(p) as given
in (2.18), even if that means that we cannot get the exact
m;(r) for i )2. In fact, the weight function w(r, p) has
only to establish the "shape" of the function c (r), because
the overall scale, which contains the most important part
of the dependence on the density, is determined by b,g(p),
through (2.20). Then we can expect that using a good
description of b,f(p), the expansion of w(r, p) in powers
of p, (2.12) may be truncated with only a few terms.

In the earlier theory' the series (2.12) was effectively
truncated at the zero-order term. The results for c (r) in a
homogeneous system were in reasonable agreement with
Percus- Yevick theory for p & 0.2cr but became much
worse for larger density. If the exact first-order term is
included, the results improve, but there are still serious
discrepancies at p)0.6 (see Fig. 2). The higher-order
terms cannot be exactly evaluated as explained above, and
the alternative used here is to truncate the expansion
(2.12) at the second-order term and find an empirical
form for wz(r) to get a good description of c (r) in all the
range of fluid density.

The best result was obtained with

Swz(r)=
4~

6—12—+5 r
0 0

e(o —r), (2.21)

ur ( r,p) =no(r) +w ) (r)p+ m2(r)p (2.22)

where wo(r) is given in (2.15), m&(r) is exactly defined
through (2.16) and can be taken as (A3) and (A4), and
pz(r) is empirically taken as (2.21).

Now we expect that this functional can be successfully
used to determine the structure and thermodynamics of
very inhomogeneous systems. At least it has not the
strong disadvantages of any purely local-density treatment
to evaluate the free energy of a narrow and high peak in

and the results for the direct correlation function can be
seen in Fig. 2. They compare very well with the Percus-
Yevick approximation up to p=0.80. and present slight
differences at higher densities, where the Percus-Yevick
result also starts deviating from the exact values.

To summarize this section, we have constructed a free-
energy functional for hard spheres, which gives the
correct thermodynamics of a homogeneous system, by us-
ing the functional form (2.2) and the quasiexact bg(p),
(2.18). It also gives the nearly correct response function
of the homogeneous phase to an external field, as imphed
by having a good direct correlation function and hence a
good structure factor.

This is obtained by using a "smoothed" profile, p(r),
defined through (2.8) with the weight function

cgr3

r /cr

o'

I
-80 '-'

FIG. 2. The direct'correlation function for two values of the
density: (a) p=0.4' and (b) p=0. 8o. '. The solid line is the
present theory to second-order expansion of m (r,p) with respect
to p. The dotted and dashed lines are the zero- and first-order
expansions, respectively. The dot-dashed line is the Pecus-
Yevick approximation, which for the lower density is indistin-
guishable from the present theory.

p(r). In Secs. III and IV this free-energy functional is
used to describe two of the most important inhomogene-
ous systems with hard spheres: the interface with a hard
wall and the hard-sphere solid.

III. THE HARD-WALL —HARD-SPHERE INTERFACE

( )
oo, z(0
0, z&0

This is one of the most interesting problems concerning
inhomogeneous distributions of hard spheres. Quite dif-
ferent approaches have been used and all of them give
good results for low bulk density. However, as the density
increases, the layering structure of the fluid near the wall
becomes stronger and the discrepancies between the
theory and the computer simulations grow fast. The
wall-particle Percus- Yevick and hypernetted-chain ap-
proximations ' do not satisfy the well-known exact rule
relating the fluid density at contact, p(0), with the bulk
pressure, Po, as

Po
p(0)= „B

This failure of the integral equations is due to their lack
of thermodynamical consistency.

The use of the Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy with a superposition approxi-
mation closure' gives exact results for the density at con-
tact but overestimates the propagation of the layering
structure into the bulk fluid. The scaled particle theory
can be used to evaluate the surface tension of the hard-
wall —hard-sphere interface' and the result has a good
agreement with recent computer simulations. However,
this approach cannot be used to calculate the structure of
the fluid near the wall.

To study this problem with the free-energy functional
described above, we use the minimization principle,
through the Euler-l. agrange equation (1.1), with the exter-
nal field
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which imposes p(z) =0 for z & 0.
The first functional derivative of M [p] in (2.2) is

= p;~(p(r))+A/(p(r))
5P

5p r

+ f dr'p(r')bp'(p(r')) 5p (r')
5p(r)

(3.3)

physical sense, as

[1—pl(r)) —[ I
1 —pI(r)

I

' —4po«)pz(r)]'"
P(r) =

2p~(r)

2po(r)

[1—p&(r)]+[
~

1 —pl(r)
~

' —4po(r)pp(r)]'~')
(3.7)

p (r) =po(r)+pl(r)p (r)+pz(r)(p (r)) (3.4)

where p;q(p) is the ideal-gas chemical potential. The
coarse-grained density profile p(r) has to be evaluated
from p(r) through the integral equation (2.8), but the
choice made for the weight function (2.22) simplifies that,
allowing us to rewrite (2.8) as 5p(r) m(

~

r —r' ~,p(r))
5P(r ) 1 —p~(r) 2p—q(r)p (r)

(3.8)

where the last form is more convenient for numerical cal-
culations when p&(r) and pq(r) approach zero.

The functional derivative of p(r) with respect to p(r)
may be expressed as

where

p;(r) = f dr'p(r')m;(
~

r —r'
~

) (3.5)

which in the bulk fluid reduces to (2.10).
~ith (3.3), (3.7), and (3.8), the Euler-Lagrange equation

for the equilibrium profile is

go=go ~

pl =pz=0 ~

(3.6)

and this limit allows us to identify the root of (3.4) with

for i =0, 1,2, which are the smoothed profiles evaluated
with the density-independent weights w;(r). In this way
Eq. (2.8) reduces to a second-degree algebraic equation for
p (r), with the dependence on p(r) through the coefficients
(3.5).

In the bulk fluid, p(r) goes to a constant value,
p(r)=po, and because of the normalization conditions
(2.14), we have

p;~[p(z) ]+b, g(p (z) )

+ f dz'p(z')b, f'(p (z'))

8'(
i
z —z' i,p(z'))

1 —pl (z') —2pq(z')p3z')

where we have made explicit that p(r) does only depend
on the coordinate z, normal to the wall, fixed at z =0, and

8'(z,po)
—= f dR w((R +z )',po) (3.10)

is the weight function integrated over the transverse coor-
dinates. Equation (3.9) can be rearranged for numerical
solution as

p(z) =ppexp
1 ~. . . , 8'( ~z —z' ~p(z'))

~g(p (z))+ f &z'p(z')&t('(p (z')) '
&p(po) p,4—p'(p, )—

AT 1 —p, (z') —2P, (z')P (z')
(3.11)

po being the bulk density. This equation can be solved by
iterations, by putting in the right-hand side of the old pro-
file and getting the new one in the left-hand side.

The iteration process is not very efficient, especially at
high bulk density, and if the full new profile obtained
from (3.11) is used in the next iteration the process usually
diverges in a few steps. To avoid that, I used a mixing
scheme between the results of an iteration, p,'„',(z), and its
initial guess, p „'(z), to get the next-step initial guess as

p;„'+ (z) =p,'„,(z)f(z)+p,'„'(z)[1—f(z)], (3.12)

with a careful choice of the mixing function f(z) to avoid
the divergence. The function f(z) was fixed by trial and
error, and sometimes it has to be as small as 0.01; in this
case the process requires several hundred iterations before
reaching convergence.

At the same time the iterations of (3.11) were per-
formed, I evaluated the surface tension of each configura-
tion as the excess of grand potential energy over the bulk
fluid extended to the wall,

y= f dzIp(z)[t/i;q(p(z))+hP(p(z)) —p)+p[, (3.13)

which has to be minimum for the equilibrium profile so
that its evaluation at each step provides a different way to
check the convergence of the process; successive iterations
have to give decreasing values for y, and only when it sta-
bilizes has the equilibrium value been reached.

The density profile was evaluated for three different
bulk densities, poo. =0.57, 0.755, and 0.81, for which
computer-simulation results exist ' and have been used be-
fore checking other theories. ' ' The results are shown in
Fig. 3, compared with the simulation and with the
BBCxKY results. The present theory gives a fair agree-
ment with the simulations and the values for the density
at the wall satisfy the relation (3.1), as a signature of being
a consistent functional theory with the correct thermo-
dynamics; the agreement in the position and value of the
next minimum and maximum- are in much better agree-
ment with the earlier theory' with the density-
independent weight function. The only systematic differ-
ence which can be appreciated is the position of the peak
in p(z) around z =o., which in the simulation is closer to
the wall than in the present calculation. That suggests the
presence of a transverse ordering which couples successive
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P{z)r3 ('{zja' t,'(z)0'

6I
4-

& &~k~T
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Z/o
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FIG. 3. Density profiles for the hard-sphere fluid against a
hard wall. The bulk density is (a) 0.57o. , (b) 0.755o. ', and (c)
0.81o. . The dots are the simulation results (Ref. 17). The
solid line is the present theory and the dashed line is the result
in BBGKY, as in Ref. 18 recalculated for these bulk densities.

layers allowing them to get closer. This effect is not con-
sidered in this calculation because in (3.9) and (3.11) I
have imposed the complete homogeneity in the (x,y)
plane. Nevertheless, that effect can be considered in this
functional theory by exploring density distributions with
transverse order.

Despite this problem, the present results still can be
favorably compared with other theories, especially at high
bulk density. The generalized mean spherical approxima-
tion (GMSA) result reported by Waisman et al. for
p~ ——0.609 is in even better agreement with computer
simulations, but I am not aware of any calculation for
higher p~. A further advantage of the present theory is
that it gives in a perfectly consistent way the surface ten-
sion of the interface. The results for y corresponding to
the three systems are shown in Fig. 4, compared with a re-
cent computer simulation, with the Kirkwood-Buff for-
mula applied to the superposition approximation profile'
and with the scaled particle theory. ' The agreement of
the present results with the latter and with the simulation
is quite good, indicating that the free-energy functional
described in this paper gives not only the right position
for the minimum of the grand potential energy in the
density-functional space, but also gives the correct value
for the free energy at the minimum.

IV. THE HARD-SPHERE SOLID

In an earlier paper' the simpler functional model, with
the density-independent weight function, was used to
describe the solid of hard spheres and to find the density
of the solid and fluid coexisting phases. The same is done
here with the more refined theory to check how it behaves
when used to describe such an extremely inhomogeneous
density distribution.

'0 0.1 0.2 03 0.4

FIG. 4. Surface tension of the hard-wall —hard-sphere inter-
face. The circles are the results of the present theory corre-
sponding to the density profiles in Fig. 3. The solid line is the
scaled particle result (Ref. 19), the dashed line is the Kirkwood-
Buff formula with the BBGKY density profiles (Ref. 18), and
the bars are the estimations from the computer simulation (Ref.
20).

The process followed here is completely equivalent to
the one followed before. ' The density distribution is
parametrized in terms of normalized Gaussian peaks at
each lattice site

p(r) =
3/2

CK —a(r —R)2
e

R
fcc lattice

(4.1)

where the lattice constant is fixed by the mean density in
the crystal and the only free parameter is the decay con-
stant a, which gives the fluid phase in the limit a~O. If
the free energy, for fixed mean density, has a minimum at
a&0 it will represent a stable or metastable solid struc-
ture. In fact, if one observes these structures for any
mean density larger than some value around 0.9cr, it be-
comes the stable structure at high mean density, with
preference to the -disordered fluid. The values for the
solid and fluid densities which can coexist is given by the
usual double tangent construction.

The results are presented in Table I and compared with
the earlier theory, ' with computer simulations, ' and
with Haymet's results in a refined version of
Ramakrishnan-Yussouff theory, based on an expansion
of ~ [p] around the homogeneous density of the fluid at
coexistence with the solid (see Note added in proof) It
can be observed that the present functional model gives an
important improvement with respect to the earlier results
and puts the theory in fairly good agreement with the

TABLE I. Coexisting fluid and solid densities for hard spheres.

Present theory
Zero-order theory,

Ref. 16
Haymet's theory,

Ref. 23
Computer simulation,

Ref. 27

0.9433
0.8917

0.976

0.939—0.948

1.0609
0.9662

1.035

1.036—1.045

Ps-Ps

0.1176
0.0745

0.059

0.106—0.088
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FIG. 5. Structure factor for the hard-sphere Quid at the crys-
tallizing density, pb ——0.94328o. , in the present theory (solid
line) compared with the Percus-Yevick result for the same densi-
ty. The first peak in S(k) is about 3, in good agreement with
the Hansen-Verlet rule.

The free-energy functional model presented here can be
used with advantage over any existing theory to describe
an inhomogeneous system of hard spheres. First of all,
for uniform density distributions it gives, by construction,
the correct thermodynamics and a very good description
of the structure. It also gives a very good location of the
solid-fluid phase transition, which implies a good descrip-
tion of the hard-sphere crystal. The results for the hard-
wall —hard-sphere interface are, especially at high bulk
density, the best—to my knowledge —both for the density
profile p(z) and the surface tension.

All these results, referred to very different physical sit-
uations, are obtained with the same, relatively simple for-
mula for W[p], which is perfectly consistent as a free-
energy functional, and as such reproduces all the exact re-
lations, such as Eq. (3.1), which can be derived in a gen-

computer simulations. Probably the agreement would be
even better if a more sophisticated description of the solid
structure were used, instead of the single parameter for-
mula (4.1). That indicates that the free-energy functional
described here is quite appropriate to describe a very inho-
mogeneous situation, with peak values of p(r) one hun-
dred times larger than the complete packing mean density.

As a final test, I have calculated the structure factor of
the fluid at the coexisting density, p~ ——0.94328o, and
it is shown in Fig. 5, in comparison with Percus-Yevick
theory for the same density. At lower density the agree-
ment between the two theories would be much better, as a
direct consequence of the good agreement presented be-
tween the respective c(r), as shown in Fig. 2, but at
higher density the structure in S(k) becomes much
stronger in the present theory than in the Percus-Yevick
approximation; and at the crystallization density the first
peak in S(k) reaches a value just below 3, in perfect
agreement with the empirical rule established by Hansen
and Verlet, while the Percus- Yevick approximation
gives a much lower value. This is proof of the consistency
of this functional model, which recovers any relationship
between different magnitudes which may be proven on
general grounds, as is the case with the Hansen-Verlet rule
(see Baus ).

V. DISCUSSION

eral density-functional formalism.
This free-energy functional can also be used to describe

the reference system in a perturbative analysis, as was
shown with the earlier version, ' and it provides in that
case the first theory able to describe the full solid-liquid-
vapor phase diagram.

The functional model can be used in a variational pro-
cedure, by minimizing the grand potential energy with
respect to a set of parameters used to describe the density
distribution or by solving the integral equation for p(r)
given by the Euler-Lagrange minimum principle (1.1).
Both of these routes can be used for the pure hard-sphere
fluid or together with any perturbative contribution from
the attractive interactions, in more realistic models.

Note added in proof. A recent work by G. L. Jones and
U. Mohanty (unpublished) gives an important improve-
ment from Ref. 23 by allowing a density of vacancies in
the solid and using it as a variational parameter.
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APPENDIX

The integral equation (2.16) for the first-order weight
function is easily solved by Fourier transforms:

f ( q) +20wo(q) + 10[wo(q) ]
8[1+wo(q)]

(Al)

where wo(q) is the Fourier transform of the zero-order
weight (2.15) and

f (q)= 24

q

2 12 . 5 6 12'
+ sinq+ + + cosq

2q q q

—12
1 1

q3 q5
(A2)

The numerical inverse Fourier transform of w&(q) gives
the function w&(r), shown in Fig. 1. For r &o the result
is very well fitted by the second-degree polynomial

w~(x)=ao+a~x+a2x, x =rlo & 1

with

ao ——0.90724, a ~
———1.237 17, az ——0.216 16 .

(A3)

The oscillating tail for larger r requires a more complex
fitting:

—Pl(x —1)
wi(x) = ce sin[a(x —1)]

+e ' (b, +b,x+b,x'+b, x'),
x =r/o & 1 (A4)

with
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c = —0.10244 ho=35 &34

a=4.934, b )
———98.684,

pi ——3.5621, b2 =92.693,
p2

—-12, b3 = —29.257 .

For most numerical applications of this formalism the os-
cillating tail for r )2o has very little effect, so that to(r)
may be truncated at r =20 with a slight correction to en-
sure the normalization requirements (2.14).
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