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We consider N particles, each of mass m and diameter d, moving on a line and interacting via
elastic collisions. The particles are enclosed by a freely movable, massless box of length L. The
center of mass is assumed to be at rest. We state results on ergodic properties (equivalence of time
and ensemble averages, approach to equilibrium) and outline their proof. We also list exact expres-
sions for some expectation values (pair distribution function, pressure, collision frequency, no-
collision probability, velocity autocorrelation function) obtained for fixed parameters N,m,d,L and
three kinds of ensembles (smallest stationary, microcanonical, canonical) and discuss their thermo-
dynamic limits. The derivation of these results, based on a generalization of a method already used
for small systems (N < 3), is illustrated here with specific examples.

I. INTRODUCTION

In all fields of physics, exactly soluble problems are the
exception rather than the rule. Nevertheless they are
studied again and again, and the research for new ones
persists. This happens for at least two reasons: Firstly,
some of these problems lie at the heart of every theory,
making one hope that the theory will eventually apply to
the case it was originally intended to model. Secondly,
these problems may be used to test calculation schemes
developed at least to obtain approximate solutions of simi-
lar problems which are more complicated but also more
interesting.

If one is interested in the properties of a real dynamical
system, one usually has to choose an oversimplified model
to arrive at well-defined, solvable mathematical problems.
In this simplification, contact with reality is greatly di-
minished since usually only a few essential features of the
original system are to be correctly described by the model.
This is well illustrated by the system considered here: a
finite number of particles enclosed by a box, moving on a
line, and undergoing elastic collisions. This might be
viewed as a model of an abacus, but with regard to real
gases or fluids one can at best expect some qualitative
similarity. It is therefore rather questions of principle
which make this system an interesting object of investiga-
tion. The second reason to study this model seems to be
less stringent in the present case. Although there are
several different (or differently looking) methods to com-
pute a physical quantity of interest, they all turn out to be
especially adapted to the problem at hand, i.e., to one-
dimensional motion and elastic collisions.

The questions of principle considered here fall into two
categories. The first group is concerned with dynamical
properties of the system and the two main questions read,
“Can time averages be replaced by ensemble averages?”
and, “Does an initial distribution in phase space evolve to-
ward an equilibrium distribution?” In the following we
will answer these questions for finite systems. The second
group questions may be summed up as, “What can we
learn about large systems from studying small ones?”” To
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find an answer to this question we calculate the expecta-
tion values of five observables (pair distribution, pressure,
collision frequency, no-collision probability, velocity auto-
correlation function) for three ensembles (smallest station-
ary, microcanonical, canonical). Having obtained the re-
sult for a finite system with given number of particles,
size, etc., we take the thermodynamic limit (whenever this
makes sense). Knowing the members of the sequence ex-
plicitly, one can see how fast (or slowly) an expectation
value converges to its thermodynamic limit and whence
apparent qualitative differences between finite and infinite
systems originate.

The method that we used to discuss the topics men-
tioned above differs from those used in other similar in-
vestigations. Until now this method has been employed
only for systems corresponding to the simplest system
considered here (N=2); therefore its generalization and
application to the general N-particle system deserve some
explanation. Because of this—and since emphasis is put
onto the pedagogic aspects of the model—it seemed to be
appropriate to start with a survey of methods and results
before entering into the details of the calculation. This is
the principal purpose of the present paper, which is or-
ganized as follows: In Sec. II we show how our results are
related to those of previous investigations of similar sys-
tems. In Secs. IIT and IV the two- and three-particle sys-
tems are studied in detail since one can learn from study-
ing these simpler systems how best to treat the N-particle
system. Results for general N are listed in Sec. V, and
their thermodynamic limits are discussed in Sec. VI. Fi-
nally, Sec. VII contains our conclusions and a brief com-
ment on possible generalizations of the model considered
here. A detailed derivation of our results will be given
elsewhere.

II. COMPARISON OF OUR RESULTS
WITH THOSE OF PREVIOUS INVESTIGATIONS

To compare our work with that of others, we have to
start by defining the system. We consider N particles,
each of mass m and diameter d, moving on a line and in-
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teracting through elastic collisions. The particles are as-
sumed to be enclosed by a freely movable, massless box of
length L. This device makes the first and the last particle
collide like nearest neighbors, and defines the volume of
the “hard-rod gas.” As is obvious from Fig. 1, this sys-
tem is essentially equivalent to a ring system, the only
difference being the position of the center of mass (c.m.).
In the linear system this variable is uniquely defined, in
the ring system it is defined only modulo L. Under a col-
lision two particles exchange their velocities. Hence the
total momentum is a constant of motion and the c.m.
moves uniformly along the line. This does not affect the
relative motion of the particles which is the same for both
the linear and the ring system. Labeling the particles by
i=1,..., N we therefore eliminate the trivial part of the
evolution by requiring that

N N
> x=0, 3 v;=0, (1

i=1 i=l1

for all times. This reduces the degrees of freedom from N
to N —1 but makes it more difficult to compare our re-
sults with others since, e.g., factorizable distributions of
initial conditions are ruled out by (1). However, observing
(1) throughout the following allows us to see what effects
are entirely due to the relative motion. Moreover, if a
motion of the c.m. is admitted or even desired for some
reason the result obtained here can be easily modified be-
cause the internal evolution does not interfere with the
motion of the c.m.

Since the particles are not allowed to penetrate through
each other in this model the ordering in the beginning, say
X1 <Xy< **° <Xy, remains the same for all later times.
This means that it is possible to distinguish the particles
by their order. It has been claimed' 3 that if the particles
are indistinguishable they may be treated as free particles
passing each other without collisions. This, however, is
not true because one can observe a collision and count it
without knowing the numbers of the colliding particles.

- Therefore the ring systems considered by Frisch’? differ

essentially from those considered here since there all parti-
cles are assumed to move freely around the circle. All
similarities in his and our results originate solely from the
confinement of the particles. It also has been claimed*
that the system may be treated as a collection of free par-
ticles if the diameter d shrinks to zero (and phase-space
functions symmetric in the positions and velocities of the
particles are considered’). If this would really make the
particles indistinguishable one would be unable to say
whether two particles, after having arrived at the same
position, have passed through each other or have been re-
flected. Hence the dynamics of such a system is unde-
fined unless a convention is made about what happens in
such a situation. It makes a difference whether such an
event is counted as collision or not and this shows up in
the way the (symmetrical) phase-space functions measur-
ing the pressure, the collision frequency, etc. are defined
and interpreted.

The finite systems discussed in the literature are either -

ring systems or linear systems with fixed walls. It should
be noted that the constraint (1) makes our two-particle
system mathematically completely equivalent to the one-
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FIG. 1. Linear system and ring system.

particle system with fixed walls. This system has been in-
vestigated by Born® and Deutch et al.,” its generalization
to N noninteracting particles by Teramoto and Suzuki®
and by Nossal,” and to three dimensions by Hobson and
Loomis.!® Fixed-wall systems with more than one im-
penetrable particle have been considered by Tonks,!! Leff
and Coopersmith,!? Lebowitz and Sykes,'* and Evans.!*
Evans noticed that the fixed-wall system is equivalent to a
ring system of double size, if the initial states of this sys-
tem (and hence all the following ones) are suitably re-
stricted. Evans also studied the ring system as did Jep-
sen!® some time before in his fundamental paper on the
hard-rod gas. As pointed out before this system is com-
pletely equivalent to ours up to the constraint (1). If the
size of the system increases one would expect the influ-
ence of the boundary conditions to decrease, becoming fi-
nally completely irrelevant in the limit of an infinite sys-
tem. Such a system has been considered by Zernike and
Prins'® already in 1927. Of the more recent papers on in-
finite hard-rod system (Refs. 17—22) the one of Lebowitz
and Percus!’ is most important for the problems con-
sidered here.

Once the dynamics of the system is defined, one may
ask whether it is ergodic or not. A closed finite system is
said to be ergodic if for almost all initial states the time
average of a phase-space function equals its average over
the energy surface containing the initial state.?> None of
the finite systems mentioned above meets this condition
because impenetrable particles remain ordered and collid-
ing particles do only exchange their velocities. A permu-
tation of the particles, which would leave the total energy
invariant, can never result from the evolution in time.
Hence an orbit in phase space is confined to one of the N!
disjoint parts into which the energy surface decomposes.
This argument against ergodicity could be invalidated by
fixing a certain order once for ever. But for N>2 the
part of the energy surface filled by an orbit anyway in-
comparably smaller, i.e., of relative measure zero, because
the set {v;}={vi,V2,...} is conserved in time (for
fixed walls {v;} C{+v;}). That finite hard-rod systems
are not ergodic is well known, sometimes even mentioned
explicitly. 13
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Knowing that an orbit in phase space cannot leave a re-
gion characterized by the initial order,say x; < - * <x;,,

and the set of initial velocities {v;o} one would like to
know whether the evolution is ergodic with respect to this

l

X is a possible configuration;
(X, V) |xp1< "

Up'1=V10s -

The equivalence of time and ensemble averages has been
shown by Jepsen'® for noninteracting ring systems and
functions of the form g (X,). He also stated without proof
that this coincidence persists if the particles collide and
general phase-space functions are considered. We supply
a proof of this assertion for the systems considered here
(c.m. at rest).

Closely related to the fact that the “smallest stationary
ensemble” (2) is (for almost all sets of initial velocities v;q)
the closure of one single orbit is the existence of re-
currence times. This topic has been extensively discussed
for ring systems, for the noninteracting one by Frisch!?
and for the interacting one by Jepsen.!> We did not at-
tempt to improve their results. We only want to point out
that the geometrical method employed here simplifies the
discussion of recurrence times for hard-rod systems con-
siderably. For this method makes obvious which initial
conditions lead to strictly periodic motions; it also shows
clearly that in general the initial state is realized again not
exactly but to any desired accuracy. Correlation functions
of the form

G(OH (t +7)=g (X, V)h(X, 4 1, Vi 1)

are therefore almost periodic and this is also true for the
expectation values (gh) where { - - - ) denotes either the
time average or the average over the ensemble (2). Hence
an irreversible decay of correlation functions can never be
obtained from a time average alone but only by averaging
over ensembles which, like the microcanonical and the
canonical one, consist of an infinite number of smallest
stationary ensembles.

The existence of recurrence times shows that a distribu-
tion function 8(X —X,[Xq, Vo]V —V,[X0,Vo]) repre-
senting the evolution (X,,Vy)—(X,,¥;) of a system
whose initial state (Xg,¥,) is completely known, can nev-

er be approximated by a stationary function. However, if

the initial condition is only known to be realized with a
probability given by the distribution f(Xy,Vy) it may
happen that

lim [ dXdV f,(X,V)g(X,V)

ttoo

= [ dXdVf (X, VgX, V) ()
for sufficiently smooth functions g, where
X = [ dXodV, fo(Xo,Vo)S(X —X,[X,Vo)])
X8V —Vi[X0,Vo]) 4)
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part of the energy surface. This is by definition, the case
if the time average of the function G (¢)=g(X,,V;) equals
the average of g over the set

<xpy for a fixed permutation P: i+>Pi ; . (2)

, Upry =Upo for some permutation P’: i+—>P'i .

[

and f,,) is a distribution uniquely defined by f,. In Egs.
(3), (4), and all the following ones which contain integrals
each variable has to be integrated from — o to + oo if
not explicitly stated otherwise. Note that f vanishes if X
does not belong to a bounded subset of R”. For one or
more noninteracting particles moving between fixed walls
examples of such an approach to equilibrium have been
discussed by Born,® Teramoto and Suzuki,® and Frisch,?
and Hobson and Loomis.!® Our discussion is more gen-
eral in that we consider colliding particles and a whole
class of initial distributions f, instead of a few examples.
We give sufficient conditions for the existence of weak
limits fo—f (), Eq. (3), and specify f () in terms of f.
Another kind of limit we are especially interested in is
the thermodynamic limit (TDL). There are very few ex-
amples (oscillator chains, spin systems, etc.) for which this
limit has been actually performed considering the proper-
ties of all (or sufficiently many) members of the sequence.
Mostly the term “thermodynamic limit” is merely used to
fix some properties of the infinite system and to make
plausible assumptions on its dynamics. For the hard-rod
systems considered here the dynamics of the infinite sys-
tem is in some respects simpler than that of a finite one, a
fact which has been exploited by Lebowitz and Percus!’
and Levitt!® and which is also perceivable in some of our
results. A disadvantage of the infinite systems is that it is
hard to guess how to modify a result obtained for such a
system in case of a finite system. Consider for instance
the pair distribution function g, (r), found by Zernike
and Prins!® for N =« and d>0: It is zero for 0<r <d,
then oscillates a few times with decreasing amplitude, fi-
nally tending to p >0 for 1. For a large but finite sys-
tem one expects gy(r) =g () for small r; but if 7 is suffi-
ciently large gy(r)=0 since the distance of two particles
is bounded in a finite system. Thus gy(7) has to decrease
to zero but the function g (#) does not give any hint how
this should happen. As a second example consider the
velocity autocorrelation function for a canonical ensem-
ble. For the finite system Jepsen'® found an asymptotic
decay proportional to ¢ 3, a result confirmed by Lebowitz
and Percus!” who computed the shape of this function
from #=0 up to the values considered by Jepsen. Later on
Evans!* found that the velocity autocorrelation function
for the canonical ensemble decays as — t2exp(—at?),
a=a(N,L,m,d,T), if the system is finite. If one looks at
these results, displayed in Fig. 2, one sees that the ex-
ponential tail wanders toward t = o with increasing N,
but it is quite unclear where the decay proportional to ¢ —3
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FIG. 2. Asymptotics of the velocity autocorrelation function ¢ for N=20,40,60, .
comes from.

To get a better insight into the nature of the TDL we
calculated expectation values of phase-space functions for
fixed parameters N,L,m,d first and passed then to the
thermodynamic limit. This is the pattern in which Le-
bowitz and Sykes!>—and, with some restrictions, also Jep-
sen'® and Evans'*—obtained their results.

The first of the functions we investigated is the pair
distribution function giving the number of particles which
are expected to be found in a certain distance from a ran-
domly chosen particle. Our results of this and more gen-
eral spatial distribution functions are similar to those of
Tonks'! and Leff and Coopersmith,'? the difference ori-
ginating from the different definitions of the system
(fixed walls versus movable box and fixed c.m.). It should
be noted that the derivations are also different: Tonks as-
sumed equal probabilities for all admissible configurations
(without proving that this is a necessary condition for al-
most all stationary distribution functions), Leff and
Coopersmith start from the partition function for the
canonical ensemble, whereas we use the fact that every
stationary ensemble may be viewed as a collection of
smallest stationary ones. In the thermodynamic limit all
functions converge to the pair distribution found by Zer-
nike and Prins'® on heuristic grounds (see also Ref. 23)
and rigorously derived by Salsburg et al.?

The next quantity of interest is the pressure. Tonks!!,
using the virial of Clausius and the Boltzmann equation,
obtained the pressure for a canonical ensemble. The equa-
tion of state obtained this way corresponds to a van der
Waals gas with purely repulsive forces (a=0). Frisch? de-
fined a local pressure and discussed.its evolution in time,
but this pressure is not related to any collisions which are
absent in his model. Carmona and Gottdiener®® con-
sidered the motion of a mass point inside a dihedron and
defined the pressure as time average of the momentum
transferred to the walls. Their computer experiment turns
out to be one way to calculate the pressure of the four-

particle system considered here. Ikeda and Takano?’ used
the partition function of the canonical ensemble to obtain
a true van der Waals equation (a > 0) but this result is ob-
tained from a mere shift of the energy scale, not a dif-
ferent dynamics. Our method to calculate the pressure
differs from these approaches already from the beginning.
We define the pressure as the time average of the force
acting onto a particle from its left. To this end we define
a phase-space function measuring the increase of the
particle’s momentum caused by collisions with its left
neighbor and average over a smallest stationary ensemble.
For the microcanonical and the canonical ensembles the
pressure is obtained by further averages and these results
are compared with those derived from partition functions.
For the microcanonical ensemble the results agree only in
the thermodynamic limit, whereas for the canonical they
coincide for all N >2.

The calculation of the pressure is similar to that of the
collision frequency which tells us how often, on the aver-
age, one of the particles hits its neightbors per unit time.
This quantity defines a natural scale for time-dependent
phenomena, especially in the thermodynamic limit, and is
implicitly contained in the work of Jepsen'® and Lebowitz
and Percus.!” A formal definition and explicit calculation .
has not been given in these papers but is provided in the
following for the three ensembles mentioned above.

If v is the collision frequency and 8¢ an infinitesimal
time interval than v &¢ is the probability that a particle la-
beled with an arbitrary but fixed number undergoes a col-
lision within the time interval (0,6¢). The corresponding
probability for a finite interval is W(z) and
W(t)=1—W|(t) is the no-collision probability, i.e., the
probability that a particle moves freely for a period of
length ¢ (or more). Like the collision frequency the form
of W(t) for N= o and temperature T is implicitly con-
tained in the results of Lebowitz and Percus.!” Our con-
tribution consists in discussing the form of this function
for the three ensembles and calculating it explicitly for



31 FINITE HARD-ROD SYSTEMS AND THEIR THERMODYNAMIC LIMIT: ...

given energy and 2<N < .

The quantity showing the strongest dependence on the
size of the system is the velocity autocorrelation function
(VAF). For the one-particle system corresponding to our
two-particle system this function has been calculated by
Nossal® for the canonical ensemble and by Deutch et al.”
also for the microcanonical one. For the infinite system
and the canonical ensemble Jepsen!® found the ¢~3 tail
while Lebowitz and Percus!” computed the whole func-
tion. (These authors calculated it also for two other en-
sembles.) As regards systems with 2 < N < o Lebowitz
and Sykes!® computed the VAF for rather special station-
ary ensembles corresponding to strictly periodic motions
and performed the thermodynamic limit explicitly.
Evans,'* following Jepsen,'® found a series representation
for the VAF for given temperature and used it to extract
the long-time behavior for finite systems. He also proved
that this series converges to the function given by Le-
bowitz and Percus!” for N1 o0, but did not calculate expli-
citly any member of this sequence. We approach the
problem from two sides: First we derive a power-series
representation useful for short times (0<vt <5), then a
sort of Fourier-series representing the VAF for all times.
These series are evaluated numerically for N <40, both
for the microcanonical and the canonical ensemble. For
the latter this series can be transformed into an integral
which allows us to calculate the function for N <100 and
to pass finally to the thermodynamic limit where the VAF
of Lebowitz and Percus'’ is obtained once more.

We conclude this section with a few words on our
method of calculation. Its basic idea is to replace a com-
plicated motion in a bounded domain by a free motion in
an infinite space endowed with a certain structure. The
underlying “reflection trick,” attributed to Lord Kelvin,
has already been used by Born,® Nossal,’ Hobson and
Loomis,'® and Deutch et al.,” for one particle within
fixed walls. Once the trick has been applied to this sys-
tem, corresponding to N=2 here, the advantage of using
Fourier series is evident. A generalization of the method
to N=3 has been discussed by Hobson?® but not used for
calculations of expectation values. To treat hard-rod sys-
tems with 2 < N < «, a quite different-looking technique
has been developed by Jepsen'® and used later on by Le-
bowitz and co-workers,!”!? Levitt,!° and Evans.!* Ob-
serving that in a collision velocities are conserved but
“jump” from one particle to the other Jepsen followed the
uniform motion of such a ‘“velocity ray” through the
volume. In a ring system the pulse returns after a while

but in an infinite system no such pulse ever comes back

which simplifies the dynamics.!”!® In this picture the re-
flection trick was only used to relate an N-particle system
with fixed walls to a ring system with 2N particles.!* We
use this trick extensively generalizing the methods of
Born® and Hobson?® to arbitrary N < 0. This yields a
description of the system’s evolution in geometrical terms
which is very intuitive though it is slightly more difficult
to recognize the motion of the individual particles in this
approach than in Jepsen’s scheme. Series representations
introduced by Jepsen and his followers in a purely formal
manner emerge here quite naturally, for the method
makes obvious that the problems considered here are very
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similar to problems in theoretical solid-state physics and
can therefore be handled in quite a similar way.

III. TWO PARTICLES

If x, , are the positions of the centers of the two parti-
cles a configuration is given by the vector X =(x,x,).
To display the situation graphically it is more convenient
to use X =(x,%,) with

T =(1/V2N(—x1+X,), T=(1/V2)(x14+x,), (5)

instead of X. X and X are uniquely related to each other
by an orthogonal transformation, X =2%"X. To facilitate
comparison with larger systems we write

X=X"+X" (6)
where
WX =X"=(%,0), ¥ X"'=X"=(0,%;). (7

If the same conventions are used for velocities, then (1)
reads

X"=0, V"=0, (8)
and the “internal state” of the system is given by
Z'=(X",V"). 9)

The confinement by the movable box is expressed by
|x1—x,| <L —d and the fact, that the particles cannot
penetrate through each other, by | x;—x,| >d. The con-
figuration space is therefore S, US,,

Si={X"|x;—L +d <x; <x,—d},
(10)
S,={X"|x1—L +d <x,<x,—d} ,

and the phase space decomposes into two strips, i.e.,
Z'E€(S;XR)U(S, XR). A typical evolution of an initial
state Z( in phase space is illustrated in Fig. 3. If S[X;]
is the interval containing Xy,

S[Xp]=S, if and only if X €S, , (11

then Z; €S[X]1X R for all ¢ (conservation of order).
Let us now explain the reflection trick for d=0. Start-

<I
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FIG. 3. Evolution in phase space (N=2).
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ing with S[X§]XR one extends this strip to R? in an in-
finite number of steps each being determined by the fol-
lowing rules: (i) The new X' is obtained from the old one
by reflection along the boundary point of the interval con-
taining X’. (ii) The new V"’ is obtained from the old one
by interchanging v, and v,, i.e., V'—>—V". By this pro-
cedure Z; is mapped onto two lattices of points (see Fig.
4) the periodicity being due to the fact that two successive
reflections on planes normal to a line are equivalent to a
translation along the line. In the extended phase space the
evolution of the initial state appears as motion of two lat-
tices moving with velocities +V’. As Fig. 4 shows there is
always one and only one point to be found within the
original phase space S[X(]XR and it moves there as the
state Z; does. Hence Z, is determined by the motion of
the two lattices the positions of which are uniquely fixed
by that of one single point, say Xy + Vot. In order to ob-
tain X/ ,V; from X+ Vit we introduce vectors

B =nB,,, n integer, B;,=(L,—L), (12)

and orthogonal transformations & defined by

2 (a,b)=(a,b), P,(a,b)=(b,a) . (13)
It follows from these definitions that B’’=0 and
PY'=-Y, ZY"=Y". Moreover, there exists for al-
most every Y'ER a pair B, 7, uniquely determined by
Y’, such that Z(Y'+B)ES[X;]. Choosing Y =X,
+ V)t one therefore obtains

and the same equation holds true for the barred quantltles
X=X, V=%V, B=%B, Z=% 2 % . Equa-
tion (14) says that in order to obtain the final state
Z, =(X/,V{) we can start with the initial state
Zy=(Xg,Vy), then let it evolve freely (!) up to the time
we are interested in, finally going back to the true phase
space by a translation B and, if necessary, also by a reflec-
tion Z. Since there is only one velocity V' involved one
can equally well consider the projection of the motion of
Z; onto the subspace V =0, but then the extended con-
ﬁguratlon space R={X '} has to be structured in accor-
dance with the reflection principle. That is, R is divided
into segments of length L /v2 labeled by 4 or B accord-
ing to whether they are obtained from S[X;] by an even
or an odd number of reflections (see Fig. 4). This defines
a one-dimensional lattice of vectors B=nL /V2, n in-
teger. The cell of {E } is an interval of length LV2, e.g.,

C= L?J Z5[X01, (15)
where
PS,={PX'|X'ES,} . (16)

Each cell decomposes into two parts of equal size dis-
tinguished by two labels, say 4 and B. It should be noted
that if 4 has the meaning v; =v;o and B the meaning
Uiy = — ;o the way the labels 4 and B are attached to the
parts of C depends on X . The ray X+ Vpt, t>0 con-
sidered here corresponds to a pair of trajectories con-
sidered in Jepsen’s scheme and these trajectories cross
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FIG. 4. Evolution in extended phase space (N=2).

each other there whenever the point of the ray passes a
point of the lattice here.

Before expanding this point of view further let us relate
these facts to the approach of Born® and others!®’ who
studied the Liouville equation for this problem. Suppose
first that the initial conditions are completely known and
that X €S;. The initial distribution f3,

X, V) =8(X —X,)8(V —V,)
=8(X'—Xg)8(V'—V)8(X")8(V") , 17
can then be extended to a function f § according to

Fox,N= 3 fo(PX+B,ZV)
2,B

=3 f(Z7[X-B]L,Z"'V). (18)
Z,.B

The new function is then

Fax, =3 X —2Xo+BSV -2V, (19)
P.,B

its singularities being just the points of the two lattices
mentioned above. This function evolves therefore accord-
ing to

XV =fiX-V,V), (20)

i.e., it satisfies the Liouville equation of a free particle.
Collisions are incorporated into f§ only through the sym-
metry conditions

s FUPX,2V) forall Z
[iX,V)=1"_ 21
fi(X+B,V) forall B,

valid for all times ¢. The true dlstrlbutlon function f; may
be obtained from £ through

X,V =F 5 VXX) (22)
X — 1 for X'€S,
o for x'es, . (23)

If in a more general initial distribution all configurations
belong to the order labeled by s then f§(X,V)=0 for
X'&S; and f; is obtained according to f§—f §—fF5—f7,
the individual steps being again given by Egs. (18), (20),
and (22). If different orders are admitted in the beginning
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these equations have to be completed by
FoX, M =fo(X, XI(X") , (24)
FXN=3 FIXP) . (25)

The evolution of a general initial distribution f is of in-
terest for discussing time-dependent phenomena such as
the approach to equilibrium.

To calculate expectation values for stationary ensembles
it is sufficient to consider the (nonstationary) distributions

;6(X, V)=(V2/LX(X")8(V' —V)8(X")8(V") (26)

since (almost) all stationary distributions can be expressed
as superpositions of distributions of this form. Equation
(26) means that the initial velocities are completely fixed
but all configurations with a given order s are equally
probable. The corresponding states Z are then distribut-
ed along the interval X' €S, V'=V,, and their evolution
is uniquely determined by the free motion of this interval
through the extended phase space R2 The probability
that, starting with the distribution (26), the velocities are
(still or again) the initial ones ( V; =V ) is then the length
of the intersection of

S[Xo1+Vot ={X'+ Vot | X'ES[X5 ]} @7

with the A segments divided by L /V'2, while the inter-
section with the B segments is L /V'2 times the probabili-
ty that ¥V = — V.

For d >0 the general scheme is the same but some de-
tails have to be modified. First of all the volume L has to
be replaced by the effective volume

L;=L —2d (28)
in (12). The periodic structure is now generated by
S1+Dy or S, +D; (=Z,[S,+D1]),

D,=(d/2,—-d/2)=—-D,, (29)
and the cell of the lattice is

C= Lg) 2[S,+D,]. (30)

Therefore Egs. (18) and (23) have to be replaced by
fex,n= 3 fo(Z-1x-D,—BlL,Z~'v), @1
2,B

X V=FX +D,;, VXX . (32)

Turning now to the discussion of ergodic properties one
sees immediately from Fig. 3 that the system is not ergod-
ic with respect to the whole energy surface but only to
half of it (or even less if ¥,=0). That is, for almost all
initial states Z

lim
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with | S | =Ly/v2 and N=2. Those Z} for which (33)
does not hold are of the form (X,0); since they form a set
of measure zero they are excluded from the following dis-
cussion. The ensemble over which the average is per-
formed on the right-hand side (rhs) of (33) is one of the
smallest stationary ones; that it coincides with a micro-
canonical one, constrained to a given order, will prove to
be a special feature not present for N> 2. Another conse-
quence of this exceptional behavior is the fact that for
N =2 the evolution is strictly periodic no matter what the
initial state Z has been.

The approach to equilibrium of this system is, on the
other hand, quite typical. Loosely speaking a certain
spread of the velocities, compatible with

N
2 v; =0 »
i=1
is demanded in the beginning for a sort of irreversible
behavior to occur. Let the function F; be defined by

FoV= [ dXav'fyX,v); (34)

then a sufficient condition for the existence of a weak lim-
it f;—f () is the following hypothesis:

F, is a continuous function . (35)

Since F is continuous it may be approximated by a su-
perposition of characteristic functions of small intervals.
Denoting such an interval by AV, its content by |AV, |,

. .. . Vo ., .
and its characteristic function by X~ °, it is therefore suf-
ficient to consider initial distributions of the form

SolX,M=8(X"—X0) | AV} | "IXA%(V’)S(X”)S(V") .
(36)

The evolution of this function and its extension f is illus-
trated in Fig. 5. As time proceeds the initial segments ob-
tained from {Xg} X AV} by periodic continuation wander
and stretch out since points belonging to higher velocities
move faster. This gives rise to a uniform hatching of the
rectangles S[X ] X (£AV}) yielding the same expectation
values as the normalized characteristic function of this
area. It is easily recognized from Fig. 5 that the randomi-
zation of the positions is due to the finite volume only?
while that of the velocities is caused by the collisions. For
a general f, satisfying the hypothesis (35) the equilibrium
distribution f ) is given by

X = S e XX") —Al,—, S Fo(Z V)88 |,
s 4

» (37
o= [ dxav fox,yxix"), ' (38)

with N=2 and F, given by (34). How fast the equilibri-
um expectation values are obtained depends on the form
of the initial distribution f, and the observable under con-
sideration. Relaxation times for specific examples have
been derived by Born,® Teramoto and Suzuki,® and Hob-
son and Loomis.!°

Because of the simplicity of the system most of the ex-
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pectation values can be written down immediately. The
expectation value of 8(x; —x;—r) is the same for all sta-
tionary ensembles belonging to a given order because this
quantity does not depend on the velocities. The pair dis-
tribution function, yielding the probability for finding the
particles at a distance #, is

8N =2((8(x;—x3—7)) +(8(x;—x1—7)))

_ |0 for |r|<dand |r|>L—d

~ |1/2L; otherwise . (39)

That g is constant where it is different from zero is atypi-
cal for the finite systems considered here.

The pressure p is defined as time average of the
momentum transferred to one of the particles from its left
neighbor. (If x| <x, particle 2 is the left neighbor of par-
ticle 1 because of the box.) Starting with x 3 <X, and
considering particle 2 we therefore have to count those
collisions for which v;>wv, before the collision. The
number of these collisions comes arbitrarily close to
7(v19—va9)/Lg if the interval (0,7) is sufficiently large
(see Figs. 3 and 4). The momentum transferred in each of
these collisions is m (vig—vy). The time average and
hence the average over the smallest stationary ensemble
characterized by the order x; <x, and the set of initial
velocities {v;o} is therefore

p[,,m]=(m/2Ld)(v10—v20)2 . (40)

Using (1) this may be rewritten in terms of the total ener-
gy

E=(m/2) U,'20+U%0) ’
41)
PE= 2E / Ld . )
To obtain the result for the canonical ensemble [with or-

der and constraint (1)] one has to integrate (41) weighting
the energy by

h(E)=(kgT/7E)?exp(—E /kgT) . (42)
This leads to the equation of state,
PT:kBT/Ld . (43)

The collision frequency v is defined as the average
number of collisions of one of the particles per unit time.
In the present case this average equals the number of all
collisions per unit time. With similar reasoning as in the
derivation of the pressure one finds

v{vm}=(1/Ld)|vw——u20) ’ (44)
ve=02/LyVE/m | 45)
'VT=(2/Ld)V kBT/m'n' . (46)

The no-collision probability W (¢) is the probability that
a tagged particle moves freely during the time interval
(0,¢). It follows from this definition that W (¢) is mono-
tonically decaying. From what has been said at the begin-
ning of this section and inspection of Fig. 4 this probabili-
ty is for a nonstationary distribution of the form (26)
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FIG. 5. Approach to equilibrium (N=2).

given by
Wy, (D= IS |18 NS+ V) | @7
where | --- | denotes the length of the interval. This

function is linearly decreasing from 1 to O remaining zero
forall t>L;/|vi0—vy|. Averaging over V| does not
change this function; hence

1—v{v;o}t for 0<vpy, <1

Wiy (1) =
{vio} 0 for T<v,t <o . 48

The division of the domain into intervals and the repre-
sentation of the function by polynomials, one for each in-
terval, is typical for Wiy, (or Wg obtained from Wi

by substituting {v;o} —E). Atypical is only the fact that
here the whole domain (0, oo ) splits into two intervals only
so that W7 may be obtained from Wj by integration.

The velocity autocorrelation function (VAF) is the ex-
pectation value of v;ov;,. Setting i=1 and observing that
vy=—v; for all times one finds v;ov;,=v?, for all
X; €S[X]+B (label A4 in Fig. 4) and vy, = —v?, for
x; €S[Xo]+B (label B in Fig. 4). For a distribution of
the form (26) or the superposition (f v, +f_ v, )/2=f1y,0)
representing a smallest stationary ensemble the normal-
ized VAF

1//( t)= ( VioVir )/( U,‘2() ) (49)

is therefore given by the sawtooth curve’
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FIG. 6. Velocity autocorrelation function ¢y for N=2,4,6.

1—2‘V(,,i0§t for 2n gv{,,m}t <2n+1

(1)=
lﬁ{um} —1 +2V{v,-o}t for 2n +1 Vi)t <2n+42.
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This function is also the VAF for the microcanonical en-
semble. Equation (50) shows that ¥(¢) starts at 1 —2vgt,
a property which persists for larger systems up to the
thermodynamic limit. A similar asymptotic form, namely
1—4vyt +0(¢?), is found for 1. What distinguishes
Yiv,o) (or ¥£) from Y even more than the different slopes

at t=0is the fact that the first function may be defined
by a sequence of polynomials, each representing it within
one of an infinite number of intervals the union of which
forms the whole domain. The strict periodicity of Vvl

will turn out to be atypical but it allows one to represent
¥(v,,) as Fourier series. Substituting {vio} —E this series

is’

Ye()=87"2 3 (2n +1)~2cos[(2n + Dmvgt] . (51)

n=0

Its product with the weight function (42) can be integrat-
ed to yield®’

Yr(t)=8r"2 i exp[ — +7°(2n + 1)5t?]

n=0

x[(2n +1)"2— 75 . (52)

This function, displayed in Fig. 6, changes sign only once
and has a tail proportional to t?exp( —at?); these are gen-
eral features, the first one persisting even to the thermo-
dynamic limit.

We conclude this section by noting that all expectation
values have been calculated for a fixed order, e.g., x; <x,.
Since all the results do not explicitly depend on this order
they remain unchanged if one averages over both possible
orders.

IV. THREE PARTICLES

We found it most useful to study the three-particle sys-
tem in detail since this system exhibits all the typical
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features of small systems (N <10) and nearly all of arbi-
trary finite systems. Moreover, the small number of par-
ticles allows us to illustrate almost every calculation
graphically which helped us to develop strategies for
larger systems. A configuration of the three-particle sys-
tem is given by X =(x,x5,Xx3) or X =(X,%,,%X3)=7"X,
the orthogonal transformation %~ transforming xj into
(1/V73)(x{+x,+x3). For instance,

-—1=(1/‘/§-)(X1—-XZ) ’
fzz(l/\/g)(xl——sz-i—xﬁ s (53)
f3:(1/\/§)(x1+x2+X3) .

Setting X '=(%,,%,,0), X" =(0,0,%;), we arrive again at
Egs. (6), (8), and “internal states” Z'=(X',V’). If the
particles are ordered according to x; <X, <x; then the
configuration X' belongs to

S1={X"|x3—L+d <x;<x,—d <x3—2d} . (54)

Five more domains S,, ..., S¢ corresponding to the other
possible orders are defined in a similar way. The regions
S, are all equilateral triangles of height L, /V2,

Ly=L —3d . (55)

If Xy €S, then X; €S; for all ¢ and if two particles col-
lide the representative point X, is elastically reflected at
one of the sides of the triangle. It is again possible to ap-
ply the reflection trick to obtain a simple covering of the
plane R? by equilateral triangles generated from S, by
iterative reflections along the sides of the triangles.?®

To simplify the calculation it is advantageous to shift
S;=S[X0], and thereby the whole structure generated by
this triangle, by a constant vector D depending on X and
d; for d=0 one has always D=0. The complicated
motion of x; inside S; may then be replaced by the uni-
form motion X +D + V¢t but the “parquet” structure of
triangles has to be labeled to recover from Xy +D + Vit
not only the true position X; but also the true velocity
V/. Figure 7 is an example of such a labeling showing
both the distribution of the initial velocities vyg,v29,V30
onto the particles 1,2,3, and which pair of particles is in-
volved in a collision changing this distribution [e.g., ¢:23
for A:(u,v,w)—B:(u,w,v)]. As in the case N=2 the

<

A: (u,v,w) D: (w,v,u) a: 12
B: (u,w,v) E:(v,w,u) b: 13
C: (w,u,v) F:(v,u,w) c:23

FIG. 7. Extended configuration space (N=3).
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meaning of the labels depends of course on the initial con-
figuration X. :

Let us now describe this structure in more detail. It is
sufficient to consider it for d=0 (D=0) since all the fol-
lowing results except the pair distribution function are ob-
tained for d >0 simply by substitution, viz., Ly for L.
For d=0 the lines defining the structure are given by
x; —x;=ny;L, n; integer. The periodicity of the structure
is described by a two-dimensional hexagonal lattice { B},
the symmetry-adapted cell of which is a regular hexagon.
The six triangles forming the cell containing X'=0 are
transformed into each other by six transformations £,
generated by reflections along the lines x;=x;. Each
transformation Z is an orthogonal transformation in R3,
uniquely related to a permutation P:i+>Pi by

PN x1,%2,%3)=(Xp1,Xp2,Xp3) - (56)

The lattice { B} and the transformations & may be used
to solve the Liouville equation in a similar way as for
N=2. In fact, if the vectors and transformations ap-
propriate for N=3 are used, Egs. (17) to (25) relating f,
to f; are valid also here. For N =23 the singularities of the
function £, Eq. (19), form six (=3!) lattices transforming
into each other under the transformations . As time
proceeds these lattices move uniformly with velocities
ZVy,. The triangle S[X] always contains one and only
one point of these six lattices and its position and velocity
are just X; and V.

As in the case N=2 it may be sometimes more con-
venient to consider the ray Xg + Vt, t >0, or a collection
of such rays, Xy €Sy, instead of the corresponding distri-
bution functions (17) or (26). The relation between the
multiply reflected motion of X; in the true configuration
space and the uniform motion Xg+ ¥Vt in the extended
configuration space is shown in Fig. 8. The state
Z, =(X/,V;) is obtained from Xj+ V¢t again by Eqgs.
(14) where & and B are uniquely determined by
P(Xo+Vot+B)ES[Xy]. Note that the ray Xo+ Vo,
t >0, considered here corresponds now to three trajec-
tories in Jepsen’s scheme. Two of these trajectories cross
each other whenever x( + Vot hits a line x; —x;j=n;L. If
the ray passes a point where three such lines cross each
other then all three particles collide. The ray (or the cor-
responding trajectories in Jepsen’s diagram) then defines
what happens in such a triple collision, i.e., how the veloc-
ities before and after the collision are related. This defini-
tion is a very natural one because an infinitesimal varia-
tion of initial conditions causing an infinitesimal differ-
ence in the final-state changes the triple collision into a se-
quence of binary collisions for which the dynamics has
been already defined.

The ergodic properties of this system have been dis-
cussed by Hobson?® in a more general context (motion of a
particle inside a polygon). He recognized the existence of
conserved quantities beside the total energy which in our
interpretation of the system are just the order of the parti-
cles and the set of initial velocities. He conjectured (but
did not prove) that the evolution is ergodic with respect to
the “small” subset of the energy surface characterized by
prescribed values of the conserved quantities (the order s,
given by xy €S, and the set {v;o} in the present case).
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FIG. 8. Evolution in true and extended configuration space
(N=3).

We will prove this elsewhere quite generally for the N-
particle system and almost all initial states Z,. The proof
is similar to that of a theorem on uniform distributions
due to Kronecker and Weyl?>3? and its basic idea is al-
ready evident from the following heuristic argument:
Consider the line Xo + Vyt, 0<t <7, 7 very large. All its
points contribute to the time average of an observable g;
however, not directly but only through their meaning for
X; and V;. Instead of bringing back all points to the true
phase space S[Xg ] X R? according to (14) one can equally
well extend the domain of g =g* by means of (18) and in-
tegrate the new function g°, obtained from g° by succes-
sive reflections, along the line X+ Vo, 0<t<7. Now
chose a parallelepiped containing six triangles as cell of
the lattice { B}, divide the extended configuration space
R? into cells of this shape, and shift the intersections of
the line with the cells by suitable lattice vectors all back
into the cell containing X. It is plausible to assume that
this yields a uniform hatching of the cell by parallel lines
which is denser the larger 7 is (see Fig. 9). In fact Weyl’s
theorem tells us that this happens for almost all ¥ ER?,
independently of X;. Whether g° is integrated along the
line or along its segments shifted into one cell makes no
difference; g* is, by construction, a periodic function. If 7
becomes large enough the parallel lines covering the cell
become arbitrarily close so that for a smooth g the in-
tegral over the segments may be replaced by one over the
whole cell. But the points of a cell are mapped onto the

S
it

FIG. 9. Equivalence of time and ensemble average (N=3).
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true phase space by (14) so that (33) is valid also for
N=3.

The description of the evolution of the system by means
of the ray X + V¥t is also very suited for a discussion of
recurrence times. If for some time >0 Vit is equal to a
lattice vector B then it is clear from (14) that Z; =Z, for
this time, i.e., the system is in exactly the same state as at
the beginning. This happens if and only if the ratios
Wj; Wy, Wi; =v; —v; are rational numbers. Initial states
leading to strictly periodic motions are therefore dense in
phase space but of measure zero. For a “typical” initial
state the ratios w;j:wy are irrational; but since they may
be approximated by rationals to any desired degree of ac-
curacy there always exist times ¢ where Vit is arbitrarily
close to a lattice vector B. Every function
H(t)=h(X,,V,) is therefore almost periodic (even in the
technical sense®!) and this carries over to expectation
values {g(X,V)h (Xt’Vt)>{v,~o} since the “periods” are in-
dependent of X and the same for all velocities 2 V.

All these statements on recurrence times and the
equivalence of time and ensemble averages should be fam-
iliar to readers acquainted with the foundations of modern
(nonlinear) dynamics.>>** In fact the (typical or general)
smallest stationary ensembles introduced here are just the
(irrational or nonresonant) invariant tori appearing there.
That the hard-rod systems considered here are integrable
will be shown in full detail elsewhere.

Regarding the approach to equilibrium it is straightfor-
ward to generalize the arguments for N=2 to obtain a
similar result for 2< N < . In the present case the
equilibrium distribution f ), which is the weak limit of
an initial distribution satisfying (35), is again given by
Egs. (37), (38), and (34), specialized to N=3.

Let us now consider expectation values. For (almost)
all stationary distributions f

[ dx"av fx,v)=c, for X'€s,, (57)

i.e., the spatial distribution on the left-hand side (lhs) is
constant within each of the six triangles forming the con-
figuration space. For a (typical) smallest stationary en-
semble ¢; =8, where S,=S[Xj] if the average is inter-
preted as time average. To calculate {(8(x; —x; —r)); one
therefore has to determine the length of the interval ob-
tained from intersecting the line x; —x;=r with the trian-
gle S; and to divide it by the area of S;. Note that the
length of the interval depends on d since both the size and
the position of the triangle S; depend on this quantity [cf.
Eq. (54) and the lhs of Fig. 8]. If the pair distribution
function is defined by

ginN=5 3 (8(x;—x;—r)),, (58)
Lj=1
it '
the result is independent of s because of the summation
occurring in (58). The function (58) is displayed in Fig.
10 for d =(1/5)L and d=0, respectively. The linear de-
crease in the region O < | 7 | <L is typical for d=0. For
d >0 it is a typical feature that the function has maxima
where it changes from zero to positive values, the main
maximum being at | | =d + 0.
To calculate the pressure we start again with its defini-
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FIG. 10. Pair distribution function for N=3 (solid line
d=0.6/p; dashed line d=0).

tion as time average and study the evolution by means of
the ray X+ Vot, t >0. If d=0 a collision occurs when-
ever the point of the ray hits one of the lines x; —x j=ny;L
(see Fig. 8). If a line x; —x,=n1,L is crossed this corre-
sponds to a collision where v, _o=vj,,0=V1,
Vj,r—0=Vj; o=V, for some pair i,j. For large 7 the num-
ber of these collisions within the period (0,7) is arbitrarily
close to 7|vy9p—vyo | /L. Only one-third of it may be at-
tributed to a given pair. If, for instance, the pair 12 is
considered then only those crossings of the ray with the
lines x; —x,=const have to be counted which are labeled
by “a” in Fig. 7. Now if v,g<v, a crossing of a is a
transition of type F— 4, i.e., v1,, _o=Us0, V3,_o=V;, and
the increase of the momentum of particle 2 is equal to

m (Vg 40—V2,r_0)=m(vy—v19)>0.

Combining these results one obtains for the time average
of the expectation value for the corresponding smallest
stationary ensemble

Pioe) =(m /3L)[(va0—v10)*+ (030 —20)*+ (030 —010)’] .
(59)

To obtain the expectation value for the microcanonical
ensemble one has to take into account that the bracket in
(59) is just 3(572y+39)=3(V")% and that the total energy
is E=mV'%/2. The rhs of Eq. (59) may therefore be
transcribed as 2E /L, and averaging over all directions of
Vo with

| Vo | =V2E/m (60)

hold fixed, necessary to pass from the smallest stationary
to the microcanonical ensemble, does not change this
value. Therefore Eq. (41) (with d=0) is also valid for
N=3. This expression has to be multiplied with the
weight function

hr(E)=(1/kgT) exp(—E /kgT) (61)

and integrated over E to obtain the pressure for the
canonical ensemble

pT=2kBT/L . (62)

As in the case N=2 the calculation of the collision fre-
quency is similar to that of the pressure. If one considers,
for instance, the collisions of particle 2 in the time inter-
val (0,7) then all crossings of the ray with segments la-
beled by “a” or “c” have to be counted. Noting that these
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segments cover two-thirds of every line one may similarly
argue as one did before for the pressure to obtain

Vin) =(2/3L)( | v20—v10 | + [v30—020 | + [v30—V10]) -
(63)

To average over all directions of Vi with | ¥ | fixed by
(60) the relative velocities v;o—v;( are expressed in terms
of the variables 7;. Introducing polar coordinates and
carrying out the integration one finds

ve=(8/L7w)VE/m , (64)

from which after one more integration

vr=(4/L)V'kgT /m (65)

is obtained.

The calculation of the no-collision probability W (z) is
illustrated in Fig. 11. The hatched area is the intersection
of two triangles of the parquet structure with a shifted tri-
angle. The two triangles, labeled by A4 and B in Fig. 7,
correspond to velocity distributions where the velocity of
the first particle is (still) v;9. The shifted triangle is
S[Xo]1+Vot, the union of all points Xg-+Vot,Xg

1
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FIG. 11. Tllustration of the calculation of the no-collision
probability (N=3).

/\e/\e,

E€S[Xo] (label A4), and the location of these points rela-
tive to the parquet structure shows in what states the sys-
tem is expected to be found at time ¢. Thus if the area of
the triangle is normalized to 1, the hatched area gives just
the probability WV(,) (2) that particle 1 has not changed its

velocity in the interval (0,¢). This result for a distribution
function of the form (26) has to be averaged over the six
velocities 22 ¥ to obtain the no-collision probability for a
smallest stationary ensemble

W{U,O](t)=(1/3L2)[(L — '1)20——1)10 ’ t)+(L — | U30—Vi0 | t)++(L - | Vio—V20 l t)+(L — JU30—U20 ' t)+

+(L — |vyo—v30 | ) (L — |00 —v30 | 1) 4]

=1—V{ui0}t +0(t2) .

The quantities ( - - -+ ) appearing in (66) are defined by

a fora>0

1
a :—(a a =
r=zla+l]a]) 0 fora<O.

(67)
In (66) Wy, is given as a polynomial of second degree in
t but the form of this polynomial depends on which quan-
tities ( * - +-), vanish. That is, the domain of Wy, splits
into a finite number of intervals, all of finite length except
the last one, and W[,,m] is represented by a polynomial
within each interval. We are especially interested in the
first interval (0,7),

= min {t;}, t;;=L/|vio—Vjo| » (68)
1’]

and the corresponding “first polynomial” obtained from
(66) by omitting the index + everywhere. The function
W has a similar structure. To obtain the first polynomi-
al for this function we note that

)U,'—l)j)s‘/i'V'l . (69)
Hence if
t<L/V2|Vy | (70)

Wing) is given by its first polynomial and this holds in-
dependently of the direction of V;. Averaging over the
directions of all these vectors with length (60) can there-
fore be performed for each term separately. The result is

(66)

[
We(t)=1—vgt +5;m(V3+ tmvge?
for O<vptM =4/ . (71)

For vgt >4/m, Wg decreases monotonically reaching its
final value zero at vyt =8/7. Since the intervals where
Wy is represented by a certain polynomial depend on E
the function W7y is not simply obtained by averaging the
coefficients of the first polynomial with the weight func-
tion (61). That only upper and lower bounds can be de-
rived this way is typical for all finite systems.

To calculate the VAF for the three-particle system we
start in a similar way as for the probability W (¢). If we
consider a distribution function of the form (26) then
(vmvl,)V6 =v10<v1,),,6 , 1.e., the calculation of the VAF

reduces to that of vy,. Proceeding as for W, (t) we see
0

from Fig. 12 that the task is again to calculate areas
which are the intersections of parallelograms (where v,
has one of the values v19,v49,030) With a shifted triangle
[indicating the present state of all systems which started
with (Xg,V),Xo €S,]. It is clear from Fig. 12 that the
VAF is given by an infinite number of polynomials, each
representing the function ¢ in a certain time interval.
These intervals arise if R, the domain of 1, is divided into
segments by all integer multiples of the times #; defined
in (68). If the first polynomial is calculated by inspection
of Fig. 12 and the average over the six velocities 2V} is
performed one finds
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Do) (1) =T0 +030+030) ™ {[vlo+v30 +030]1— (1 /L) |v30—v10 | *+ 030 —020 | *+ [020— 010 | *)

+(t2/2L2)[(U10—vzo)z(vlo—v30)2—6(vzo—Ul())a_(vlo—vgo)a_ +CP]}

where C.P. stands for cyclic permutations of the preced-
ing terms. Equation (72) can be used to determine g(¢)
for short times. Expressing | V| by E according to (60)
and averaging over all directions of ¥ one obtains as first
polynomial

Yp(t)=1—2vgt + (2773 /256)vj1?
' for O<vgt<4/m. (73)

The same reasons that prevented Wy from being obtained
by integrating Wy term by term prevent ¥r being ob-
tained from vy this way. Again the integration of terms
of (73) can only be used to obtain bounds for ¥y or
asymptotic formulas such as

Yr(t)=1=3vpt +0(£?) . (74)

The first polynomial is only useful to discuss the short-
time behavior of 3. One knows from general considera-
tions that Y(y,,} is an almost periodic function and expects

g and ¥ to decay for ttew. To verify this long-time
behavior one has to find representations of these functions
valid for large times. Actually series representations valid
for all times can be found; why this is possible and of
what form these series are is nicely displayed on the
present example. The first step is to express the area of
the intersection of two domains as integral over the prod-
uct of their characteristic functions. In the present case
one of the domains is the shifted triangle S;4 ¥Vt with
characteristic function X*(X’'— Vjt). The other domain is
composed of triangles of the form S, + B with characteris-
tic functions X"(X’'—B). We may replace S, + B by

U (S,+B)
B
since only one of these triangles has a nonempty intersec-

tion with S;+4 Vyt. Denoting the area of a set M by
| M | we therefore have

(S, +Vor) N [ U (S,+B)H
= de’X‘(X’—V{)t)ZX’(X’—B). (75)
B

The second function in the integral is obviously periodic
in X'; it is therefore natural to express it as a generalized
Fourier series. To this end one needs the lattice { A4}
which is reciprocal to {B}. This lattice is also a two-
dimensional hexagonal lattice and it may be scaled in such
a way that { B} C{A4}. In this case one has, for all 4,B,

AB = integer multiple of 27/a, a=2w/L*, (76)
and

3> X(X'—B)= 3 X'"(4)expliad-X'), amn
B A

for t <7, 7 defined in Eq. (68), (72)

X"d)=|C |7 [ dX'X"(X')exp(—iad-X’)
=|Cc|! fS, dX'exp(—iad-X') , (78)
where Cis a cell of { B}, e.g., the hexagon
Us,.
s

Introducing (77) into (75) yields integrals which can be ex-
pressed by means of coefficients of the form (78)

J dx xsx'—vor) explia-X")
- f dX'XS(X')expliad-(X'+ V)]
= expliad-Vot)X **(A4) . (79)

Denoting the velocity distribution belonging to S, by
(v1),,(v2),,(v3), one therefore has

(01001, = | S | 1S 000, X (AX T(A)
rA

X expliad-Vyt) . (80)

Symmetrization with respect to the components of Vg
gives

(V1) = 2 Y(A(Vo-A4) expliad-Vit)
47(%0)
L* @

R rY) > v(A)expliad-Vyr) | ;

A (3£0)
(81)

here the coefficients y(A4) are uniquely determined by the
coefficients X *(4) which can be calculated explicitly.
Equation (81) makes obvious that ( UIOUlt>[vi o} is almost

periodic because all exponentials are close to one, the
value for t=0, if ¥Vt is close to a lattice vector B. The
function (81) has to be averaged over all directions of ¥
to obtain the VAF for the microcanonical ensemble. If
this integration transforming exponentials into Bessel

FIG. 12. Illustration of the calculation of the velocity auto-
correlation function (N=3).
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FIG. 13. Velocity autocorrelation ¢ for N=3,4,5.

functions times powers is carried out, the lattice vectors 4
are parametrized by a pair of integers, and y(4) is ex-
pressed as a function of n=(n,,n,), one ends up with the
function :

Y= cal Jo(Vmsuvgt) —(Vasyvet) =, (Vasyvpt)]

n

(82)
where

3-3

nyny

with n17&2n2, n2;é2n1 (83)
n . X

9sin“[ 5 (n, +ny)m]
= |— s +n; , 84)
= 7(2n,—n,)2ny—ny)

SQZ[%W3("%+”%+’11”2)]1/2 . (85)

The function (82), displayed in Fig. 13, oscillates infinitely
often around zero with decreasing amplitude. This will be
found for all finite systems but the power law of the de-
cay, t=1/2 in the present case, varies with the number of
particles. Since (82) is valid for all times (vovi) 7
=QkT/3m)r(t) may be obtained from (v )5
=(2E /3m)g(t) by integration. The series

Yr()=+5 3 cn(1—2s;v71?) exp( —spvit?) (86)

n

has also been evaluated numerically; the resulting curve is
quite similar to that for N=2 as shown in Fig. 6.

We conclude noting that for d >0 L has to be substitut-
ed by L, in all equations from (62) on. We also like to
point out that all expectation values have been calculated
for a given order of the particles. Since this order does
not show up in the final results they remain unchanged if
the average over all possible orders is performed.

V. MANY PARTICLES

The extensive treatment of the two- and three-particle
systems should have prepared the ground for a discussion
of the general N-particle system. We therefore focus on
those results which, though straightforward generaliza-
tions of the previous ones, are not obvious or cannot be
guessed at all.

That we are able to generalize the results for the cases
N=2 and N=3 rests on the fact that the reflection trick
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works also for N>3. We can always pass from
X=(x1,...,xy) to X=X=(x;,...,Xy) by means
of an orthogonal transformation % such that

In=(1/VN)x;+x24 - +xy), (87)

with Xy fixing the position of the center of mass, and
¥'X"'=X"=(0,0,...,0,Xy). For our model the inter-
nal configuration X '=(X,,...,Xy_;,0) is then confined
to a simplex, the Nth member of the sequence point
(N=1), line (N=2), triangle (N=3), tetrahedron (N=4),
etc. Guessing from the examples considered up to now
the symmetries of these domains might be overestimated;
actually the (N —1)-dimensional simplex is not a regular
one for N> 3. It has only a dihedral symmetry group, not
one isomorphic to the full symmetric group. There are
N! such simplices transforming into each other under
permutations of the coordinates of X =(x;,...,xy).
They stick together if d=0 but are separated by sheets of
thickness d /V'2 if d>0 (see, e.g., Fig. 3 and the lhs of
Fig. 7). This separation is only of interest for spatial
properties (pair distribution function, etc.); for properties
depending only on the evolution of the velocities (pres-
sure, VAF, etc.) the scaling L —L,,

Ly=L—Nd , : (88)

is all that is needed. As time evolves the representative
point X; moves inside of one of the simplices elastically
reflected at its boundaries (cf. lhs of Fig. 8). But if the
simplex S[Xg] is reflected on the boundary first hit by
X; the first kink in the path X;, 0<t <7, is unfolded to a
straight line. Repeating this procedure one ends up with a
sequence of adjacent simplices connected by the ray
Xo+Vot, 0<t<7. It can be shown that the simplices
generated from S[X] by iterative reflections along the
boundaries form a simple covering of RY —!. This struc-
ture has the periodicity of a lattice { B} which is the one-
dimensional lattice for N=2, the two-dimensional hexag-
onal lattice for N=3, the face-centered-cubic lattice for
N=4, etc. For d=0 the structure of the extended config-
uration space RY ! is given by the planes x;—x;=n;L,
n;; integer, and the reflections on the planes x;=x; gen-
erate orthogonal transformations % which leave the
structure invariant and form a group isomorphic to .#y,
the symmetric group of degree N. The structure is also
invariant under orthogonal transformations leaving one of
the simplices invariant and forming a group isomorphic
to Dy, the dihedral group of order 2N. All these
transformations of X may be extended to canonical
transformations commuting with the evolution and ex-
ploited in the calculation of expectation values.

The discussion of ergodic properties of the N-particle
system parallels completely that of the two- and three-
particle system and the results are the same or straightfor-
ward generalizations of those obtained in Secs. III and IV.
We therefore switch immediately to the expectation values
calculated along the pattern described in the previous sec-
tion. The weight function needed to pass from the micro-
canonical ensemble to the canonical one is now

hp(E)=[(kg T)¥ ~V2D(L(N —1))]"lEWN-372
X expl( —E/kgT) . (89)
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If the pair distribution function is defined as

N
g(rN=(1/N) 3 (8(x;—x;—r))
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where s characterizes a stationary ensemble belonging to a
given order, one has to calculate the content of the inter-
section of a plane x; —x;=r with the simplices forming

'l’:' part of the (true) configuration space. By symmetry argu-
/ ments this may be reduced to calculate the content of
=[(N—-1)/N1] 3, (8(x; —x;—r)) , (90) parallelepipeds. The result is
s
j
gn=WN =V WN—lom) g0 0 e, — | r | 4+ 1d)
NL; =, (N—-2—n)n!
n N-—-2—n
< r|—(n+1)d 1_dr —(n+1)d o1
Ly Ly

where O(x)=1 for x>0 and O(x)=0 otherwise. The
function g(r) has been displayed in Fig. 14 for N=5,20
and two ratios of d /L.

The pressure of the N-particle system may be obtained
in three ways: The first is to guess the result from that
for N=2 and N=3; the second is to repeat (and general-
ize) the heuristic arguments used in the previous sections;
and the third is to calculate the desired expectation value
quite formally with a phase-space function measuring the
average momentum transfer. The first two approaches
are left to the reader while the last one is part of the cal-
culations to be presented elsewhere. The result is in any
case

N
P vy} =(m/2NLg) 2 (vio—vjo)z > (92)
ij=1
PE=2E/L,, (93)
PT=(N—1)kBT/Ld . (94)

The last two expressions, derived from a definition of the
pressure in terms of mechanical quantities, may be com-
pared with the formal definition of the pressure by means
of partition functions. The equation corresponding to (93)
is

N—-12E

~— (N>5), (95)

PERN 4L,

whereas (94) is also obtained from ensemble theory. This
coincidence seems to be fortuitous in view of the differ-
ence between (93) and (95).

For the collision frequency the three lines of argument
listed for the pressure lead to the following expressions:

1 N

Vinol = NL, ,-,,-2=1 | vio—vj0] » (96)
_1) D3N =1))

vg—= 2(N —1) 2 1 e , o7
Ly (+N)

VT=£(‘IVT;:‘1—‘)‘VI€BT/m . (98)

The no-collision probability for a smallest stationary
ensemble is found to be

N
Wi O=/NLY ™) 3 | T (La— |vio—vj0| )4
i=1 ]=l i
J#i

(99)

where ( - - - ) is defined by Eq. (67). Averaging the first
polynomial defined by (99) over all velocities with
| Vo | =V2E/m one finds

We(t)=1—vgt +0(t?)

N1 2T (5(N +1))
= a,(—vgt)" for vgt <« ————
A £ S vardm
(100)
(N —DIT(F(N —1)) T(3+N) !
a, = n o
(N —1—nIT(+(N —1—n)) | 2I'(+(N +1))
(101)
Hy=—= [ dolf )] exp(—0?) (102)
" AW ’
L _ —w?
,f(v)—‘/i fdwlv w | exp(—w?)
_ ol 2
=V'7/2 |verfv Vo exp(—v*) (103)

H, can be calculated analytically for n=0,1,2 but only
numerically for n > 3. This has been done for n < 80 and
these quantities were used to calculate Wg(t) for vgt <7
and various values of N. Curves showing the probability
W as function of the scaled time vzt are displayed in
Fig. 15 for N=2,5,10,20,40, . No closed expression for
W can be derived from (100) to (103) but it can be shown
that

_ [(3(N —1)) _
Wr(t) < Wr(t) <— T Wr(t), (104)
V(N —1),mL}/4t%pT)

where
. mL2/4t?
wrin= [ dE hr(E)W(t) (105)
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FIG. 14. Pair distribution function for N=5,20, o (solid line lhs d=0.75/p; solid line rhs d=0.5/p; dashed line d=0).

times the content of the intersections of a shifted simplex
o 1 with its (unshifted) neighboring ones is calculated up to a
ria,x)= f 0 dit®~ exp(—1). (106) given order of t. Since the calculations increase rapidly
with the order, we stopped after the quadratic' term of

<Ulov11){u,-0}r

and y(a,x) is the incomplete ¥ function

As before for N=2 and N=3 the velocity autocorrela-
tion function is approached from two sides. For short

N N
(01001 (u,0) =(1/N) 3 vio—(1/2NLy) 3, |vio—vjol®
i=1 ij=1
5 N
+(t2/4NLd) 2 ["(UiO—‘U]'O)z(UiO“'UkO)Z—}—3(0,'0—1)]'0) ' Uio-—vjol (U,'o—vko) I viO_kal ]
ijk=1

N
+0(t%) for2t* Y vh<L}. (107)

i=1
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FIG. 15. No-collision probability for- N=2,5,10,20,40, .

This may be integrated term by term to give the first polynomial of the VAF for the microcanonical ensemble which is
in normalized form

N, - g T(F(N+1) (N—=2)N E
(=22 =1-— - VE/mmt+9V3— =24 O (+3
Ve °E (viov1: ) L. TN VE/mmt+ N 1L2 mm +0(t°)
=1—2vgt +0(t?) for 4Et>*<mL} . (108)

A comparison of ¥z and 17 in the thermodynamic limit, discussed in the next section, led us to conjecture that the first
polynomial for ¢y, is

=1 Nz_lﬁ( " 2T(5(N +1)) (109)
=1+ (—vpt)" for vpt < ——————
£ = VEL ST
n
N4V —1)) e

B, =——2N! 12 2 (110)

2(N—1=n)! T(3(N+1+n)) |2I(5(N +1))

+1 [f )]~ 1
I="7% fdvexp(—vz); TETRELARNTE (111)
gHv)=fHv)—5mv?, (112)

f(v) being given by (103). Using tabulated integrals®* one can identify the first three terms of (109) and (108). We also
found numerical agreement of (109) with a second representation of ¥x, Eq. (117) below, for N =3, ..., 6 so that we are
quite sure that (109) to (112) gives the correct short-time behavior of the VAF y for finite N. Similar as for W before
bounds of ¥ can be derived from ¥z, viz.,

2
mL2 /41

2
T =Dk TYr(— [ dE h(E)Ey(t) | < f:L o2 AERT(E)E . (113)

2
d

The second approach is a series representation valid for arbitrary times. The generalization of (81) reads
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(01001 oy =N 1B 3 [sin*(Ba) ]V ! (A-Vy)expliad-Vit)

N
IT o
k=1

A (+0)
aZ N
= SNTIBN 3 [sin®(Ba)]N | IT ai? | expliad-Vir) ; (114)
d(at) 40 k=1
N
a=2n/L}; B=w/Ly; A=(ay,a,,...,ay), Na;/Ly=integer, > a;=0. (115)

i=1
Because { A} is again the lattice reciprocal to {B} it is evident from (114) that leUl)‘)[vl.O} is almost periodic. If

(N — 1)-dimensional polar coordinates are introduced the integration over all directions of Vj leads to tabulated integrals
of trigonometric functions and integral representations of Bessel functions times powers.>* Parametrizing the vectors A4
by (N — 1)-tuples

n=(ny,...,ny_y), ni integer, (116)

one obtains

: N-2( v, 2
=2 =-32pLy _1 L IR SO I _n
Ye(t) (5 ( ) 22 —sin |~ klle me—
X [(zgu) N2 (x _3) 2 2g, 5 ) — (N —2)(zg,x ) M2 (5 _1) 2255 D] (117)
S = S with Nmtn, | (118)
n LITRET ny_1 :
n=ni+ - +ny_g, (119)
2 n? 2
ZE,n=L_m n1+"' +nN_1—7 (120)
= Ly

This formula has been evaluated for small systems; the result is displayed in Fig. 13 for N=3,4,5. The infinite oscilla-
tions of (vlovl,){,,‘, o) still show up in the average ¥z but the amplitude decreases, rather rapidly for larger N. For very

large times only 2N (N — 1)-tuples contribute essentially so that the asymptotic form of (117) is

XIND(z(N=-1) [N . [+ |72 N
~— 2 osin | X (2—-N/2 i _N7m
Ye(t) ValN—1D - sin [~ (zgt) sin |zgt 7 |
2r [2EN—1) |
'ﬂ' —
zZg= L, mN (121) .

This shows that the oscillations persist ad infinitum and the amplitude decreases finally as t!~"/2, If the product of
{v1ov1;) £ and (89) is integrated one obtains a series representation of (v!%;,) 7. Its normalized form is

. 1 1 n 2N =2 N—1 n -2
Yrin=m5—7 X' | sin 7\,’1 [T |- | |(1-zhaDexp(—32,07), (122)
- n k=1
172
2 2 2 n2 .
zT,£=—LdkaT/m mit Ay = . (123)

Curves of ¥ as functions of vyt calculated by means of (122) are displayed in Fig. 6 for N=2,4,6. The asymptotic form
of (122) corresponding to (121)

IN N . N=2 [ 4Py T(N —1)¢? 2%k T(N —1)12
Yr(t)~ 5 | = sin |— 1— 5 exp | — 5 (124)
(14+8y2)(N —1) ™ N mLjN mLjN
has already been derived by Evans;'* it is a good approximation to (122) if > mLJN /2m*kg T(N —1).
|
VI. THERMODYNAMIC LIMITS behave for increasing N if the densities
The results of the preceding section allows us to study p=N/L =pg(14+dpy), pa=N/Lg=p/(1—dp),

in detail how the expectation values considered here ~ (125)
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the energy per particle,

€e=E/N or kgT(N —1)/2N , (126)

and all other parameters are either kept fixed (e.g., m,d)
or restricted to finite domains (e.g., 7,¢). Of course the
thermodynamic limit (TDL) makes sense only for expec-
tation values { - -+ )z and ( - - - ) because an infinite set
of parameters would be needed to specify the limit of
(*** v,p)- While the calculation of the limit N1 may

raise difficulties for some of the expectation values its
meaning is quite clear: The TDL of such a quantity is an
approximation to its true value for.very large systems. If
we use the term “infinite system” it is therefore always
only in the sense of a ‘“very large system” because a
rigorous mathematical description of a truly infinite sys-
tem calls for a mathematical framework wider than the
one used here.>>?? Since we do not extend the concepts
used up to now we cannot claim that the TDL of an ex-
pectation value represents a property of an infinite hard-
rod system nor can we say anything about the ergodic
properties of such systems. On the other hand, our state-
ments on the equivalence of the time average and the
average over certain parts of the energy surface, on the ex-
istence of recurrence times, and on the irreversible evolu-
tion of expectation values caused by a spread of the initial
velocities, all remain valid no matter how large the system
is. If the assertion merely states the existence of a proper-
ty its form is independent of N. Differences between
small and large systems can and do show up only if the
statement can be strengthened to relate the property to
quantities depending on the size of the system. Consider
for instance the recurrence time: Such times exist for
every system and all initial conditions, the shortest
“period” being Ly;V'm /E. This value, obtained from set-
ting ¥t equal to one of the shortest lattice vectors B0,
tends to infinity in the thermodynamic limit. From this
one could conclude that, contrary to finite systems, the in-
itial state of an infinite system is never realized again.
However, a more thorough reasoning would be the follow-
ing: If the observation time is restricted recurrences are
found only for sufficiently small systems. If the systems
become larger less and less recurrences are found in a
given time interval until finally there are no recurrences
any more once the systems have transcended a certain
size. If on the other hand the size of the system is limited
but not the observation time, any number of recurrences
can be found for each of them. This example shows, as
do two other examples discussed in the following, that ap-
parent qualitative differences between finite and infinite
systems may originate simply from performing two limits
in different order.

The second example of this sort is the pair distribution
function. The TDL of the polynomials (91) is the series

g(rN=ps 3 —nl—!e( |7 | —(n+Dd){pal | | —(n+Dd]}"

xexp{—pgl |7 | —(n+1)d]} . (127)

The function (127) reduces to the constant function
g (r)=p for d=0. In any case
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lim g(r)=p>0, (128)

|7 |1

whereas the lhs vanishes for every finite system. Equation
(127) has been obtained by Zernike and Prins'® already in
1927; the first formal derivation seems to be due to
Salsburg et al.?* The function (127) may also be obtained
as TDL of the two-particle distribution function D,(x,y)
of Leff and Coopersmith.!? These authors considered sys-
tems with fixed walls while we enclosed the particles in a
movable box. That the TDL is the same for two different
models is not surprising but these calculations show expli-
citly that boundary conditions become more and more ir-
relevant as the size of the system increases. The pair dis-
tribution function (127) is displayed in Fig. 14 for p=1
and two values of d. Comparison with the five-particle
system shows that the influence of increasing diameter d
is already clearly perceivable in the small system. The
TDL and the function for the finite system have been
found to agree up to a few percent within the range of the
first three neighbors (p | 7 | <3) for systems with only 20
particles. )

A similar “rapid” convergence toward the TDL is also
found for the pressure and the collision frequency. The
limits of these quantities are

P w,e=2pg€ » (129)

Pow,7=PaksT , (130)

Ve,e=2pgV 2e/mm , (131)

V.1 =204VkgT /m . (132)
If one puts

vy=m/4€ or m/2kgT (133)

the pressure and the collision frequency may be represent-
ed by the integrals

P, e=VV/m f dv exp(—yv*)p,(v) , (134)
p,0)=Vy/m f dw exp( —yw?)[+mp (v —w)?]

=3mpaw>+ 777 ; (135)
Very =VV /7 f dv exp(—yviv, (v) , (136)
vi(0)=Vy /7 f dw exp(—yw?)py | v —w |
‘ . ,
=pg |verf(wVy)+ Var exp(—yv?) (137)

These integral representations are not chosen at random
but emerge quite naturally if one passes directly from the
expectation value for a smallest stationary ensemble to
that for a canonical one (N < ). Comparison of (134)
and (135) with (92) suggests the interpretation of p,(v) as
the pressure acting on a particle with random position and
definite velocity v moving in an infinite system of hard
rods with random positions and Maxwellian velocity dis-
tributions. Likewise, v,(v) may be viewed as the collision
frequency of such a particle [cf. Egs. (136), (137), and
(96)] which agrees with the interpretation of the furiction
(137) as proposed by Lebowitz and Percus.!”

A similar integral representation is found for the no-
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collision probability W, ,(2). To see how this probability
is related to that for the finite system, consider first
Wg(t) for N <. This function is represented by a
series of polynomials each valid in a certain part of the
domain. As N goes to infinity the polynomials become
series but only the first one survives because the time
where the first polynomial fails to represent Wy (z) tends
to infinity as V'N. For N1 and ¥ =m /4€ one obtains
from (100)

Wor)= 3 H,(—v, 0)". - (138)

n=0

If one puts ¥y =m /2kT the series (138) is also the TDL of
Wr(t) because y(a,o)=I(a) and the bounds in (104)
converge. Looking at the definition of H, by integrals,
Egs. (102) and (103), one sees that the collision probability
may be written as

W oy (=Vy/m [ dvexp(—yv )W, ,(v,1), (139)

W oy (0st) = exp[ —v, (v)t] . (140)
Following Lebowitz and Percus!’ and Levitt!® W o v (0,2)
may be interpreted as the no-collision probability of a par-
ticle with velocity v and random position which is sur-
rounded by infinitely many other particles with random
positions and Maxwellian velocity distributions. Howev-
er, there is a difference to be noted between the velocity
dependent quantities p,(v), v,(v), and the function
W o,y (v,t): While the former appear also for finite sys-
tems, if the center of mass is allowed to move, it is not the
function (140) but the function

N—1

WN,‘)/(U!t): eN’.V(U,t)—%A‘\;N,y(U,t)t , (141)
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ey, (v,1)= 5 {erf[Vy(v +N /pst)]
—erf[Vy(v =N /pat)1}

_ v+(N/pyt)
VN (0,8)=Vy /7 fv_(N/pd” dw exp(—yw?pg v —w | ,
(142)

which appears in (139) in this case. The simplification in
the dynamics of very large systems mentioned in Sec. II
consists in replacing Eqs. (141), (142) by Egs. (140), (137).
Comparing the TDL of Wg(t) with the corresponding
functions for finite systems one sees that the convergence
is rather slow, especially if times are considered where a
few collisions are expected to take place (vgt <5). Inspec-
tion of Fig. 15 indicates that a system with about 20 parti-
cles, which up to now seemed to approximate an ““infi-
nite” system very well, cannot be considered as typical if
time-dependent phenomena are studied. The formal
reason for this insufficiency can be understood from the
series representations (138) and (100). As the observation
time increases more and more terms contribute essentially
to Wg(t), but the higher the power of ¢ the more the ex-
pansion coefficient deviates from its TDL. Physically the
discrepancy originates from the following fact: The
larger the system is the better is the chance that the
tagged particle is initially rather isolated, i.e., far away
from its next neighbors.

A similar slow convergence toward the TDL is found
for the velocity autocorrelation function, the last of the
quantities considered here. The first polynomial of ¥z(¢),
Eq. (109), tends toward the series

Vo, ()= 3 L,(—v, ) (143)
n=0

with y=m /4e and its range extends to infinity. The

series representation (143) is equivalent to the integral rep-

resentation

Voo, ()=Vy /7 f dvexp[——yvz—v,,(v)t]{[1—v,,(v)t][o([vf,(v)—pﬁvz]”zt)—|—[vf,(v)—p,2,v2]1/2t11([vf,(v)—pf,vz]‘/zt)} ,

where I,; are modified Bessel functions. This form of
the VAF has first been obtained by Lebowitz and
Percus.!” The asymptotic form of ¥,,(2) for large ¢ ex-
tracted from (144) is

Voo (8) ~ —2V202—5)(v o, 1) 3
—24(3m—8) (v, 1) *

—2V2(36m*+ T2 —461) (v, L) 5 — - - -
(145)

The leading term has already been found by Jepsen.!®
Similar to the no-collision probability the series (143) is
also the TDL of 7(¢) as can be concluded from the esti-
mate (113). That ¥r and ; both approach the same
function in the TDL is expected on general grounds but
not obvious from the form of these functions for small

(144)

T
systems. The only thing one can guess from looking at
Figs. 6 and 13 is that agreement can be found mostly in
the beginning, i.e., for times bounded by the second zero
of ¥g. This region has to become larger and larger as N
increases because the asymptotic forms of ¢ and ¥ have
already been found to be completely different for every
finite system [cf. Eqgs. (121) and (124)]. It is also clear
that the inverse power law for the infinite system, Eq.
(145), originates from the short-time behavior of large but
finite systems. To see this in more detail one can try to
evaluate (109) for larger and larger N. However, this is
limited by the accuracy which can be obtained in calculat-
ing the coefficients of the power series and by the magni-
tude and number of terms that have to be taken into ac-
count in this alternating series. These considerations lim-
ited the evaluation of (109) to N <40. For these numbers
of particles the first polynomial represents ¥z not far
beyond the first minimum so that the series (109) is only
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FIG. 16. Velocity autocorrelation functions ¥x (solid line) and ¥ (dashed line) for N=20,30,40.

suited to show how the deep minima found for small sys-
tems approach the flat minimum of the TDL, but not to
tell us how the oscillating tail disappears with increasing
N. It is, however, possible to continue the curves of ¢
by means of the series (117) which for N <40 fortunately
converges fast enough for times outside the domain of the
first polynomial. The resulting curves, displayed for
N=20,30,40 in Fig. 16, have a common feature which
hardly could have been expected from inspection of the
curves for small systems (Fig. 13). For N> 15 there ap-
pears a small shoulder after the first minimum which, as

3
107,

N increases, develops more and more into a horizontal
plateau between the first minimum and the second zero.
The length of this plateau increases with N while its
depth below zero is approximately proportional to 1/N.
It is interesting to note that similar plateaus appear for
the systems studied by Lebowitz and Sykes!® but their
depth is only 1/2N and both their beginnings and ends
tend toward infinity as N increases.

To come closer to the thermodynamic limit still larger
systems have to be considered. This is only possible for
1 but we know already from (113) that this function ap-

20 30 vt

-10

FIG. 17. Velocity autocorrelation function ¥ for N=20,40,60,80, .
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proaches the same limit as ¥z. Moreover, if N >20 ¢g
does not differ much from ¥ in the region of interest as
can be seen from Fig. 16. A formula suited for numerical
evaluation for N <100 is obtained by transforming (122)

in the following form: N
1//T(t)=¢(vrt)+t%<l>(v7~t) , (146)
1
=N _12r
. Not [ » 2N -2 »
x [ dg p};,l —sin 7L Sz |&m £
xs¥-1 g,n,%] , (147)
(148)

Sy(E,mA)=3, exp[ —n(n +A)?+i&(n +M)],

S3(E,mA)= 3 (n+A)"2exp[ —n(n +A)+i&(n +1)],

n

(149)

n=m7*/2(N —1)%. (150)

The curves calculated by means of (146)—(150) for
N=20,40,60,80 confirm the features found for ¥y for
N=20,30,40. The approach to the TDL is now evident
from Fig. 17 and it can be rigorously proved that (146)

tends to (144) for N1 . Having obtained this result and -

proven the coincidence of ¥ and ¥z in the TDL we used
the series expansion of the modified Bessel functions to
obtain the power-series representation (143). This series
and some other results for finite systems then helped us to
guess the general form of the first polynomial of i for
N < « [Egs. (109)—(112)].

The discussion of the TDL of the VAF shows once
more that qualitative differences between finite and infin-
ite systems originate from different orders of limits, here
N1w and t1ce. It is also evident from Fig. 17 that only
rather large systems (N~100) are representative for the
TDL of the VAF.

VII. CONCLUSION AND OUTLOOK

For the one-dimensional N-particle system described in
Sec. II some principal questions could be clarified. Our
discussion of time and ensemble averages, recurrence
times, and approach to equilibrium, is in some respect
more general than the results found in literature. We also
obtained exact expressions for a number of expectation
values. Five phase-space functions representing typical
properties of the system (pair distribution function, pres-
sure, collision frequency, no-collision probability, velocity
autocorrelation function) were considered and the average
performed over three ensembles which are of general in-
terest: canonical, microcanonical, and smallest stationary
ensemble (equal to time average).

We were especially interested to see how these quanti-
ties calculated for finite systems change with the size of
the system (thermodynamic limit). For quantities depend-
ing on the state of the system at one instant only (pair dis-
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tribution function) or on a pair of instants differing by an
infinitesimal amount (pressure, collision frequency) the re-
sults obtained for small systems agreed qualitatively with
those for large ones and we observed a rapid convergence
toward the thermodynamic limit. If on the contrary the
quantity depends on more instants separated by finite
time intervals (no-collision probability, velocity autocorre-
lation function) the convergence toward the thermo-
dynamic limit turned out to be very slow and the behavior
of small systems was found to be atypical for the thermo-
dynamic limit. If this is a general feature (which should
be tested by further examples) this is certainly of some in-
terest for extrapolating the results of computer experi-
ments which are necessarily performed with a limited
number of particles.

It is natural to ask whether the present model and the
methods used here can be varied or generalized. First we
want to point out that the reflection trick works equally
well for systems with fixed walls. We found good agree-
ment between the velocity autocorrelation function for
N=4,6 and movable walls (ring system) and the VAF for
N=2,3 for fixed walls, but the latter functions were much
more tedious to compute. This inconvenient feature may
be traced to the fact that the fixed wall system does not
possess the cyclic symmetry of the ring system which
helped us to simplify most results considerably. While we
cannot expect drastic deviations from the results obtained
here by merely changing the boundary conditions, essen-
tial differences are to be expected for more drastic
changes of the underlying dynamics. One possibility, al-
ready considered for the infinite system,’®%7 is to pass
from the deterministic model to a stochastic one by as-
suming that the colliding particles can pass through each
other with a certain probability. Another possibility is to
study the quantum mechanics of hard-rod systems. This
has already been done by Born® and Deutch ez al.” for
one particle between fixed walls which corresponds to our
system with N=2. More interesting than these two varia-
tions, which are in part the subject of current research, are
certainly extensions to more dimensions and various
shapes of the container. However, if we try to generalize
the techniques used here to such problems we are faced
with two difficulties. The first one can be understood by
considering the motion of a point inside a hexagon, which
arises if one studies the relative motion of three-point par-
ticles in a massless cubic box which is allowed to move
without rotations. In this model the true path of the
point within the hexagon may be unfolded into a straight
line by successive reflections of hexagons along their
boundaries but contrary to what has been found here these
reflections are not uniquely determined by the position of
the last hexagon only. Thus although the true path is
completely fixed by the straight line it is not as easy as it
was here to recover the true position and velocity of the
point from a given ray. The second difficulty is even
more serious. If the particles have finite extent there ap-
pear forbidden regions within the configuration space cor-
responding to situations where two or more particles
would overlap. The simplest example of this sort is a
point moving between two concentric squares; this can be
interpreted as relative motion of two hard squares en-
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closed by a massless, freely movable square box. If the re-
flection trick is applied to the outer square one obtains a
lattice of small squares which act onto the representative
point like impenetrable obstacles. As time evolves this
point is therefore scattered again and again, and this in a
very chaotic way since the scatterers all have convex
corners and a small change of position or velocity before a
scattering process can result in large differences after-
wards. Richens and Berry®® have shown that both diffi-
culties mentioned here are related and typical for pseu-
dointegrable systems. We therefore conclude that general-

izations to higher dimensions are by no means straightfor-
ward if possible at all.
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