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in a cylindrical diode with applied magnetic field
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The equilibrium properties of a relativistic non-neutral electron layer confined in a magnetically
insulated cylindrical diode are investigated within the framework of the steady-state (8/Bt=O)
Vlasov-Maxwell equations. The analysis is carried out for an infinitely long cylindrical electron

layer with axis of symmetry parallel to an applied magnetic field Boe„which provides radial con-
finement of the electrons. The theoretical analysis is specialized to the class of self-consistent
Vlasov equilibria fb(x, p) in which all electrons have the same canonical angular momentum

(Pe =Pa=const) and the same energy (H =mc ), i.e., fq = (nqR, /2mm )5(H —mc )5(Pe —Po). One
of the most important features of the analysis is that the closed analytic expressions for the self-
consistent electrostatic potential $0(r) and the 8 component of vector potential Ao(r) are obtained.
Moreover, all essential equilibrium quantities, such as electron density profile nb(r), total magnetic
field Bo,(r), perpendicular temperature profile T&q(r), etc. , can be calculated self-consistendy from
these potentials. As a special case, the equilibrium properties of a planar diode are investigated in

the limit of large aspect ratio, further simplifying the functional form of the electrostatic and vector
potentials. Detailed equilibrium properties are investigated numerically for a cylindrical diode over
a broad range of system parameters, including diode voltage Vo, cathode electric field, electron den-

sity nI, at the cathode, diode polarity, and applied magnetic field Bo.

I. INTRODUCTION AND SUMMARY

There is a growing literature' on theoretical studies of
the equilibrium and stability properties of sheared, non-
neutral electron flow in cylindrical and planar models of
high-voltage diodes with application to the generation of
intense charged particle beams for inertial confinement
fusion. ' These analyses' have represented major ex-
tensions of earlier work' ' to include the important in-
fluence of cylindrical, ' relativistic, electromagnetic,
nonlinear, and kinetic effects on equilibrium and stabili-
ty properties at moderately high electron density. While
an understanding of the important physics issues is in-
creasing, the majority' of these studies have been based
on macroscopic cold-fluid models, largely for reasons of
analytical and numerical convenience. In the present pa-
per we make use of the steady-state (t)/Bt =0) Vlasov-
Maxwell equations to investigate the equilibrium proper-
ties of sheared, relativistic, non-neutral electron flow in a
cylindrical diode. The analysis is based on well-

established theoretical techniques' ' ' developed in
basic studies of the kinetic equilibrium and stability prop-
erties of non-neutral electron plasmas characterized by in-
tense self fields. Since the present treatment is fully kinet-
ic, the effects of finite temperature and large orbit excur-
sions are included in a fully self-consistent manner. As a
general remark, in circumstances involving the generation
of intense ion beams, unstable field perturbations may
cause large ion deAections, and poor beam collimation.
Therefore, any modification of equilibrium and stability

properties associated with electron kinetic effects (e.g.,
finite temperature, etc.) may be of considerable impor-
tance in determining the conditions for optimum diode
performance.

To briefly summarize, the equilibrium properties of a
relativistic cylindrical electron layer ' confined in a mag-
netically insulated diode are investigated within the
framework of the steady-state (8/Bt =0) Vlasov-Maxwell
equations. ' ' ' The theoretical model and assumptions
are described in Sec. II, and the detailed analytical investi-
gations and numerical results are presented in Secs. III
and IV and in Sec. V, respectively. The analysis is carried
out for an infinitely long cylindrical electron layer with
axis of symmetry parallel to an applied magnetic field
Bpc which provides radial confinement of the electrons
(Fig. 1). We specialize to the class of self-consistent
Vlasov equilibria ft, (x,p) in which all electrons have the
same canonical angular momentum (Pe ——Po ——const) and
the same energy (II=mc ). That is, ft, (x,p) is speci-
fied by [Eq. (15)]

where H=(m c +c p )' ego(r) is the energy, a—nd
Ps=r [pe eAc(r)/c] is the —canonical angular momen-
tum. One of the most important features of the analysis
in Secs. II—IV is that closed analytic expressions are ob-
tained for the self-consistent electrostatic potential Pc(r)
and the 8 component of vector potential Ac(r). More-
over, all essential equilibrium quantities, such as electron
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5Ap(r) =Ap(r) — Ap(r =—a),

where t)Ip(r) is the electrostatic potential, and Ao(r) is the
vector potential for the total (applied plus self) magnetic
field. After some straightforward algebraic manipula-
tions, the density profile nb~(r)= fd p fb corresponding
to Eq (15) i.s given by [Eq. (24)]

nb(r) = ~
0

y(r)nba
, pfo(r))0

0, otherwise,

where p fp(r) is defined by [Eq. (22)]

pfp(r)=[y (r) —1]m c — —5Ap(r)
c

2

The outer boundary of the electron layer (denoted by
r =Rb) is determined self-consistently from p fp(Rb)=0.
It is also found that the azimuthal flux of electrons
nb Veb (r) =fd p Uefb is given by [Eq. (26)]

o o a nbe
nb(r) Veb(r) =— 5Ao(r)r mc

for a & r & Rb Moreover, .the effective perpendicular
(r-z) temperature Tzb(r) defined by nb T~b= —,

' fd pc (p„+p, )fbi(m c +c p )' is given by [Eq.
(27)]

To („)
2y(r)m

for a (r & Rb. What is most remarkable is that the
Maxwell equations for Pp(r) and 5Ao(r) permit exact ana-
lytic solutions for the equilibrium potentials for the choice
of distribution function in Eq. (15) and general aspect ra-

density profile nb(r), total magnetic field Bp,(r), perpen-
dicular temperature profile Tzb(r), etc., are calculated
self-consistently from these potentials. As a special case,
the equilibrium properties of a planar diode are investigat-
ed in Sec. EV in the limit of large aspect ratio, further
simplifying the functional form of the electrostatic and
vector potentials. It is shown analytically that the trans-
verse temperature of the electron layer in the planar case
vanishes identically for space-charge-limited flow with
zero electric field at the cathode.

Although both diode polarities are investigated in Secs.
II—V, we limit the present summary in Sec. I to the case
of positive diode polarity (P =+ 1). That is, in Fig. 1, the
cathode is located at the inner conductor (R, =a) with
Po(r =a}=0, and the anode is located at the outer conduc-
tor with Pp(r =b) = Vp, where Vp is the applied voltage.
In the expression for fb(x, p) in Eq. (15), nb is the density
at the cathode, and the constant Pp is defined by
Pp ———(ea/c)Ap(a) [Eq. (16)], corresponding to zero
average azimuthal flow of electrons at the cathode (r =a).
We also introduce the definitions [Eqs. (18}and (20)]

ego(r)
y(r) =1+

mc

+2a[Ko(p)Io(k) —Io{p)Ko{k)l

for a (r &Rb. Here p=2cozba/c, and I„and K„are
modified Bessel functions of order n T.he dimensionless
parameter a is a measure of the electric field (apart from
a sign) at the cathode and is defined by [Eq. (32)]

ea Bdo

mc

In the vacuum region (Rb &r &b) outside the electron
layer, the solution for y(r) = I+ego/mc that is continu-
ous with continuous first derivative at r =Rb is given by
[Eq. (53)]

y(r) =y(Rb)+abln(r/Rb),

where y(Rb) and cLb =Rb(By/Br), ~ are evaluated from
Eq. (42). Enforcing Pp(r =b)= Vp, where Vp is the ap-
plied voltage, gives [Eq. (54)]

eVo
2 [y(Rb ) ———1]+~bin(b /Rb ),

Nlc

which relates the diode voltage to the other equilibrium
parameters.

In a similar manner, the t9 component of vector poten-
tial Ap(r) can be evaluated in closed analytic form [Eq.
(48)], and the total (applied plus self) magnetic field deter-
mined from Bp,(r) =(1/r)(B/Br )(rAp). Denoting the vac-
uum value of Bp,(r) by Bp ——const in the region
Rb & r & b, it is found for a diode with positive polarity
(p =+1) that Bp,(r) decreases monotonically from Bp at
the boundary of the electron layer ( r =Rb ) to the value
Bp,(a) &Bp at the cathode (r =a) where [Eq. (55)]

Bo,(a)
Bo

Rb/aq
K&(p)I~(g)+I2(p)K~(g)

Here, p=2co~ba/c and ri= (Rb/a)' p. —
Finally, in Sec. V, the detailed equilibrium properties of

a cylindrical diode are investigated numerically over a
broad range of system parameters, including diode voltage
Vo, diode polarity (p=+1), cathode electric field (a),
electron density nb at the cathode, applied magnetic field
Bo, and the ratio 6/a of the inner and outer conductor ra-
dii. Several features are noteworthy in this analysis.
First, the electron layer in both a positive-polarity diode
(p =+ 1) and in a negative-polarity diode (p = —1) ejects
magnetic flux. That is, the magnetic field Bp,(r) de-
creases monotonically from the boundary of the electron
layer (r =Rb) to the cathode. Second, the layer thickness
decreases with increasing applied magnetic field Bp.
However, the layer thickness is an increasing function of
diode voltage Vo. Third, the density of the electron layer

tio of the diode. For example, introducing the normalized
radial variable g=(2co~b/c)(ra)', where co~b
=4~nbe /m, the exact solution to the equilibrium Pois-
son equation (28) is [Eq. (42)]

ePp(r)
y( )=1+, = p[K (p)Io(g)+I~(p)Ko(g)]

Plc
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increases with applied magnetic field Bp. Fourth, the
transverse temperature Trb(r) increases substantially as
the strength of the electric field at the cathode is in-
creased. We therefore find that the density of the electron
layer decreases as the electric field at the cathode is in-
creased.

As a notable point, throughout this paper the constant
Bp is used to denote the value of magnetic field at the
outer conductor (r =b), i.e., Bp Bp,(——b). In the case of a
positive-polarity diode (p=+I), Bp,(r)=Bp throughout
the vacuum region Rb &r &b. For a negative-polarity
diode (p= —1), where the electron layer extends from
r =Ri, to r =b, the magnetic field Bp (r) decreases from
the value Bp,(Rb ) ( & Bp) at the edge of the electron layer
to the value Bp ——Bp,(b) at the cathode.

duces an axial self-magnetic field as shown in Fig. 1.
In the equilibrium analysis, we allow both electric field

polarities P. ositive polarity is defined by

@=+1,
where the potential of the cathode at the inner conductor
is Pp(r =a) =0, and the potential of the anode at the outer
conductor is Po(r =b)= Vp. On the other hand, negative
polarity is defined by

p= —1

where the cathode is located at the outer conductor with
Pp(r =b) =0, and the anode is located at the inner conduc-
tor with Pp(r =a)= Vp. Therefore, for the two polarities,
the cathode radius R, is given by

II. THEORETICAL MODEL
AND BASIC ASSUMPTIONS

The equilibrium configuration is illustrated in Fig. 1.
It consists of an infinitely long cylindrical electron layer
with axis of symmetry parallel to an applied magnetic
field Bo"'——Bpe, . Here, e, is a unit vector in the z direc-
tion, and Bo=Bp&(b) is the magnetic field at the outer
conductor (r =b) The a.pplied magnetic field provides
radial confinement of the electrons between the cathode
and radius R~. The radii of the inner and outer conduc-
tors are denoted by a and b, respectively. As shown in
Fig. 1, we introduce a cylindrical polar coordinate system
(r, 8,z) with z axis coinciding with the axis of symmetry; r
is the radial distance from the z axis; and 0 is the polar
angle in a plane perpendicular to the z axis. The region of
configuration space described in the present analysis is
limited to the region between the inner and outer conduc-
tors, i.e., a &r &b. The electrons are emitted from the
cathode at radius r =R, and are accelerated towards the
anode by the radial electric field. The vXBo force pro-
duced by the axial magnetic field converts radial electron
motion into azimuthal motion, and eventually the elec-
trons reverse their radial velocity and return to the
cathode. The mean azimuthal flow of the electrons pro-

a, p=+1
R, = ',

'b, p= —1.

To make the theoretical analysis tractable, the follow-
ing simplifying assumptions are made in describing the
'non-neutral plasma equilibrium by the steady-state
(r)/Bt =0) Vlasov-Maxwell equations.

(a) Equilibrium properties are independent of z
(8/Bz=0) and azimuthally symmetric (8/88=0) about
the z axis. For example, the electrostatic potential
Po(x) =Pp(r) is a function only of the radial coordinate r

(b) Although an individual electron can move in the ra-
dial and axial directions, there is no mean motion of the
electrons in these directions, i.e.,

Id p v„fi, (x,p) =0=fd p v,fb(x, p) .

Since the axial current is equal to zero, there is no self-
magnetic field in the 8 direction.

(c) The kinetic energy of the electrons at the cathode
(r =R, ) is equal to zero This .also implies that there is
no azimuthal motion of the electrons at the cathode.

Central to a Vlasov description of non-neutral plasma
equilibria are the single-particle constants of the motion
in the equilibrium field configuration. 's Within the con-
text of assumptions (a) and (b), the external and self-
magnetic fields can be expressed as

and

&o" (x) =Boe,= [rA—o '(r)]e, ,r r}r

&o(x) =Box(r)e, =— [rA p(r) je, ,r Br

where Ao"'(r)=rBp/2 and Ap(r) is the 8 component of
the vector potential for the axial self-magnetic field. In
addition, the external and self-electric fields can be ex-
pressed as

Eo(x) ='(Eo"„+Eo )e„

FIG. 1. Cylindrical-diode configuration. Equilibrium elec-
tron flow is in the 0 direction. The boundary of the electron
layer is denoted by Rb, and the applied plus self-magnetic field
So(x)=(Bo+Bo )e is in the z direction.

=Ep,(r}e„=— Pp(r)e„,
Br

where e, is a unit vector in the radial direction. For az-
imuthally symmetric equilibria with 8/861 =0 and
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H=(m'c4+c p )'~ eP—p(r),

the canonical angular momentum Pe,

Pg r[——pg (e—/c)Ao(r)],

and the axial canonical momentum P„
P, =p, .

(4)

Here, c is the speed of light in uacuo, and —e and m are
the electron charge and rest mass, respectively. In Eqs.
(4)—(6) p denotes mechanical momentum, which is related
to the particle velocity v by

8/Bz =0, there are three single-particle constants of the
motion. These are the total energy H,

will give radially confined equilibria localized to the re-
gion a &r ~b.

Once the functional form of fb(H, Pg) is specified, the
electron density and azimuthal flux of electrons can be
determined from Eqs. (11) and (13). Other properties of
the equilibrium can also be calculated. For example, since
H depends on p„and p, through the combination p„+p„
it is straightforward to show that (u„p„)= (u,p, ), where
(P) denotes

f d'p 4fb fd'pfb

Therefore, we can define an effective "transverse tempera-
ture" Tj b(r) for the r zm-otion of the electrons by the re-
lation

v=p[m(1+p /m c )'~ ]

In Eq. (5) Ap(r) is the 8 component of vector potential for
the total axial magnetic field, i.e.,

2 2 2
p p ) 3

c (pr+pz) pnb(r)Tqb(r)= —, d p z 4 2 2 )~2 fb(H, Pg),(mc+cp)'
(14)

fb(»p)=fb(H Pg) . (9)

As shown at the end of Sec. II, the equilibrium described
by Eq. (9) generally has nonzero axial and radial tempera-
tures.

For a specific choice of fb(H, Pg), the potentials for the
equilibrium fields are to be calculated self-consistently
from the steady-state Maxwell equations. The equilibri-
um Poisson equation can be expressed as

~o(r) = ,' rap+~—o«) .

Any distribution function fb(x, p) that is a function
only of the single-particle constants of the motion in the
equilibrium fields satisfies the steady-state (8/Bt =0)
Vlasov equation. For present purposes, we consider the
class of self-consistent equilibrium distribution functions
that depend on the constants H and Pe but not explicitly
on the axial momentum p, . That is, we consider distribu-
tion functions of the form' s

where p, +p, is the square of the transverse momentum
2 2 2 2and p =pr+pz+pe.

III. KINETIC EQUILIBRIUM PROPERTIES
FOR MONOENERGETIC ELECTRONS

R, n,b 2fb(H, Pg) = 5(H —mc )5(Pg Pp), —
27Tm

(15)

where nb is the electron density at the cathode (r =R, ),
and

There is considerable latitude in the choice of equilibri-
um distribution function fb(H, Pg). For present purposes,
we consider the class of self-consistent Vlasov equilibria
in which all electrons have the same canonical angular
momentum Pe ——Po ——const and the same energy
H=mc . In this case, the equilibrium distribution func-
tion can be expressed as'

r yp(r) =4~enb(r),
1 8 8 p

r ar ar

where nb(r) is the local electron density defined by

nb'(r)= fd'pf, '(H, P, ) .

(10)
e

Pp = — R&Ap(R& ) =const
C

(16)

is the canonical angular momentum of the electrons.
Without loss of generality, we assume that the equilibrium
electrostatic potential is equal to zero at the cathode, i.e.,

Furthermore, the 8 component of the VXBp Maxwell
equation can be expressed as

8 1 8
[rAp(r)] = enb(r) Vgb(r),

4~ o o (12)
Br r Br C

where Vgb(r) is the mean azimuthal velocity of an elec-
tron fluid element defined by

nb (r) Vgb(r) = fd'p ug fb(H, Pg) . (13)

Here, ug is related to p by Eq. (7). As a general remark,
we note that any choice of equilibrium distribution func-
tion fb(H, Pg) assures that the radial and axial flux of
electrons is equal to zero, since H is an even function
of p„and p, [see assumption (b)I. While

fd p u„fb(H, pg)=0 for general choice of fb(H, pg), it
should be emphasized that not all choices of fb(H, Pg)

pg ———5Ap(r),
C

where the notation

(19)

Pp(r =R, )=0 .

From H =mc, we find that the mechanical energy of an
electron is given by

(m c +c pg+c pj )'~ =y(r)mc

=mc'+ego(r),
where p~ =p, +p, and y(r) = I+ego(r)/mc

Since the electrons move on a surface of constant
canonical angular momentum with Pe ——Po ——const, we
find from Eqs. (5) and (16) that the azimuthal mechanical
momentum is related to Ao(r) by
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Rc
5Ap(r) =—Ao(r) — Ao(R, )

r
(20)

has been introduced. In Eq. (20), the 8 component of the
vector potential Ap(r) is defined in Eq. (8). Making use
of Eq. (19) to evaluate H mc —for Ps P——p, we find after
some straightforward algebraic manipulation that H—
mc can be expressed as

H —mc'= I[p', —pip(r)]c'+y (r)m c I' '
—y(r)mc (21)

where y(r)= 1+ego(r)/mc, and the quantity pjp(r) is
defined by

2

which vanishes at the boundaries r =R, and r =Rb of the
electron layer.

Making use of the definition y(r) =1+eP.p(r)/mc and
Eq. (24), the Poisson equation (10) can be expressed as

~pbRgr y(r) — y(r) =0, (28)r Br Br c2I

over the range of r (between R, and Rb) where pzp(r) &0
and the electron density is nonzero. In the vacuum region
between Rb and the anode, the quantity y(r)
=1+ego(r)/mc satisfies the vacuum Poisson equation

r y(r)=0 .
1 a a

(29)r 3r Br

pfo(r)=[y (r) —1]m c — —5Ap(r) (22) In Eq. (28)

Thus, the 5-function factor 5(H —mc ) appearing in Eq.
(15) can be expressed as

5(H —mc )=2y(r)m5(pi —pip(r)) . (23)

Substituting Eqs. (15) and (23) into Eq. (11) and carry-
ing out the required momentum integration, it is straight-
forward to show that the electron density nb(r) is equal to
y(r)nbR, /r for the range of r satisfying pio(r) &0, and is
equal to zero otherwise, i.e.,

A. 2
COpb = 4~e nb

(30)

y(r=R, )=1 . (31)

We introduce the dimensionless parameter n defined by

is the square of the electron plasma frequency at the
cathode ( r =R, ).

An obvious boundary condition for the second-order
differential equation for y(r) in Eq. (28) is

nb(r) =0
y(r)nbR, 2pip(r) &0

dy eR, dip+=Re
r=+ mc dr r=R

0, otherwise . (24)

One of the boundaries of the electron layer is the cath-
ode (r =R, ), where pJp(R, )=0 is satisfied. The other
boundary Rb of the electron layer can be obtained numeri-
cally from the condition

pip(Rb) =0 .2 (25)

mc y ————,&~o
1 1 e

mc
(27)

Note that the electron density at r R,=is nb(R, )=nb,
where y(R, ) =1. For the case of positive polarity with
p=+1, the electron layer extends from r=R, =a to
r=Rb, whereas for p= —1, the electron layer occupies
the region from r =Rb to r =R, =b.

The mean azimuthal velocity of an electron fluid ele-
ment Vsb(r) is obtained by substituting Eqs. (15) and (19)
into Eq. (13) and carrying out the momentum integration.
After some straightforward algebraic manipulation, we
obtain

nb(r) Veb(r) = nb 5c4p(r) (26)
r mc

for pip(r) &0. It is obvious from Eqs. (20) and (26) that
the azimuthal velocity of an electron fluid element is in
the positive 0 direction for p = + 1, and in the negative 0
direction for p= —1. In a similar manner, the effective
transverse temperature defined in Eq. (14) can be ex-
pressed as

pio(r)
Tib(r)=

2y(r)m
2

2E„(r=R, ),
mc

(32)

«o
mc' ln(b/a) ' p=+1

e~o p= —1 ~mc' ln(a/b) '

where p =+1 is the polarity of the diode and Vp is the
diode voltage. On the other hand, for space-charge-
limited flow, E„(r=R, ) =0, and the parameter a is given
by

a=0.
Therefore, the normalized electric field a must satisfy

«o0&a & for p =+1,mc' ln b/a

eVo0)a& for p= —1 .
mc2 ln a/b

(33)

The boundary conditions satisfied by y(r) = 1

+ego(r)/mc at the surface of the electron layer ( r =Rb )
are prescribed by the continuity of y(r) and its first
derivative dy(r)/dr at r =Rb That is, .

which, apart from a sign, represents the normalized elec-
tric field at the cathode. In the limit when the electron
plasma is so tenuous that self-electric field contributions
can be neglected, the parameter a is given by
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lim [y (Rb +5) —y(Rb —5)]=0,
5~0+

(34)

2copb
p=g(r =R, )= R, .

C
(43)

llm
5 o

dy
r =Rb+5 r =Rb —5

=0. In obtaining Eq. (42), use has been made of the Bessel-
function identity

d 1 d co pbRc„—„[«5Ap(r)]—,5Ap(r) =0,
dr r dr rc

(35)

in the region between r =R, and r =Rb where p J p(r) )0
and the electron density is nonzero. In the vacuum re-
gion, 52o satisfies

[r5Ap(r)) =0 .
1

(36)

Qne boundary condition satisfied by Eq. (35) is

5Ap(r =R, )=0 . (37)

The differential equation for the 8 component of vector
potential is obtained by substituting Eq. (26) into Eq. (12).
This gives

I„(z)K„+i(z)+I„+i(z)K„(z)= I /z . (44)

Similarly, the solution to Eq. (35) can be expressed as

5Ap(r) =C3I2(g)+ C4K2(g ) (45)

for the 0, component of vector potential within the elec-
tron layer. Making use of the recurrence relations for
modified Bessel functions, it is easily shown that

G
[r5Ap(r)] =—[C3I)(g)—CqK)(g)] .

2
(46)

The coefficients C3 and C4 in Eq. (45) are determined
from the boundary conditions in Eqs. (37) and (38). After
some straightforward algebraic manipulation, we find that
Eq. (45) can be expressed as

Another boundary condition is 5Ap(r) =R,BpX(r), (47)

[r5Ap (r) ]
1 d

)
Rb dr

„[r5A,(r)]1

r=b

for p=+1

fol p= —1

(38)

where the normalized vector potential X(r) is

2Rb K2(p)I2(g) —I2(p)K2(g)
for p =+1

g(r) = ga I~(r})K2(p)+I2(p)K~(r})

2[K2(p)I2(g) —I2(p)K2(g)] for p = —1 . (48)

Here, Bo is the value of the magnetic field at the outer
conductor (r =b) Moreov. er, at the surface (r=Rb) of
the electron layer, 5A p(r) satisfies

In Eq. (48) the parameter g is defined by
1 /2

g=g'(r =Rb)= (RbR, ) = p
2COpb ]g2 Rb

c ' R,
(49)

lim [5A p(Rb +5)—5A p(Rb —5)]=0,
5—+0+

(39)

d
llm Sao

r =mb+5
—5iod
dr r =Rb —5

=0.

Note from Eqs. (22) and (25) that Rb cannot be evaluat-
ed explicitly until y(r) and 5Ap(r) have been determined
from Eqs. (28) and (35), respectively. Furthermore, the
solution for 5Ap(r) depends on Rb. Therefore the condi-
tion that determines Rb is, in effect, non/inear. Introduc-
ing the variable g defined by

In obtaining Eq. (47), use has been made of Eqs. (44) and
(46). It is important to note that the variable g is restrict-
ed to g) p for p=+1, and to g&p for p= —1. There-
fore, the normalized vector potential g(r) in Eq. (48) satis-
fies the condition X(r) )0 for p =+ 1, and X(r) &0 for
p = —1, which is consistent with the discussion following
Eq. (26).

Making use of Eqs. (22) and (25), the boundary r =Rb
of the electron layer is determined from

2 2

y (Rb) —1= X (Rb), (50)c2

g= (rR )'
2co b

c
(40) where the electron cyclotron frequency m, is defined by

the solution to Eq. (28) can be expressed as m, =ego/mc . (51)

y( r) =CiIp(g)+ C2Kp(g), (41)

within the electron layer. Here, J„and E„are modified
Bessel functions of order n and C& and C2 are constants.
Eliminating C& and C2 by means of the boundary condi-
tions in Eqs. (31) and (32), it is straightforward to show
that Eq. (41) can be expressed as

y(r) = [p(K( )Ip(gp) I+(( )pK(gp)]

(42)

Once the location of the boundary Rb is determined from
Eq. (50), we can also evaluate the electric field at r =Rb
from Eq. (42). Apart from a sign, we define the normal-
ized electric field o.'b at r =Rb by

Rbe Bgp
o'b =Rb

=Rb mC

=
2 np[K1(p)Il(n) —Il(p)KI(n)]

+2~[Kp(p)Ip(g) Ip(p)Kp(g')]—
where p is defined by +rja[Kp(P)I~(g)+I (P)K (r1)] .
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It is straightforward to show that

y( r) =y(Rb ) +abln(r/Rb ) (53)
1 1

y(r)mc' 2 y(r)
~cRc 1 g (r) . (56)c' y(r)

e Vp abln(b/Rb ) for p =+ 1

2 =y(Rb) —1+ '

abln(a/Rb) for p = —1 . (54)

Equations (42), (48), (50), and (54) constitute a complete
set of equations which can be used to investigate detailed
equilibrium properties for a broad range of physical pa-
rameters, including the diode voltage Vp, the applied
magnetic field Bp, and the conductor radii a and b.

One of the experimentally interesting parameters is the
magnetic field at the inner boundary of the electron layer,
i.e., Bp, ( r =a ) for P = + 1, and Bp, ( r =Rb ) for P = —1.
Evaluating the magnetic field from Bp,(r)
=(R,Bp/r)(d/dr)[rg(r)], we obtain

is the solution to the vacuum Poisson equation (29). Evi-
dently, the normalized electric field at r =Rb in Eq. (52)
satisfies the condition ab &0 for p=+ I and ab &0 for
p = —1. Making use of Eq. (53), the diode voltage Vp can
be expressed as

IV. PLANAR-DIODE EQUILIBRIUM PROPERTIES

In this section we investigate the equilibrium properties
of a magnetically insulated planar diode as the limiting
case of a large-aspect-ratio diode with Rb »(b —a). In
planar geometry, the equilibrium distribution function
in Eq. (15) is modified to become

fb (H Py ) = 5(H —mc )5(Py )
27TPl

where (x,y) Cartesian coordinates replace the ( r, 8)
cylindrical polar coordinates in Sec. III and nb is the elec-
tron density at the cathode. Without loss of generality,
we assume that the cathode is located at x=0 and the
anode at x =d. The electrons are confined between x =0
and x=xb. For planar geometry, Eqs. (28) and (35) be-
come

Bo,(a) Rb/ay for@=+1
Bp Kg(p)I&(g)+I&(p)K~(g)

2 A. 2
CO pby(x) — y(x) =0,

dX C
(58)

Bog(Rb )
[I~/(lp)I~(g)+I~(p)I~ ~(g)] «r p = —1

Bp Rb

(55)

A numerical analysis (Sec. V) confirms that the ratio
Bp (a)/Bp in Eq. (55) is less than unity for the case of a
diode with positive polarity (p =+ 1 and R, =a). That is,
for r & Rb, the magnetic field decreases from the vacuum
value Bp Bp,(r =R——b) at the outer boundary of the elec-
tron layer to the value Bo,(a) &Bp at the cathode (r =a)
On the other hand, Bp,(Rb)/Bp & 1 in Eq. (55) for the
case of a diode with negative polarity (p = —1 and
R, =b) That is, .for r &b, the magnetic field increases
from the value Bp Bp,(r =b) at the catho——de to the value
Bp (Rb ) & Bp at the inner boundary (r =Rb ) of the elec-
tron layer. In both cases (@=+1and p= —1), magnetic
flux is ejected by the azimuthal electron flow Veb(r),
which is in the positive 0 direction for p =+ 1 and in the
negative 0 direction for p = —1. Finally, the effective
transverse temperature T~b(r) is determined by substitut-
ing Eqs. (42) and (48) into the expression [Eq. (27)]

y(x)nb, 0&x &xb
b 0, otherwise,

where xb is determined from

[y (xb) —1]m c = 5Ap(xb)—
C

2

(60)

(61)

Introducing the electric field parameter defined by
r

Qc
e

mc

d4o
dx ~ p

(62)

it is straightforward to show that the solution for
y(x) = 1+ego(x)/mc is

2d
5Ap(x) — 5Ap(x ) =0,67 pb

dX - C

for 0 &x &xb, where xb is the location of the boundary of
the electron layer. The electron density profile in Eq. (24)
is given by

y(x)= '

COpb X
cosh

c
CX~ C COpb X

+ sinh
CCOpb

0 (X (Xb (63a)

co&bxb a, c cu&bxb
cosh -+ sinh +

C
COpb

CO&b Xb
sinh

c C

CO&b Xb+cx~ cosh
C

(X —Xb), Xb &X &d (63b)

a,c co~bxb Q3&b Xb
(d —xb )+ sinh + cosh (d —xb)

b c c

(64)

The parameter a, must satisfy 0&a, &eVp/mc d. Moreover, a, =0 corresponds to space-charge-limited flow with
Ep„(x =0)=0. Enforcing y(x =d) =1+eVp/mc at the anode (x =d), Eqs. (63) give the condition

e Vp ' 67&bxb ci)&b co&bxb
cosh —1 + sinh

NlC c c C
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which relates the anode voltage V0 to the equilibrium pa-
rameters xb, copb, a„and d. Similarly, the y component
of the vector potential 5Ap(x) is given by

Bp,(0)= 5Ap(x)
Bx

80

z =p cosh(co&bxb lc)

Bpc sinh(cozbx /c )
5Ap(x) =

D~b cosh(cozbxblc)

for 0 (x (xb. Here, 8p is the applied magnetic field, and
use has been made of the boundary conditions,
5Ap(x =0)=0 and [(d/dx)5Ap(x)]„„„=Bp. It is useful

to evaluate the axial magnetic field at the cathode, i.e.,

5Ap(x) =Bp,(0)(c/cozb )sinh(r3&bx /c ) (67)

The effective transverse temperature is determined by
substituting Eqs. (63) and (65) into Eq. (27) in the planar
limit. After some straightforward algebraic manipulation,
the transverse temperature T1b(x) can be expressed as0

from Eq. (65). Eliminating Bp in Eq. (65) in favor of
Bp,(0), the vector potential 5Ap(x) can also be expressed
as

0 1 2 1
T1b(x) = me 2 COpb-

2y(x)

e Bp, (0) 2 coaxslnh
PB C C

CO bx
+Ac 2 smh

C

2COpb X
+a, sinh

Copb

(68)

where y(x) and Bp,(0) are given in Eqs. (63) and (66),
respectively. The boundary xb of the electron layer is
determined from

2
Copb Xb

cx, sinh
CCO pb

2copbxb+a, sinh
CCopb L

r

2
Co& Copb Xb

tanh
CCO pb

Copb Xb—sinh
C

(69)

where use has been made of Eqs. (61), (63), and (6S). Note
from Eqs. (68) and (69) that the effective transverse tem-
perature vanishes at x=xb. In general, for arbitrary
value of a„ the inequality

e Box(0)
& Copb (70)

C

must be satisfied in order to have a nontrivial (xb&0)
solution for xb from Eq. (69).

In the limiting case of space-charge-limited flow
characterized by a, =0, Eq. (69) reduces to

Copb Xb
cosh

C

COc

COpb

(71)

which also corresponds to

e B(),(0)
Pl C

=CO pb (72)

For space-charge-limited flow, the boundary xb of the
electron layer can be expressed in terms of the applied
magnetic field 80 and the plasma frequency copb at the
cathode by means of Eq. (71). Moreover, these parame-
ters are connected to the anode voltage Vp by Eq. (64)
with a, =0. It is instructive to rewrite Eq. (72) as

e 8p, (x)

ymc
4me nb(x) e Bp, (0) =1.

Pl C CO pb

(73)

That is, the condition for Brillouin Aow is satisfied across
the entire region where the electron density is nonzero. In

I

obtaining Eq. (73), use has been made of Eqs. (60),' (63),
and (66). In addition, substituting Eq. (72) into Eq. (68),
and taking the limit a, =0, it is found that the effective
transverse temperature Tj b(x) vanishes for space-charge-
limited flow. We therefore conclude that for space-
charge-limited flow, a macroscopic cold-fluid model gives
an excellent description of the equilibrium properties for
monoenergetic electrons. For further discussion of
planar-diode equilibrium properties in the cold-fluid limit,
the reader is referred to Refs. 1—S.

In the general case, Eq. (69) can also be expressed as
1/2

o'c C
2

Copb Xb Co& 2 Copb Xb
coth + sech

CO C

pbXb—coth
C

(74)

where use has been made of a, )0. For a planar diode,
Eqs. (64) and (74) constitute a closed system of equations
that can be used to investigate detailed equilibrium prop-
erties for various physical parameters, including the diode
voltage Vp, the applied magnetic field Bp, and the nor-
malized electric field a, at the cathode. Important equi-
librium quantities to be determined from Eqs. (64) and
(74) include the location of the boundary xb of the elec-
tron layer. Shown in Fig. 2(a) are plots of xbld versus
co,d/c obtained from Eqs. (64) and (74) for eVp/mc =1
and several values of co~bd lc The corres.ponding normal-
ized electric field a,d at the cathode is plotted versus
ro, d/c in Fig. 2(b). For low electron density correspond-
ing to cozbd/c =0.6 in Figs. 2(a) and 2(b), the normalized
layer thickness xbld decreases monotonically from unity
to zero as the applied magnetic field is increased. In this
case, the electric field at the cathode (a, ) has a relatively
large value [Fig. 2(b)]. For moderate electron density cor-
responding to r3&bd!c=1.2 in Figs. 2(a) and 2(b), there
are two solutions for the normalized layer thickness xb ld
and the normalized electric field u, d at the cathode that
satisfy Eqs. (64) and (74) over a portion of the range of
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and the system correspondingly exhibits unphysical prop-
erties. For example, at small distances from the cathode
(cozbx/c «1), Eq. (63) gives y(x)=1+a,x & 1, and the
corresponding perpendicular temperature Tzb(x) is nega-
tive [Eqs. (27) and (28)]. For this reason, we have not
plotted the cozbd /c = 1.8 curve in Fig. 2(a) beyond
(xbjd, a, ) =(0.35,0).

Shown in Fig. 2(c) are plots of xbjd versus co,d/c ob-
tained from Eqs. (64) and (74) for eVO/mc =1 and
several values of a,d. The corresponding values of
cozbd/c are plotted in Fig. 2(d). In Fig. 2(c) it is interest-
ing to note that there are two solutions for the normalized
layer thickness xb/d that satisfy Eqs. (64) and (74) over a
portion of the range of co,d/c. For example, for space-
charge-limited flow characterized by a, =0 in Figs. 2(c)
and 2(d), the quantities xb/d and coed/c have two solu-
tions when the applied magnetic field is in the range
2. 1 & co,d/c & 2.575. For the case of space-charge-limited
flow in Fig. 2(c), the minimum value of magnetic field re-
quired for the equilibrium to exist is determined from
eB;„d/mc =2.1. That is, equilibrium solutions do not
exist for a, =O and Bp&B;„. It should also be noted
from Fig. 2(d) that the normalized electron density
(co~bdjc) increases rapidly with decreasing value of elec-
tric field at the cathode (u, d).

In typical experiments on applied magnetic field diodes,
a magnetic field is applied before the voltage is raised
from zero, and magnetic flux conservation within the gap
is invoked. In this regard, the magnetic field Bo varies
during a pulse. Defining the flux per unit length 4 by

d
XBp, X (75)

we obtain

cc
COpb

COpbXb= ' coth
c

z CO~bXb+ sech
mc c

Xb C+

COpb Xb—coth
C

(77)

Had we chosen to plot xb/d versus 4 [obtained from Eqs.
(69) and (77)] rather than xb/d versus co,d/c, then the
ambiguity associated with the double-valued nature of the
curve corresponding to cozbd lc = 1.2 in Fig. 2(a) would be
eliminated, and xb/d would be uniquely determined. In
this regard, the flux per unit length N is a very useful
parametriz ation.

Xb c COpbXb
1 — + tanh

copb ~ c

Therefore, the electric field at the cathode in Eq. (74) can
be expressed as

Rb
0

1.5—

(0)

b
0

V. CYLINDRICAL DIODE
EQUILIBRIUM PROPERTIES

In this section the equilibrium properties of a, non-
neutral electron layer confined in a magnetically insulated
cylindrical diode are determined numerically from Fqs.

0
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FIG. 5. Plots of (a) Rq/a and (b) co~qa /c vs co,a /c for
b/a =2, u=O, p =+1, and several values of normalized diode
voltage eVO/mc .

FIG. 6. Profiles of the transverse temperature T&q(r) for
p=+1, b/a =2, co~ha /c =3, and several values of normal-
ized cathode electric field cz. In order to maintain the same
value of R~/a =1.7, the applied magnetic field (co,a /c ) and
diode voltage (e Vo/mc ) are adjusted accordingly for each value
of cf.
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(42), (48), (50), and (54) for a broad range of system pa-
rameters including diode voltage Vo, applied magnetic
field Bo, and conductor radii a and b. Important equi-
librium quantities include the radial location of the boun-
dary Rb of the electron layer, the electron density profile
nb(r), and the axial magnetic field and transverse tem-
perature profiles.

A. Positive-polarity diode

In this section, we investigate numerically the equilibri-
um properties of a magnetically insulated diode with posi-
tive polarity (p = + 1 and R, =a). For a specified value
of electron density at the cathode, i.e., co~ha /c, the rela-
tivistic mass factor y(r) and the axial component of vec-
tor potential 5AO(r) are calculated from Eqs. (42) and
(48). Substituting the resulting profiles for 7 (r) and
520{r) into Eq. (50), we can determine the plasma
boundary R~ for a given value of co,a /c . Once the lo-
cation of the boundary R& is calculated, the electron den-
sity profile n~(r), the azimuthal velocity profile Vsb(r),
and the axial magnetic field Bo, are obtained from Eqs.
(24), (26), and Bo,(r) =(aBo/r)(d/dr)[rX(r)], respectively
Shown in Fig. 3 are the radial profiles for (a) nb(r) and (b)
V~~(r) and Bo,(r), for the choice of parameters

c3&~a /c =3, b/a=2, eVO/mc =0.792, and co,a /c
=7, assuming space-charge-limited flow with a=O. As
indicated in the discussion following Eq. (26), the azimu-
thal velocity Vsq(r) in Fig. 3(b) is in the positive 8 direc-
tion, which gives a diamagnetic depression in the axial
magnetic field Inde. ed, the axial magnetic field at the
cathode, Bo,(r =a), is depressed considerably relative to
the vacuum value Bo for the choice of parameters in Fig.
3. %'e also find from the numerical analysis that the ef-
fective transverse temperature Tq~(r) in Eq. (56) is negli-
gibly small for space-charge-limited flow (a=O) in a
diode with positive polarity. Shown in Fig. 4 are plots of
the normalized boundary location Rb/a versus co,a /c
for a=o and several values of co&~a /c . It is evident
from Fig. 4 that confinement of a dense electron layer re-
quires a strong applied magnetic field Bo. Substituting
the value obtained for Rb in Fig. 4 into Eq. (55), we can
also determine the magnetic field at the cathode Bo,{a)
for specified values of co~~a /c and co,a /c .

Of considerable practical interest are the equilibrium
properties of the electron layer for specified values of
b/a, diode voltage Vo, and applied magnetic field Bo.
Typical results are shown in Fig. 5, where (a) R~/a and
(b) cozen, a /c are plotted versus co,a /c for b/a=2,
a=O, and several values of eVO/mc . As expected, the
thickness of the electron layer decreases significantly as
the applied magnetic field Bo is increased for specified
diode voltage Vo. Moreover, for each value of Vo, there
is a minimum value of applied magnetic field Bo required
for insulation of the electron flow from contact with the
anode. For example, for eVo/mc =0.3 in Fig. 5(a), the
minimum magnetic field B;„ is determined from
co,a /c =1.25. For Bo ~B~;„,the electron layer is con-
fined in the diode with Rb & b, and the electron flow is in-
sulated from contact with the anode. For Bo ~B;„,how-
ever, the applied magnetic field is not sufficiently strong

to insulate the electron flow from contact with the anode.
It is evident from Fig. 5(a) that the minimum field B~;„
required for magnetic insulation increases with increasing
value of the diode voltage Vo. Although the layer thick-
ness R~ —a decreases with increasing magnetic field Bo, it
follows from Fig. 5(b) that the electron density
(co~ha /c ) increases with increasing Bo for a specified
value of diode voltage Vo.

In order to demonstrate the influence of nonzero elec-
tric field at the cathode (a&0) on diode equilibrium prop-
erties, shown in Fig. 6 is a plot of the transverse tempera-
ture profile T~~(r) for b/a =2, co&I,a /c =3, and several
values of the diode voltage Vo and cathode electric field
parameter a defined in Eq. (32). A large cathode electric
field requires high applied magnetic field Bo to assure in-
sulated electron flow. In order to fix the layer boundary
at Rb/a =1.7 in Fig. 6, for each value of a we have
varied the diode voltage Vo and the applied magnetic field
Bo In. Fig. 6, the values are (u, e Vo/mc, co,a /
c ) =(0,0.79,7), (0.1,0.87, 8), (0.2,0.95,9.03),
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FIG. 7. Plots of (a) RI, /a, (b) co~qa /c, and (c) Bo,(a)/Bo vs
co,a /c for p =+1, b/a =2, eVO/mc =0.5, and several
values of a.



KINETIC EQUILIBRIUM PROPERTIES OF RELATIVISTIC. . .

(0.3,1.03,10.1), and (0.4, 1.11,11.22). For space-charge-
limited flow with a=O, it is evident from Fig. 6 that the
transverse temperature Tzb(r) is negligibly small. That
is, for e=O and p=+1, the electron flow is laminar,
which is consistent with the results of Bergeron in the
nonrelativistic case, and Swegle in the relativistic re-
gime. However, increasing the value of a can significant-
ly increase the transverse temperature Tj b(r) (Fig. 6), and
the corresponding r-z motion of the electrons. Also tabu-
lated in Fig. 6 is the relativistic mass factor y& =—y(Rb ) at
the surface of the electron layer. It is evident from Fig. 6
that yb

——y(Rb) increases with increasing values of a.
In Fig. 7, we investigate equilibrium properties for

specified values of b/a and diode voltage Vp. Shown in
Fig. 7 are plots of (a) Rb /a, (b) co a 2/c and ( )
Bp (a)/Bp versus cp, a Ic, for b/a =2, eVp/mc =0.5,
and several values of a. It is clear from Fig. 7(a) that the
location of the layer boundary Rb exhibits only a weak
dependence on the electric field strength at the cathode as
measured by the parameter a. In contrast with the
behavior of Rb/a shown in Fig. 7(a), the normalized elec-
tron density co~ha /c plotted in Fig. 7(b) varies rapidly
with the electric field at the cathode. It is evident from
Fig. 7(b) that the electron density decreases rapidly with
increasing values of a. Once the values of R andb an copb ale
determined, we can calculate the axial magnetic field at
the cathode Bp,(a) from Eq (55). Shown in Fig. 7(c) are
plots of Bp,(a)/Bp versus cp, a Ic for a=O and 0.2. The
axial magnetic field at the cathode decreases substantially
as the applied magnetic field approaches the minimum
valuevalue cp, a /c =2.5 required for magnetic insulation. (In
this limit, the electron layer fills the entire diode region. )
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FIQ. &0. Plots of (a) Rb/b, (b)D~bb /c, and (c) Boi(&)/&0
vs ~,b /c for a=0, p = —1, a/b =0.5, and several values of
normalized diode voltage e Vo/mc .
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FIG. 11. Profiles of the transverse temperature T&h(r) for
p = —1, a/b =0.5, RI, /b =0.66, c3~qb /c =3, and several
self-consistent values of (a, e Vo/mc, co,b /c ).

(p= —1 and R, =b) are illustrated in Figs 8—.13. For
negative polarity, we remind the reader that the cathode
is located at the outer conductor with $0(r =b) =0, and
the anode is located at the inner conductor with
$0(r =a)= Vo. Equilibrium properties are calculated nu-
merically from Eqs. (42), (48), (50), and (54). Shown in
Fi . 8 are plots of (a) nq(r) and T~&(r) and (b) Bo,(r) and

~b(r) versus rjb for a=O, bja=2, eVO jmc =0 694, .
cozbb /c =3, and co,b /c =2 5 In co.nt. rast to the case
with positive polarity, it is found that the transverse tem-
perature for space-charge-limited flow (a=O) in a diode
with negative polarity is not negligibly small. We also
emphasize that the azimuthal velocity of an electron fluid
element is in the negative-8 direction, and that magnetic
flux is ejected from the electron layer [Fig. 8(b)]. In this
regard, the axial magnetic field at the anode Bo,(a)
[evaluated from Eq. (55)] is significantly larger than the
magnetic field Bo ——Bo,(b) at the cathode [Fig 8(b)]. .
Shown in Fig. 9 are plots of Rsjb versus cu, b /c for
a=O, and several values of co~~b /c The plasm. a thick-
ness decreases rapidly with increasing co,b /c and fixed
value of c3&~b /c . Qnce the boundary location Ri, is
determined in terms of co&~ and co, from Fig. 9, we can
obtain all of the necessary equilibrium quantities from
Eqs. (54) and (55).

Rb
b 075—

(a) P = —I, a/b = 0.5
eVO

= 0.7
ITIC

0.5
0

~2 b2/c 2
C

Shown in Fig. 10 are plots of (a) R~/b, (b) co~bb jc,
and (c) Bo,(a)/Bo versus co,b ic for space-charge-
limited flow with a=O, a/b =0.5, and several values of
normalized diode voltage eVO/mc . From Fig. 10(a), we
find that high diode voltage Vo requires a strong magnet-
ic field BO=Bp,(b) for magnetic insulation of the electron
flow from contact with the anode at r =a Th. e minimum
magnetic field required for insulation also increases with
diode voltage. It is interesting to compare Fig. 5(a) with
Fig. 10(a). The minimum magnetic field B;„required
for magnetic insulation in a negative-polarity diode is less
than that required for a positive-polarity diode. From
Fig. 10(b), it is quite remarkable that the electron density
is relatively insensitive to the diode voltage Vo. However,
high electron density requires relatively high applied mag-
netic field for confinement of the electrons. Substituting
the values obtained for R&/b and c3~bb /c into Eq. (55)
determines the axial magnetic field at the anode (r =a).
Note that Bo,(Rb)=BO,(a) for p= —1. Shown in Fig.
10(c) are plots of Bo,(a)/Bo versus co,b /c . The axial
magnetic field at the anode increases substantially when-
ever the applied magnetic field Bo approaches the
minimum value B,„required for magnetic insulation. In
general, higher diode voltages exhibit a more enhanced in-
crease in B~,(a) because of the higher density of the elec-
tron layer.

The influence of .nonzero electric field at the cathode
(a&0) on equilibrium properties is illustrated in Fig. 11
where the transverse temperature Tqq(r) is plotted versus
r jb for cozhb /c =3, b ja =2, R~ jb =0.66, and several
values of a. For Ri, /b=0. 66, the self-consistent values
of a, eVO/mc, and co,b /c in Fig. 11 are given by
(a,e Vo/m c,co, b/c )=(0,0.69,2.5), ( —0. 1,0.79,3.03),

—0.7Rb
b

IO
(b) P =- I, a/b =0.5

= 0.7eV

fYlC 2

2 2
(alp/ b

c2 5

0.4
2 6

~2 b2/C2
C

IO

0
0

I

4
2t 2/c
C

FICx. 12. Plots of the normalized boundary location RI, /b vs
~,b /c for p= —1, co~i,b /c2=3, and several values of a.

FICx. 13. Plots of (a) RI, /b and (b)8 I,b /c vs co,b /c for
p =—1, a /b =0.5, e Vo/mc =0.7, and several values of a.
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( —0.2,0.89,3.59), ( —0.3,0.98,4. 16), and ( —0.4, 1.08,
4.79). Note that the values of a are negative for a
negative-polarity diode with p= —1. In contrast with
Fig. 6, the transverse temperature for space-charge-
limited flow (a=0) in a negative-polarity diode is not
negligibly small. Also shown in Fig. 11 are the values of
yb y——(Rb) at the layer boundary Rb for different values
of a. Evidently, yb increases for increasing values of

~

a
~

. The dependence of the location of the layer boun-
dary Rb on the electric field at the cathode is illustrated
in Fig. 12 where Rb/b is plotted versus co,b /c for
c3&bb /c =3 and several values of a. It is evident from
Fig. 12 that increasing the parameter

~

a
~

requires
stronger applied magnetic field Bo in order to confine the
electron layer.

Finally, in Fig. 13, we plot (a) Rb/b and (b) D ebb /c
versus co,b /c for normalized diode voltage
eVo/mc =0.7, a/b=0. 5, and several values of a. It is
evident from Fig. 13(a) that the location of the layer
boundary R~ is weakly dependent on the parameter n.
However, larger values of

~

a
~

require stronger magnetic
field Bo to confine the electron layer. From Fig. 13(b),
for fixed co,b /c, the normalized electron density
cozbb /c decreases as

~

a
~

is increased. From the nu-
merical calculations for a&0, we find that the axial mag-
netic field at the anode Bo,(a) is almost identical to that
obtained for space-charge-limited flow (a =0) in Fig.
10(c).

VI. CONCLUSIONS

We have investigated the equilibrium properties of a
relativistic cylindrical electron layer ' confined in a mag-
netically insulated diode within the framework of the
steady-state (t)/Bt=0) Vlasov-Maxwell equations. ' '
The analysis was carried out for an infinitely long cylin-
drical electron layer with axis of symmetry parallel to an
applied magnetic field Boe„which radially insulates the
electron flow from contact with the anode. The theoreti-
cal model and basic assumptions were discussed in Sec. II,
allowing for both polarities of the electric field. Also dis-
cussed in Sec. II was the general formalism for describing
equilibrium properties within the framework of the

steady-state Vlasov-Maxwell equations. In Sec. III we
specialized to the class of self-consistent Vlasov equilibria
in which all electrons have the same canonical angular
motnentum (Pe ——Po ——const) and the same energy
(H=mc ). One of the most important results in this
analysis is that closed analytic expressions are obtained
for the self-consistent electrostatic potential and the 0
component of vector potential. Moreover, the various
equilibrium properties of physical interest can be calculat-
ed readily from these potentials. As a special limiting
case, in Sec. IV we investigated the detailed equilibrium
properties of a magnetically insulated planar diode. One
of the important features of the analysis in Sec. IV is that
the transverse temperature Ttb(x) vanishes identically for
space-charge-limited flow with zero electric field at the
cathode.

In Sec. V the detailed equilibrium properties of a
cylindrical diode were investigated over a broad range of
system parameters, including diode voltage Vo, cathode
electric field (a), electron density nb at the cathode, ap-
plied magnetic field Bo, and the ratio b/a of the inner
and outer conductor radii. Several features of the analysis
are noteworthy. First, the electron layer in both a
positive-polarity diode (p =+ 1) and in a negative-polarity
diode (p = —1) ejects magnetic flux. That is, the magnet-
ic field Bo,(r) decreases monotonically from the boundary
of the electron layer (r =Rb) to the cathode. Second, the
layer thickness decreases with increasing applied magnetic
field Bo. However, the layer thickness is an increasing
function of diode voltage Vo. Third, the density of the
electron layer increases with applied magnetic field Bo.
Fourth, the transverse temperature Tzb(r) increases sub-
stantially as the strength of the electric field at the
cathode is increased. We therefore find that the density
of the electron layer decreases as the electric field at the
cathode is increased.
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