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The manifold of equilibrium states for a fixed number of moles of ideal gas, when provided with a
Riemannian metric based on the second derivatives of internal energy (studied by F. Weinhold), is
found to have zero intrinsic curvature, in fact to be isometric to the Riemann surface of the natural
logarithmic function. This and three other closely related flat spaces associated with an ideal gas
are studied by means of explicit isometrics.

I. INTRODUCTION

Recently a number of efforts' have been directed to-
ward clarifying the physical content of a geometric notion
which arises naturally from the mathematical formalism
of thermodynamic theory. To provide the most natural
setting for this notion, we regard the collection of equili-
brium states of a thermodynamic system as a differenti-
able manifold: the Gibbs surface. The notion of interest
then takes the form of a Riemannian metric or measure of
length on this manifold.

There are actually two different though closely related
metric structures associated with two ways of parametriz-
ing the collection of thermodynamic states. In one case
we use the extensive variables U, V,X&,X2,. . . with an
equation of state S=S(U, V, . . .) for the entropy of the
system. Here U is the internal energy, V is the volume,
and N~ are the mole numbers of the various chemical
species. We will call this the entropy view. On the other
hand, we may formulate an energy view by regarding the
entropy S as one of the parameters and U= U(S, V, . . . ) as
the dependent variable. In the former case the second
derivative form, DS, defines the m—etric, in the latter
case the metric is D U.

It is important to realize that these two structures are
not equivalent. We have shown elsewhere' that they are
conformally related, i.e.,

D U= —TDS,
where T is the temperature. This relation is intimately
connected with the following relation between the availa-
bility dissipated, hA„, and the entropy produced, hS„,
during a process where a system spontaneously equili-
brates to a reservoir at temperature T:

Indeed, Salamon and Berry have shown that the
availability dissipated in a thermodynamic process is at
least the square of the thermodynamic length of the pro-
cess (defined in terms of the metric D U) times a mean re-
laxation time divided by the total time of the process [see
the inequalities (3.15)]. The analogous statement holds
for entropy produced in a process if the length is mea-
sured by D S .

The second-order Taylor coefficients, D S, have long
been important in what is known as the Gaussian approxi-
mation to conventional thermodynamic fluctuation
theory. Ruppeiner ' has chosen to take the metric struc-
ture defined by D S as fundamental to a new thermo-
dynamic fluctuation theory. He has shown that the cur-
vature defined by D S is proportional to the correlation
length. He has also used D S to incorporate local correla-
tions into thermodynamic fluctuation theory, thereby ex-
tending the realm of such theory to volumes smaller than
the correlation volume.

In this paper we examine the geometries of the ideal gas
as defined by D S and D U. The first finding is that all
four of the geometries naturally associated with the ideal
gas (see Sec. III) are locally flat, i.e, they have zero curva-
ture. In view of Ruppeiner's theorem connecting the cur-
vature defined by D S with the correlation length, this
finding is not surprising. The local flatness, however, en-
ables us to find rectilinear coordinates for these
geometries. In these coordinates, straight lines are the
shortest paths between states and distances may be com-
puted in terms of the usual Euclidean distance formula.
In Sec. III we will make some qualifications of these
statements due to the global structure of these geometries
[see in particular Eqs. (3.14)].

AA„= —T AS„. (1.2) II. SUBSPACES WITH POSITIVE DEFINITE METRIC

The connection between (1.1) and (1.2) suggests that the
geometric notions may well have something to tell us
about the irreversibilities of processes, and it is by way of
(1.2) that the subtly different physical interpretations of
the two structures may be seen.

We start with some preliminary remarks to indicate
why the forms D U and —D S, which we propose to use
as Riemannian metrics, should be restricted to systems of
fixed size.

Let us limit our remarks to the energy view, where the
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fundamental relation is given by U= U(X~, X2,. . .,X~).
The hypersurface of states in R +' of (m + 1)-tuples
(U,X~,. . .X ) can be seen to be a cone by virtue of the
homogeneous first-order property of U(X~, . . .,X ). That
is, if (U,X~, . . . , X~) lies on the hypersurface, so does
(aU, aX~, . . .,aX ) for any positive a. Now, each point on
a cone is parabolic, and, thus the second fundamental
form, which is D U in this case, is degenerate at each
point. It has a null direction which corresponds to scaling
the system.

An instructive but less direct way to see this is by way
of the Gibbs-Duhem relation

0= QX, dY;, (2.1)
L

where Y; =8 U/BX;. Write dY~ g [—D—U]. ,J dX~ and
substitute above to get

0= g gX, [D'U],,dX, .

Now, since the dX s may be chosen at will, we must have

g X;[D U],J ——0 for all j . (2.2)

This is a statement that the rows of the matrix D U are
linearly dependent.

As can be seen from (2.2), the quadratic form is degen-
erate along a null process, i.e., a process along which all of
the extensive variables change by the same factor. Such a
null process has a geometrical interpretation as a genera-
tor of the cone of states. This degeneracy is generally
avoided by restricting consideration to a cross section of
the cone obtained by fixing the value of one of the exten-
sive variables. For the ideal gas we will study two cases:
fixed volume V, and fixed mole number N. Once we re-
strict our attention to such lower dimensional slices of the
equilibrium manifold, the degeneracy in the metric disap-
pears, i.e., we have eliminated the degenerate direction.

The positivity of the forms D U and DS in such —a
scaled system is well known and embodies the principles
of minimum energy and maximum entropy.

III. THE IDEAL GAS

In this section we will enumerate four distinct families
.of Riemannian manifolds whose underlying spaces are
cross sections of the cone of states of the ideal gas. We
will show that each of these manifolds is isometric to a
well known flat -Riemannian manifold In each c.ase we
will exhibit the isometrics explicitly. This will provide an
essentially unique global coordinate system in which the
geometry of the manifold is laid bare and at the same
time will provide a direct verification of flatness.

The cone of states, C, of the ideal gas is the collection
of all 4-tuples (x~,x2,x3,x4)=(U,S, V,N) in I+ satisfy-
ing some fundamental equation for the ideal gas, either
U= U(S, V,N) or S=S(U, V,N). We will take the follow-
ing two families of cross sections of this cone as underly-
ing spaces for the manifolds to be studied. They are
characterized, respectively, by constant mole number and
constant volume.

(i) ~= [(x~,x3,x3,xq) H C
~
x4 ——N [.

(ii) P = I(x&,x2,x3 x4}HC
~
x3 V].

S~. (U, V),

Sv.. (U,N),
U~.' (S, V),

Uy. (S N) .

(3.1a)

(3.1b)

(3.1c)

(3.1d)

In the following, frequent use will be made of the first
law of thermodynamics,

d U=TdS PdV, —
and of the equations of state

PV =RNT, U= CvNT,

R =Cp —Cv, TS+pN=CpNT .

(3.2a)

(3.2b)

In each case, the Riemannian structure is defined by
identifying the matrix representation of the metric bi-
linear form in the coordinate systems (3.1) with the matrix
of second derivatives of the entropy S, or of the energy U,
with respect to these coordinates.

In particular, the metric form for Sn. and Sz, respec-
tively, in coordinates (3.1) can be readily calculated as
second derivatives of S,

T

—D S(U, V)=—

BS BS
aUa V

BS BS
a VaU

CvN
U2

0

0

(3.3}

DS(U, N) =——
BS BS

BUBK

BS BS
BNBU

CvÃ
U2

Cv
U

Cp
(3.4)

On each of these manifolds we will place two different
metric (Riemannian) structures, D—S and D U, to gen-
erate four families of Riemannian manifolds S&, U&, Sv,
and Uv, where the subscript N or V denotes the variable
held constant on the underlying space and the S or U sig-
nifies the metric Structure imposed.

In each case, the structure will be introduced by way of
a particular coordinate system. The cone of states inherits
two natural coordinate systems from the ambient space in
which it is imbedded. In the entropy view the coordinates
are (U, V,N) and in the energy view they are (S, V,N) For.
the various cross sections the natural coordinates are as
follows:
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D U(U, V)=

1

U
0

RU
Cv V'

(3.5)

1

U

where the notation on the left in (3.3) and (3.4) is chosen
to express the coordinate system in which the matrix
represents the form D S.

Now, by immediately making use of the relation (1.1),
we may also write for Uz and Uv, respectively,

fold (for S~, U~, S~, and Uz, respectively)

2 dU2 d P'2CvN
U2 P2

ds =—dU+ dV
1 2 RU

C,V'

ds = dT+ —dN
CvN '2 R

z 2

P p v

The first takes the form

(3.11a)

(3.11b)

(3.11c)

(3.11d)

D U(U, N)=
1 CpU

C,N'

(3.6)
ds —dx +dy

under the variable change (for S~)

M= J'MJ, (3.7)

where J and J' are the Jacobian matrix B(X~,Xq )/
&(X&,Xz) and its transpose.

As we will soon see, the diagonal forms (3.3) and (3.5)
are particularly convenient, so we are motivated to search
for coordinate changes in Sv and U~ which will diagonal-
ize their forms. The appropriate coordinates for Sz are
( T,N) and those for Uz are (U,S), where S=S/N, the
molar entropy. The Jacobian matrices necessary to effect
these changes in (3.4) and (3.6) by way of (3.7) are, for S~
and Uv, respectively,

CvÃ CvrB(U,N)
a(Z;N)

(3.8a)0 1

It is important-to note that the entries in the matrices in
(3.5) and (3.6) are not second derivatives of U, i.e., that
the coordinate systems are not those enumerated in (3.1).
Indeed, other coordinate systems may be far more suitable
to the intrinsic geometries we wish to study, so it is im-
portant to recall how a coordinate change is effected.

The matrix representation of the metric, M, in a coordi-
nate system, X=(X~,X2), may be found from the repre-
sentation, M, in coordinate system, X= (X&,X2) by

x =+C~N lnU, y =V'RN lnV, (3.12a)

r =2~U, 8= —,
' +R /Cyln V,

r =2v RN, 8= ,' QCz/R lnT—,

r=2+RU/Cp, 8=
2 +1/RCvS

(3.12b)

(3.12c)

(3.12d)

Equations (3.12b) and (3.12c) are seen to effect local
isometrics of Uz and S~ into the plane and global
isometrics onto the Riemann surface of the natural log-
arithmic function (see Fig. 1). Because of the requirement
S ~ 0 in (3.13d), Uz is isometric to a submanifold of this
Riemann surface: its upper half corresponding to 8 ~ 0.

Figure 1 suggests the topology of the spaces Sz and Uz
by showing the portion corresponding to —2m. & 8 & 2m.

whereupon (3.12a) is seen to effect an isometry between
S~ and the Euclidean plane.

The last three all take the form

s 2 dI 2+ ~2 d g2

under the variable changes below (for U&, Sz, and U~,
respectively)

d(U, N)
a(U, S)

1

1

CpT

0

Cp

(3.8b)

and the results are, for Sz and Uz, respectively,

DS(T,N) =—
CvN

T2
0

0
(3.9)

D U(US)=

R
CpU

0
(3.10)

It is instructive to write (3.3), (3.5), (3.9), and (3.10) as
equations for the classical line element ds on the mani-

FIG. 1. The Riemann surface of the natural logarithmic
function. The portion shown is for —'2m&0&2m and 0&r &1.
This surface is isometric to the spaces S~ and U~. Its upper
half (8 & 0) is isometric to the space Uy.
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FIG. 2. Orthogonal families of equiangular spirals represent-

orthogonal families (p):(S) in U~ are also similar.

0 1 Selected values of 8 are shown as extended
ra s. In Uv the lower half, 8(0, is truncate . "p-

f' '
identified to a single boundarylar axis" in the igure is i en

' ' '
r

point outsi e o e m'd f the manifold. This point seems to p ay
the role of absolute zero in the space U~.

d 1-Certain familiar processes have simpm le forms and re a-
. Let ( ) represent the familytionships in these geometries. e q

ant. Forof rocesses in w ic eh' h the quantity q is held constant. or
d ( ) are (reversible) adiabats and isobars,p p

1 . The following relation first prove yrespective y. e
n airs of orthogonalhold shows how to generate many pairs o

~ ~

famihes.
Let Xi,X2 be the natural (extensive) coord'rdinates on the

iven b (3.1) and let Yi, Y2 be the corre-

=12 Then it is true that (Xi):(Y2) an 2 .en
10pairs of orthogonal families.

b b-Fop our geometries, these ort g p
'

ho onal airs may be ta u-
lated as follows. Here p is the chemical potentia an
P==X/Vis the molar density.

S~. (V):(T) and (U):(p) .

Si: (T):(&) and (p):(S) .

U~: (V):(T) and (S):(p) .

Uv. ( T):(N) and (p ):(S) .

S is particularly simple in that ( V) and p are the hor-
izontal lines and ( T) and ( a

tries the firstS and U~ are similar. In both geometries e
ectivel, t e ra iah d' 1 lines and the circular arcs

d air are equiangularcentered at the pole. The second pair are
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FIG. 3. pV plots of a family of pararallel lines (a) and a family
of lines through a point (b) for the geometry U~.

spirals of the form

r =Le ae (3.13)

a = —+R /Cv for the first family andwhere a =—
a =+CV/R for the second. Figure 2 show

0

ows curves from
f rthogonal families for a monatomic gas.this pair o or

the above form,In U, the first pair are also spirals o the a
r a= —QCi, /R for the first family andwhee, o e e,

a =QR/Cv for the second. The behavior o
's more complicated and need not concern us.

For the U~ geometry, pVplots are sh
of parallel lines [Fig. 3(a)] and a family of straight lines
through a given point [Fig. 3(b)].

A consequence o t e re a if h relations between the geometries
ural loU S,Uy an ed th Riemann surface of the natura og

the len th of a shortest path connectingti
two states. If the angular separation between e

~ then the shortest path is a straight line.

proceeds via the singularity at r =0. As a consequence o
this we get the distance formula

[(Xi—X2) +(Yi —Y2) ], 8ip(e
Y')' ' (X'+Y')', 8„&(X)+Yi + z z

' ' (3.14)
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b, S„&d,air (3.15a)

One application of this geometry is in connection with
the bounds' on the entropy produced ~„and the
availability dissipated AA„ in a process which proceeds by
means of states of local thermodynamic equilibrium from
one equilibrium state to another. These bounds are given
by

correlation length and curvature several years prior to
proving that they are proportional. Similarly, the rela-
tionship between dissipation for the metric structure was
first hinted at by the recognition of the formula for the
length of adiabats of the ideal gas. This formula gives the
change in flow velocity of the gas in the rarefaction fan of
a shock wave. It seems likely therefore that the geometry
described above will lead to further discoveries concerning
thermodynamic length and i.ts applications.

b, A„&d„e/~, (3.15b) ACKNOWLEDGMENTS

where d, and d„are the distances measured by D S and
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