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Deterministic hopping in a Josephson circuit described by a one-dimensional mapping
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Analog simulations of the hopping noise of a current-biased Josephson tunnel junction shunted
with an inductor in series with a resistor reveal a 1/co spectral density over two decades of frequency
~ for a narrow range of bias currents. The amplitude of the low-frequency part of the spectrum de-

creases when white noise, representing Nyquist noise in the resistor at a few degrees Kelvin, is added
to the simulation. We explain the shape of the power spectrum and its dependence on bias current
and added white noise in terms of a deterministic process, involving a one-dimensional mapping,
that is analogous to that found in Pomeau-Manneville intermittency. Moreover, we are able to es-
tablish a detailed relationship between the origin of the mapping and the differential equation
describing the dynamics of the system.

I. INTRODUCTION

A major advance was made in the field of nonlinear
dynamics when it was shown that a nonlinear dissipative
system with only a few degrees of freedom could exhibit
noise produced in a deterministic way (chaos). Thus, the
long-term unpredictability of certain systems can have its
origin in the particular structure of the nonlinear differen-
tial equations governing these systems and not in the fact
that they interact with a very large number of degrees of
freedom. At the same time, a deeper understanding of
some of the mechanisms producing chaos was gained
when it was realized how the iteration of a simple one-
dimensional mapping of an interval of real numbers into
itself could produce chaotic behavior for a particular
range of parameters.

The question then arose as to whether it is possible, in
some cases, to reduce the set of differential equations
governing a physical system to the iteration of a simple
mapping, and thus to identify the chaos-producing mech-
anism in this system. This question has been answered in
a particular type of chaotic phenomenon called the
Pomeau-Manneville intermittency. In general, intermit-
tency, which is the occurrence of noise in bursts, can have
many different origins, but in the particular class studied
by Pomeau and Manneville it occurs when a physical sys-
tem in a limit cycle becomes unstable and undergoes a
Hopf bifurcation. For the intermittency to occur, the
limit cycle must lose its stability to a chaotic attractor.
At the onset of instability, the system is in the limit cycle
for periods of time which are interrupted in a seemingly
random fashion by bursts of noise. Pomeau-Manneville
intermittency can be understood in terms of the Poincare
map of the equations of the system in the neighborhood
of the limit cycle. This Poincare map reduces to a map-
ping of the complex plane onto itself with ihe generic
form z —+z(l+e)e' + (higher-order terms), where @~0+
corresponds to the onset of intermittency. Providing that
the Poincare map reinjects points at random in the vicini-
ty of z =0, the long-time chaotic behavior is entirely

determined by the real numbers e and A.. This mechanism
has been shown to occur in several physical systems. '

It would be interesting to know if this complete under-
standing of noise in one particular case can be achieved in
other cases. A commonly encountered type of noisy
behavior is hopping, the apparently random transition of
a dynamical variable among several distinct states. (Inter-
mittency can be thought of as a limiting case of hopping
between two states, a noise-free state and a noise-
producing state. ) Hopping is a general phenomenon
which is found in a variety of nonlinear physical systems
such as optical devices, semiconductor devices, electrical
circuits, ' and Josephson junctions. "

In this paper we will focus on the hopping phenomenon
found in Josephson junctions. Josephson junctions have
the advantage of being a "minimal" nonlinear chaotic sys-
tem: They can be represented by a set of first-order dif-
ferential equations with only three variables, the minimal
number required for the observation of chaos. ' They also
lend themselves easily to real experiments and analog
simulations, as well as to numerical simulations.

This article demonstrates that a particular type of hop-
ping exhibited by a Josephson junction shunted by a resis-
tance having substantial self-inductance can be explained
deterministically via a one-dimensional mapping by the
equations of motion of the junction. The paper is organ-
ized as follows. Section II reviews the different types of
chaotic behavior that have been found in Josephson junc-
tions, with emphasis on a particular type of hopping be-
tween two modes that is suppressed by the addition of
noise and that exhibits an excess low-frequency noise
(deterministic hopping). Section III investigates the rela-
tionship between the frequency dependence of the spec-
trum and the statistical properties of the time intervals be-
tween hopping events which may provide some indication
of the mechanism producing hopping. As an example of
such a mechanism, we describe a mathematical model
which is completely deterministic and produces a co

spectrum (co is the frequency). In Sec. IV we analyze the
differential equations of the system with a computer
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simulation ~sing the method of Poincare sections. ' The
Poincare section of the flow is a strange attractor which
can be divided into two regions corresponding to the two
modes between which the system hops back and forth.
Section V shows how the flow in one region can be used
to construct a one-dimensional mapping that demon-
strates one of the transitions between the two modes. The
relationship between this mapping and the mathematical
model developed in Sec. II is discussed. Section VI con-
tains a concluding summary.

II. THE HOPPING PHENOMENON
IN A JOSEPHSON JUNCTION

A Josephson tunnel junction consists of two supercon-
ductors separated by a thin insulating barrier through
which pairs of electrons (Cooper pairs) can tunnel
coherently. ' The supercurrent Iz through the junction is
determined by the relation

Is =Iosin5, (2.1)

where Io, the critical current, is the maximum super-
current that the junction can sustain without developing a
voltage, and 5 is the phase difference between the complex
order parameters in the two superconductors. For applied
currents greater than Ip, part of the current must flow
through a resistive element (intrinsic to the junction or
added externally) so that a voltage V is developed across
the junction. In this state, Eq. (2.1) is still valid, but 5(t)
evolves with time according to the relation

V= (@p/2n)5, (2.2)

where @p
—=h /2e is the flux quantum and the dot

represents differentiation with respect to time. The two
other intrinsic parameters of the junction are its self-
capacitance C, formed by the overlap of the two super-
conductors, and its nonlinear quasiparticle conductance
crqz( V) = Iqz/V, where Iqz is the quasiparticle current.

Chaos in Josephson junctions has been studied in
several circuits. In the most widely studied, a Josephson
junction shunted by its self-capacitance and a, resistor is
driven with an alternating current. ' ' This system is
governed by the same second-order nonautonomous equa-
tion as the driven, damped pendulum, namely

5+y5+ Qpsin5 =a cos(Qt ), (2.3)

where 0/2m is the frequency of the driving current. In
particular, hopping between metastable states has been ob-
served in simulations, "' ' and has recently been ob-
served experimentally. In one of these studies, Ben-
Jacob et ai." analyzed Eq. (2.3) for parameter values for
which there is hopping between two unstable phase-locked
states. Their analytical calculation of a simplified model
of Eq. (2.3) produces power spectra that decay as 1/co2 or
1/co (depending on parameter values) at relatively high
frequencies. Their numerical computations are in good
agreement with their analysis. In a similar vein, Geisel
et a/. ' have also analyzed Eq. (2.3), together with a relat-
ed one-dimensional mapping, and found a 1/e depen-
dence above some characteristic frequency. Very recently,
Gwinn and Westervelt' presented numerical simulations

(@p/2m )5 =RIs+ LIs+ Vx, (2.5)

where V&(t) is the thermal voltage noise generated by the
resistance R; since R &&1/oq~ for situations of practical
interest, we neglect the thermal noise voltage associated
with o~. To simplify the situation, we assume that oq~ is
linear over the voltage range of interest with the dimen-
sionless value 0.=Ro.

qp It is more convenient to write
Eqs. (2.4) and (2.5) in dimensionless form. If we intro-
duce a dimensionless time r=(2mIpR/@p)t, Eqs. (2.4) and
(2.5) become

and

~ =sin5+ pc5+is+a'5 (2.6}

5=is+pL, ts+Ux ~ (2.7}

where i =I/Ip, is Is/Ip U~ =——V~/IpR Pc
=2wIpR .CIC p and PL, 2n.LIp /@p. =The dots now
denote differentiation with respect to w. The magnitude
of the voltage noise is characterized by I =2m.kg T/IpCp,
the ratio of thermal noise to the junction coupling energy.

Although there has been some analytical work on the
dynamics of this system —Wiesenfeid et al. have calcu-
lated to good accuracy the threshold for the first period-
doubling bifurcation as the bias current i is reduced from
some large value —most of the insight into the complicat-
ed dynamics of the system has been achieved with both
analog and digital simulations. ' Measurements of the
low-frequency noise developed by this system revealed ex-
cessive amounts of noise (with a power 10 or more times
larger than the Nyquist noise at 4 K, and 10 to 10 times
larger than "chaotic noise") over small intervals of bias
current for which there is hopping between limit cycles or
between a limit cycle and a chaotic regime. Analog simu-
lations showed that this hopping produced a low-
frequency noise power spectrum that varied approximate-

~s I~) Iqp (V)

L
0

R C:::&Ipsin R V
VN(t)

FIG. 1. Schematic representation of Josephson tunnel junc-
tion with critical current Io and self-capacitance C shunted with
an external resistance R which has self-inductance L Iqp is the
quasiparticle tunneling current and V~ is the Nyquist voltage
noise associated with the resistance.

of Eq. (2.3) showing 1/tp noise over a limited range, but
found that this noise is easily destroyed by a small
amount of computational noise.

We have studied in detail an alternative circuit, shown
in Fig. 1, both experimentally and in simulations. '
Here, the junction is shunted externally with a resistance
R in series with an inductance L and is biased with a
steady current. The application of Kirchhoff's laws to the
circuit shown in Fig. 1 yields the equations

I=Ipsin5+ (C p/277)C5+Is+Iqp (2.4)

and
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FIG. 2. Voltage power spectrum for an electronic analog of
the circuit shown in Fig. 1, with parameters chosen to maximize
the 1/co region: Pl. ——4.0, Pc=0.37, a=0.004, i=2.36, and
I =3&10 . (The spectrum was computed over two overlap-

ping frequency intervals. )
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FICr. 3. Mechanical analog of a Josephson junction shunted
with a resistance in series with an inductance (circuit of Fig. 1);
~ is the applied torque, y is the friction coefficient, and sc is the
torsional constant.

ly as 1/co over typically two decades, and that the hop-
ping was induced by the Nyquist noise in the shunt resis-
tance. Thus, when the Nyquist noise was reduced to a
very low level in the simulation, the hopping process
ceased, and the low-frequency 1/co noise vanished. How-
ever, in the course of this survey of the various chaotic re-
gimes, a relatively rare situation was observed in which a
low-frequency 1/co power spectrum (also over as much as
two decades) was produced by hopping that occurred in
the absence of thermal noise. This process, which we
refer to as deterministic hopping for reasons that will ap-
pear later, occurred only at very precisely chosen values of
the bias current, and was destroyed by the application of a
modest level of Nyquist model.

Figure 2 shows a voltage power spectrum obtained
from an electronic analog of the circuit shown in Fig. 1

for one set of parameter values (PI ——4.0, Pc ——0.37,
i =2.36, o =0.004) where this excess low-frequency noise
was observed. There was no added voltage noise, and the
intrinsic noise of the analog was estimated to be less than
7 mK. The spectrum scales approximately as 1/~ be-
tween the dimensionless frequencies 10 and 10,and is
seen to flatten out below 10 . The large peak near 10
and the one slightly lower in frequency correspond to resi-
dual subharmonic modes. Their linewidths are in fact
narrower than is apparent: The broadening is an artifact
of an averaging of adjacent Fourier harmonics.

By monitoring the time sequence of the voltage, we
conclude that this low-frequency noise originates in a
two-model hopping process, rather than in some other
process. The steady-state waveform spends random-time
intervals in one of two distinct nearly-periodic modes that
differ in one important aspect. While in one mode 5 in-
creases monotonically with time (i.e., 5 & 0), in the other 5
becomes periodically negative. Although the latter
behavior is impossible for pL ——0, it occurs commonly for
pL & 1 and represents a "relaxation oscillation. " In this

mode, the junction oscillates for a while at the Josephson
frequency (determined by the voltage across the junction),
and then relaxes to a state with zero-average voltage in
which the junction undergoes damped oscillations at the
plasma frequency, '

co& ——(2m.Iocos5/NOC) '/ . The junc-
tion subsequently returns to the nonzero voltage regime,
and the cycle repeats.

An intuitive picture of the two modes is provided by
the pendulum analog of the Josephson junction shown in
Fig. 3. The correspondence between the two sets of pa-
rameters is listed in the figure. The pendulum pivots
about an axle attached to a spring with torsional constant
~, the other end of which is driven with a constant torque

Thus, one can store energy in both the pendulum
(which corresponds to the junction) and the spring (which
corresponds to the inductance). Frictional loss y is pro-
vided by a brake (which corresponds to the resistance).
%'hen the applied torque is sufficiently large compared
with the critical torque Mgl, 0 will advance monotonically
(5&0 for the junction). This situation is similar to an au-
tomobile clutch when it is "engaged. " On the other hand,
for lower values of torque, one can envision the pendulum
occasionally falling backwards (5&0 for the junction),
much like a "slipping" clutch, and undergoing several
small oscillations at angular frequency (g/l)'/ before
again executing a complete revolution. Bearing in mind
this analog, we label the mode for which 5 is always posi-
tive the "engaged mode" and that in which relaxation os-
cillations occur the "slipping mode. "

An important aspect of the hopping process is that, un-
like the situation described in Ref. 21, it occurs in the ab-
sence of added white (Nyquist) noise. Although the resi-
dual white noise in the electronic analog, estimated to be
I'=3 && 10 (equivalent to a Nyquist noise at about 7 mK
for Io 1 mA), cannot be en——tirely ruled out as a source of
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the hopping, we found that the low-frequency power spec-
trum was not significantly affected until we added a noise
equivalent to several hundred milliKelvin. Furthermore,
we found that the power spectrum was much more sensi-
tive to the value of the bias current than is the case for the
noise-induced hopping. Both of these results suggest that
the switching arises deterministically from the governing
equations, as wi11 become clearer in the next section. We
note that for the deterministic hopping, the I/to noise was
relatively insensitive to the values of Pc and PI, either of
which could be varied over a range of perhaps 10% to
20% before the hopping ceased.

To understand the particular frequency dependence of
the spectrum it is important to note that the two modes
are characterized by two different average voltages. The
long-time behavior of the signal is thus dominated by the
hopping between these two voltages and it is the statistical
properties of the time interval between two hopping
events that determine the low-frequency spectrum. The
exact relationship between these statistical properties and
the spectrum is investigated in the next section, together
with a deterministic model that has statistical properties
leading to a I/co power spectrum.
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FIG. 4. (a) Time sequence of a signal showing switching be-
tween two distinct oscillatory modes; (b) time sequence obtained
from (a) by retaining only the zero-frequency component of each
mode; (c) derivative of the time sequence in (b)—the arrows
represent delta functions.

III. SPECTRAL DENSITY OF HOPPING NOISE:
DETERMINISTIC MODEL PRODUCING HOPPING

NOISE WITH A co SPECTRAL DENSITY

In this section we calculate the spectral density of a
simple two-state hopping process as a function of the
probability distribution of the time intervals between hop-
ping events. We obtain sufficient conditions for the ob-
servation of a m power spectrum and describe a
mathematical deterministic model based on the iteration
of a one-dimensional mapping that satisfies these criteria

A. Simple model for switching noise

~o(t)=Prob (so~ t),
m. &(t)=Prob (~»t) .

(3.1)

We consider a physical process in which a variable hops
between two states of the system as indicated in Fig. 4(a).
Each state represents some dynamical process, for exam-
ple, a fixed point, a limit cycle, or a chaotic regime. We
assume that the characteristic frequencies of these dynam-
ical processes are much higher than typical hopping fre-
quencies between the two states, so that each state may be
represented by a time-averaged value as shown in Fig.
4(b) Thus, w. e need consider only a signal x (t) that takes
the values 0 and 1 during successive random intervals ~o
and ~~. We assume that all the intervals are statistically
independent of one another. The random process is thus
described entirely by the probability distributions

B. Calculation of spectral density

=
& ~y(0)

~
) I&(t)+ —,

'
[&y(t)) —(y(t) & ]I

=[2/(& .&+ &, ))]g(t), (3.3)

where, assuming y(t) is stationary, (y(t))+ is the ensem-
ble average value of y (t) at time t when there is a spike of
sign + at t=0 The quantit. y ( ~y(0)

~
) is simply the

average rate of spikes at t =0. If necessary, stationarity
can be imposed by introducing a cutoff at long times in
mp(t) and m)(t).

We define the probability densities pp(t —t') and
p~(t t') of finding—a positive and negative delta func-
tion, respectively, at time t when there is a negative and
positive delta function at time t':

Our procedure is to compute the correlation function
6 (t) of the time derivative y (t) =dx(t)/dt, and to Fourier
transform this correlation function to obtain the spectral
density S~(co). We then use the result

S„(co)=Sy(to)/co (3.2)

We chose this method because the calculation of the
correlation function of y(t), which consists of delta func-
tions of alternating sign [Fig. 4(c)], is particularly simple.

It can easily be shown that

G(t) = (y(0)y(t) )

The interesting property of our model, as we shall see,
is that the spectral density S„(co) of the process x (t) can
be calculated in closed form in terms of mp(t) and m. &(t).
When mo ——~~, the process is completely described by its
power spectrum (as is the case, for example, for Gaussian
noise).

po(t)= [1—~o(t)l ~

G

dt

p&(t)= [1—~,(t)] .
dt

(3.4)



DETERMINISTIC HOPPING IN A JOSEPHSON CIRCUIT. . . 2513

One then finds

(y (t) ) +—— p—,(t) + f dt'p p(t —I' )p1(t' )

—f dt'p, (t —t' )
0 t'

dt"p, (t' I")p—,(t")+.. . , (3.5)
0

together with an analogous expression for (y(t)) by in-
terchanging 0 and 1 and + and —in Eq. (3.5). The nth
term in this infinite series corresponds to the situation in
which there are n delta functions between 0 and t.

We can resum these series expansions using Laplace
transforms

Q I /40 I/O 4)I

/2
/

/
/

WIf(t)j= f(z)= f e "f(t-)dt,

and making use of the property
I

W. f dt'f(t t') f dt—"g(t' t") .—=f(z)g(z) .

We obtain

~[(y(t)) j= —p ( )+po( )p ( )

—p1(z)pp(z)p1(z)+. . .
—P] +PoP&

l —poli

(3.7)

(3.&)

Flax. 5. Variation of v, where S(co)-co ", as a function of Pp
and P~. The heavy lines indicate singular regions of the function
where the frequency dependence of S(co) contains logarithmic
corrections, as indicated.

and a similar expression for (y(t)) . Subtracting the two
expressions and rewriting the result in terms of %p(z) and
F1(z), we obtain

g(z) = —, Iz '[Irp (z)+%1 (z)]—1 j (3.9)

2 g(cp) (3.1 1)

We can easily compute the Fourier transform, g(tp), of
g(t) from the result

g(co)= f e '"'g(t)dt= lim [g(z)+g(z)], (3.10)'
00 Z~1CO 1

where z is the complex conjugate of z. Finally, we obtain
the required spectral density of x (t)

D. One-dimensional mappings

We turn now to a discussion of how one can obtain
probability distributions corresponding to Eq. (3.4) from a
physically realizable mechanism. From the work of
Manneville we know that a one-dimensional mapping
can generate a signal consisting of a seemingly random al-
ternation between long quiescent intervals and short irreg-
ular bursts. We can apply Manneville's ideas to generate
a signal consisting of switching events such that the dis-
tribution of the time interval between two events obeys a
scaling law. Consider the map in Fig. 6 that has two mar-
ginally unstable fixed points at x =0 and x = 1, instead of
only one marginally unstable fixed point as in
Manneville's map. Near each fixed point, the map can be
expanded as

C. Self-similar power spectra

%'e are now in a position to determine the conditions
that must be satisfied by mp(t) and m. I(t) so that the power
spectrum S (pl) dlvclgcs II1 tllc llmlt tp~0 as Apl
where A and v are positive constants. We restrict our-
selves to distributions that have a well-defined power-law
behavior as t~ ~. To leading order, we take

mp(t) apt as tabac, pp)0,
—Pp

(3.12)
mI(t) a)t 'as t~a), pI)0.

—Pi

Exponentially decreasing distributions can be treated by
letting p—+ao. Using Eq. (3.9) and tables of Laplace
transforms, we obtain the values of v as a function of pp
and p1 listed in Table I. A plot of v versus pp and p1 is
given in Fig. 5.

Xn+[

0
0

FKx. 6. One-dimensional mapping of the [0,1] interval into
itself given by ~n+1 ~n {1+ 2 ~n ~ where ~n =Xn
{0&X„(—), ~„=1 —X„{—(X„(1).
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TABLE I. Dependence of v or S„(co)on f3p and P&. lo3

f3'

min(Pp, P~) &2
min(Pp, P~)=2, max(Pp, f3~) &2
1&min(Pp, f3&) &2
min(Pp, f3~) =1, max(f3p, P~) & 1

min(f3p f3&) & 1 f3p+ f3' & 2

fap+Pi & 2

v or S„(co)

v=0
S„(co)-

~

Inco
~

v=2 —min(Pp, Pr)
S„(co)-1/co

~

Inco
~

'
v=min(Pp, P&)
v=2 —max(Pp, P&)

lP—

Ax„+(——hx„[1+i,(bx„) ], (3.13)

where b,x is the distance to the fixed point. (The figure
has been drawn for the particular case i, =2, a= 1.) The
exponents a and coefficients i, in general differ for the
two fixed points, and will be denoted by ao and A,o for
x =0 and a~ and i,

&
for x =1. We take as our switching

process the signal obtained when we iterate the map
x„~x„+&, assigning the value 0 or 1 to x when x„ is on
the branch corresponding to the fixed point x=0 or
x = 1, respectively.

Manneville shows that the probability distribution of
the times spent on a branch behaves for long times as

rr(t)=(1+ait)", t~~ (3.14)

TABLE II. Dependence of v or S„(cu) on ap and a].
ap, a] v or S„{co)

where the time is in units of the duration of one iteration.
We note that a Poisson switching process, that is
~(t)=e, corresponds to a~O.

Combining Eqs. (3.13) and (3.14) with the results for
v(Pp P]) shown in Table I, one obtains, in the limit co~0,
the exponent v of the power spectrum which is a universal
quantity depending only on the exponents ap and a& of
the map. The variation of v with ap and a& is shown in
Table II. In the limit a&~0 where the switching signal
degenerates into a random succession of bursts of charac-
teristic duration i,

&

', we recover the results of Procaccia
and Schuster.

We have carried out a numerical test of our predictions
for the case ao ——a~ ——1 which gives an exact 1/~ power
spectrum without the logarithmic corrections that- one ob-
tains for the Manneville mapping. We iterated the map
shown in Fig. 4 on a computer 3)& 10 times for one set of
initial conditions and obtained the power spectrum shown
in Fig. 7. The sequence of iterates was Fourier
transformed over two ranges of frequency to obtain the
overlapping sets of spectral estimates shown in the figure.
The squares are the averaged results of about 700 indivi-

a
O
0)

-l
v& lO—

rui ~I/fOX+0
D
0
0

0
0

lO
lQ 2

Frequency
lP2

FIG. 7. Power spectrum of the iterates of the mapping of
Fig. 6. Different symbols denote different frequency bands for
the 4096-point fast Fourier transform.

dual records of 4096 points each, while the triangles are
the averages of about 50 records of 4096 points each, ob-
tained after a tenth-order decimation of the original se-
quence of iterates. At low frequencies the power spec-
trum scales as 1/co, down to the lowest-frequency data
point.

The mathematical results presented in this section have
the following implications for the hopping phenomenon
described in Sec. II.

(i) We find that a 1/co power spectrum can be obtained
for widely varying distributions of switching times: It is
sufficient that one of the two distributions scales as t
for long times. The way in which the other decays to zero
as t —+oo becomes unimportant, although when the ex-
ponent p controlling the decay is greater than 1, there is a
logarithmic correction to the 1/co behavior.

(ii) The self-similar property of the spectrum at low
frequencies —that is, the absence of any characteristic
scale—arises from the mathematical model as a conse-
quence of the precise analytical behavior of the map near
the fixed point. One can now understand why the hop-
ping process is so sensitive to changes in the bias current
(that change the metastability of the fixed point, that is,
the slope of the mapping in the model) and to the addition
of noise (that perturbs the equations of motion and de-
stroys the long-term correlations necessary to stay in one
mode, smearing out the mapping in the neighborhood of
the fixed point).

max{ap, a~) & 2
1

max(ap al)= 2 min(ap a]) & 2

1 & max(ap, al) & T
]

max(ap, al)=1, min(ap, a~) & 1

max(ap, a]) & 1, ap '+a] ') 2
ap +a] &2—1 —1

S„(co)—
~

Inco
~

v=2 —[max(ap, cc))]
S„(co)—1/co

~

1nco
~

2

v= [max(ccp, a~)]
v=2 —[min(ap, a& )]

IV. DIGITAL SIMULATIONS

To investigate whether or not a simple mechanism such
as the one presented in Sec. III could arise from the equa-
tions of motion of the system and to study the effect of
noise and changes in bias current in a quantitative
manner, we have performed extensive double-precision di-
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FIG. 8. Representative time sequence (time increasing left to
right and top to bottom) obtained by numerical integration of
the equations governing the circuit of Fig. 1 for PL ——4.0,
Pc —0.367, i=2.357, a=0.004, and I'=0. An example of a
switching event is indicated by a dashed line separating the two
modes, labeled "slipping" and "engaged. "

gital computations for a similar set of parameters to those
we studied on the analog simulator. %'e integrated Eqs.
(2.6) and (2.7) numerically, using a fourth-order Adams-
Bashford-Moulton predictor-corrector method, with
typical time steps of 10 yielding local truncation errors
estimated to be & 10 . For each set of parameters, start-
ing from an arbitrary set of initial conditions, we comput-
ed typically 320 Josephson cycles to allow any start-up
transients to die out before including the data in power
spectra or maps. Figure 8 shows a typical time sequence
computed in this way, for parameter values close to those
used in Fig. 2, Pl ——4.0, Pc ——0.367, i =2.357, o =0.004,
and I =0. As in the analog simulations, the hopping be-
tween the engaged and slipping modes shows up clearly.

The results are presented as voltage spectral densities
and Poincare sections. The voltage spectral densities were
computed from the time sequences using a 4096-point
fast-Fourier-transform algorithm. Because we are in-
terested only in extremely-low-frequency behavior, the
time sequences were first passed through a digital low-
pass filter prior to a high-order (typically 100—500) de-
cimation. These filtered time sequences were Fourier
transformed and the 2048 harmonics were averaged into
25 frequency bins equally spaced on a logarithmic scale.
The results for several such records (typically five) were
averaged together. Thermal noise [VN of Eq. (2.5)] was
simulated by the introduction of pseudorandom voltage

FIG. 9. Power spectra of the voltage for pl. ——4.0, pc =0.367,
i=2.357, and can=0. 004, for five levels of injected noise. The
temperature T associated with each curve is defined by
T=[1Io4 o/2wke]y ~ A. The spectral density and noise tem-.

0

perature scales refer to the top curve; scales for the lower curves
have been spaced by factors of 10 in power for clarity.

impulses at each time step; the magnitude of the Fourier
transform of these impulses is a constant proportional to
I 1/2

Typical power spectra are shown in Fig. 9. The top
curve is for l"=0, and is the one referenced by the axes.
The lower curves are for nonzero I, expressed in terms of
an equivalent ambient temperature for a junction critical
current of I mA: T=(I Io@c/2vrk~)1 & ~~. The lower
curves have been successively displaced by 10 dB for clari-
-ty. The power spectra at the lowest two temperatures are
approximately 1/co over rather more than one decade, and
flat at low frequencies. On the other hand, we see that for
I'=4.2 K the spectrum has already been modified by the
external noise, and that for T)42 K, the spectrum is
nearly white below 10 . %'e can conclude that this level
of thermal noise is sufficient to destroy the long-term
correlations necessary for 1/tu noise.

The very strong dependence of the low-frequency noise
on the value of the bias current (in the absence of added
thermal noise) is illustrated in Fig. 10. For i=2 365 (solid.
curve with open circles) the motion consists of a stable
subharmonic limit cycle. A slight decrease- in the bias
current, to 2.361 (solid circles), has little effect on the
subharmonic mode, but produces a low-frequency tail that
probably indicates the onset of intermittency. When the
current is decreased to 2.358 (solid curve), the low-
frequency power spectrum is at a maximum, with a I/co
region. The decrease in bias current from 2.365 to 2.358
(0.3%) has increased the level of noise by over 5 orders of
magnitude. A further small decrease in the current
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FIG. 10. Power spectra of the voltage for pL ——4.0,
PC=0.367, o =0.004, I'=0, and several values of i The do. wn-

ward pointing arrows indicate that the noise is less than 10

(dashed curve) produces a low-frequency noise that is
white, indicating that the system has become fully chaot-
1c.

To obtain more information on the modes between
which the system hops, particularly with regard to the
presence of any strange attractors, in Fig 11 w.e show a
Poincare section at 5=m for the parameter values used in

Figs. 8 and 9. [The choice of this particular section is

natural. In either mode, the phase 5 passes periodically
through the value 6=m. with a frequency related to the
average voltage via Eq. (2.2), whereas, for example, in the
slipping mode, 5 passes five times through the value 5=0
during each Josephson period. ] The points of the Poin-
cari section lie on smooth curves indicating that it is one-
dimensional as expected for a dissipative system governed

by a third-order differential equation. When one monitors
the time sequences of the iterates, one sees the same
behavior as with the analog simulator: The system spends
varying amounts of time, that occasionally become very
long, in one of two modes. Qne is the slipping mode, an
unstable period-3 limit cycle for which the iterates lie
within the encircled regions. Iterates that land near to the
fixed points slowly evolve away, as is apparent from the
darkened portions of the attractor near the fixed points.
The other, engaged mode consists of a chaotic motion
along a subsurface of the entire attractor, in the region en-
closed approximately by the dashed curve. The points
that lie outside these two regions represent transition
points between the two modes. (Note that these points, al-
though "transient" in the sense of not belonging to either
mode, are still points on the attractor —they do not
represent start-up transients. ) In that the long-time
behavior is determined by the nature of the mapping in
the immediate vicinity of the fixed point (the limit cycle
of the motion), these transition points can be ignored pro-
vided that the mechanism that controls the reinjection
into either mode is nearly random.

We have now identified the regions on the Poincare sec-
tion corresponding to the two modes. The hopping pro-
cess is due to the fact that neither region is left invariant
by the Poincare map. Some points in one region have
their iterate in the other region. Thus, the distribution of
time spent in either mode is a consequence of the proper-
ties of the mapping that determine how many iterations
the system can make before reaching these transition
points. In general, even for a minimal chaotic system
such as the one we are studying, the determination of
these properties is a difficult problem because the Poin-
care map is two-dimensional and may be very intricate.
However, we see that in the case of the slipping mode, the
Poincare section is a simple curve which can be
pararnetrized unambiguously by one of the coordinates
(we will take the voltage, since this is the variable for
which we measured the power spectrum). The Poincare
map then reduces to a one-dimensional mapping, the
chaos-producing features of which are explored in the
next section.

S lipping'

/ l

u n / I
Engaged i

/

/ , '/r-

0 I !

l 2
Shunt Current Io

FIG. 11. Poincare map of the voltage vs shunt current for
5=m; PI. ——4.0, Pc ——0.367, i=2 357, o=0.00.4, and I =0. The
engaged {unstable period one) and slipping (unstable period
three) modes are identified.

V. CONSTRUCTION OF THE ONE-DIMENSIONAL
MAPPING

We construct the reduced Poincare map of the points
corresponding to the slipping roode in the following way:
We take the voltage of a point near the fixed point
marked && in Fig. j. l as the starting voltage Vp and con-
struct the sequence of voltages of the third iterates of this
point: Vp V3 V6, . . . , V„, V„+3&.. . which all lie on a
smooth curve. The return map obtained by plotting V„+3
versus V„ is illustrated in Fig 12(a). A. s the points are
generated, they appear alternately on either side of the 45'
line. We notice that the map is very nearly one-
dimensional, particularly near the fixed point where the
mapping intersects the dashed 45 line. The fact that the
mapping is very nearly tangential to a —45' line drawn
through the fixed point indicates that the loss of stability
of this period-3 limit cycle probably occurs via a bifurca-
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FIG. 12. (a) Return map of the voltage for points near the
iterate of the relaxing mode which is identified by a && in Fig.
11. (b) Second iterate of the mapping in (a), which yields the
sixth iterate of the original voltage sequence.

near the origin in Fig. 6 is striking. The fact that V„+6 is
very close to a quadratic function provides strong support
for the applicability of the model described in Sec. III to
the physical system of Fig. 1.

We conclude that, because of the particular functional
dependence of the mapping, this system shows a self-
similar distribution of times spent in the vicinity of the
period-3 limit cycle that explains the 1/ro spectrum.
Since only one distribution of hopping times is necessary
for a I/ro spectral density, our ignorance of the mecha-
nism by which the system hops out of the engaged mode
does not invalidate our analysis. This unknown mecha-
nism appears to be more complicated because the attrac-
tor for the engaged mode consists of many sheets, and it is
difficult to see how one could construct a simple mapping
that would display the salient features of the metastability
of this mode. As a starting hypothesis, Manneville has
suggested that a logistic map x~rx(1 —x) with r slightly
greater than 4 might be involved. More work is needed to
test this hypothesis.

Finally, there remains the question of what determines
the range of the 1/ro region shown in Figs. 2 and 9. We
have ruled out significant errors due to the truncations in
the numerical methods. One expects a local truncation er-
ror hx, to give rise to a distortion of the power spectrum
at frequencies b,x, . However, the power spectrum flattens
out at frequencies below about 10, while ~, is about
10 . The origin of the Iow-frequency cutoff may be in
the requirement that the return map in Fig. 12(a) be ana-
ytic in the vicinity of the fixed point. The function V„+6

has to be of the form ( —1+@) V„+ae(—1+e) V +
and can never be of the form V„+6——V„+AV„+
with A &0 since the quadratic term obviously vanishes as
@~0. As a result, this mapping can mimic the ideal map-
ping of Sec. III only over a limited frequency range. To
test whether this explanation of the low-frequency cutoff

Io'

tion with a Floquet multiplier equal to —1. Hence, the
mechanism of hopping is similar to a type-III intermitten-
cy (Pomeau-Manneville }. The departure of the mapping
from —45 is approximately hnear on the lower branch,
and roughly quadratic on the upper branch. The curve
shown illustrates how iterates that are injected close to the
fixed point inevitably spiral away; this evolution ori-
ginates in the quadratic shape of the upper branch. We
have performed a least-squares fit to the function
V„+3——(—I+a) V„+aV„+bV„+cV„ for the points
shown in Fig. 12(a) (the zero of V„corresponds to the
fixed point). We find e= —0.025 28, a =0.065 21,
b= —0.30064, and c=0.13260, with a standard devia-
tion of 1.8X10

We now compare the mapping of Fig. 12(a) with the
simple model described in Sec. III. We construct a new
map, shown in Fig. 12(b), by taking the second iterate of
the points on the upper branch of Fig. 12(a}: This pro-
cedure corresponds to plotting V„+6 versus V„. The simi-
larity between the mapping of Fig. 12(b) and the behavior

Q Q Q QQ QOQO~
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O
QP~ IO-

CA

OQ
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IO
IQ-2

Frequency
I Q2 IP4

FIG. 13. Power spectrum of the iterates of the mapping
x„+~——( —1+a}x„+ax„+bx„+ cx„where the interval [—2,2]
is mapped into itself for e= —0.025 28, a =0.065 21,
b= —0.30064, and @=0.13260.
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in Figs. 2 and 9 is correct, we have iterated the mapping
x„+&——( —1+@)x„+ax„+bx„+cx„, where x„ is
mapped into itself over the range [—2,2], for the values of
e, a, b, and c obtained from the least-squares fit to Fig
12(a). Figure 13 is the power spectrum obtained from
1.4&10 iterates of this mapping. We see that the spec-
trum is fiat below a frequency of about 30, unlike the
spectrum in Fig. 7 where the 1/cu behavior extended to
the lowest frequency, 10 '. We conclude that the low-
frequency roll-off in Figs. 2 and 9 very likely arises from
similar deviations of the mapping from the ideal case of
Sec. III. Consequently, the values of the parameters PL,
P„ i, and o could perhaps be adjusted to obtain a succes-
sively better approximation to the ideal mapping, result-
ing in a power spectrum with a 1/co region extending to
lower frequencies.

VI. CONCLUDING SUMMARY

A Josephson tunnel junction, shunted with its self--
capacitance and with a resistance in series with an induc-
tance, exhibits the phenomenon of hopping for certain
values of the control parameters. Analog simulations
show that, although in most cases the hopping is induced

by Nyquist noise in the resistor, there is a particular set of
control parameters for which, on the contrary, the hop-
ping is suppressed by the thermal noise. This observation
suggests that, for this set of parameters, the hopping pro-
cess between two modes (dubbed "engaged" and "slip-
ping") is deterministic —that is, a consequence of the par-
ticular structure of the underlying differential
equations —and is not due to the many degrees of freedom
of the resistor that acts as a heat reservoir. The power
spectrum of the low-frequency noise produced by the hop-
ping is 1/co over two decades of frequency as demonstrat-
ed by analog simulations.

We presented an analytical calculation showing how
this particular frequency dependence of the spectrum is
related to long-time. correlation in the distribution of time
intervals between hopping events. These long-time corre-
lations can, in turn, be explained by a phenomenological

mathematical model based on the iteration of a simple
one-dimensional mapping of the interval [0,1] onto itself.

To investigate how such a simple mapping could arise
from the differential equations, we performed a direct nu-

merical integration of these equations. For the same set
of control parameters used in the analog simulation, we
recovered the hopping behavior characterized by a 1/co
low-frequency spectrum. Using our results for the time
sequence of the variables of the junction we can construct
a Poincare map, taking advantage of the fact that the
phase difference 5 across the junction passes through the
value 6=@.at regular time intervals. From this Poincare
map, which is two-dimensional, it is possible to extract a
one-dimensional mapping that explains the mechanism of
hopping from the slipping mode to the engaged mode.
This one-dimensional mapping belongs to the class of
mapping giving rise to type-III intermittency. Although
at the onset of intermittency such mappings generally pro-
duce a co

' power spectrum in the limit co—+0, the par-
ticular mapping found here has special analytical features
near its fixed point that give rise to a co

' dependence
over two decades. It turns out that these features make
the mapping closely resemble the ideal phenomenological
mathematical model predicting co

' noise. Furthermore,
the small departures of the mapping from the ideal map-
ping appear to explain the observed low-frequency roll-off
of the power spectrum in a satisfactory way. It would be
of considerable interest to study deterministic hopping in
a real Josephson junction, cooled to a low enough tem-
perature that the effects of Nyquist noise are unimpor-
tant.
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