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The noniterative eigenchannel R-matrix method is used to study the properties of the valence
electrons in Be and Mg 'I" states. Our results detail the evolution of electron correlations as a func-
tion of energy. Besides obtaining an improved quantitative description of doubly excited states in

these atoms, we verify the conclusion of an earlier hyperspherical-coordinate study that the wave

functions are exact analogs of the sp + and sp —states of helium and H

I. INTRODUCTION

This paper continues the study of the correlated motion
of two electrons which had recently been extended to the
alkaline earths' [Ref. 1(a) is hereafter referred to as I].
The spectrum of doubly excited 'P' states of helium con-
verging to the He+ (n =2) threshold had been classified
as being approximately represented by superpositions of
2snp and 2pns with coefficients of equal amplitude, i.e.,
2snp+2pns, the so-called plus or minus states. Later Ma-
cek showed that this classification emerged naturally
from a study of the wave functions in hyperspherical
coordinates. Greene then demonstrated in I that the 'P'
states of Be with autoionizing resonances could also be
described by wave functions that admix 1s 2sep and
1s 2pns with equal amplitude. That this equipartition
may be a general rule in the alkaline earths was suggested
by an analysis of the 'P' spectra of Ca, Sr, and Ba
(Armstrong et al. ) showing that the lowest 'P' channels
nsn'p and (n —1)dn'p for Ca (n =4), Sr (n =5), and Ba
(n =6) mixed in nearly equal proportions. Theoretical
verification of this equipartition rule in Be was the key re-
sult of the hyperspherical treatment given in I.

Reference 1 utilized hyperspherical coordinates as the
natural coordinate system to examine the joint motion of
two strongly interacting electrons outside a frozen core.
Here instead we describe the motion of the two electrons
in a more conventional manner as a superposition of nu-
merical independent-particle wave functions of the two
electrons. We emphasize the complementarity of the two
approaches in studying the dynamics of the joint motion
of the two electrons, noting that each may have its specif-
ic advantages depending on the process under study and
on the specific aim of each study. We can interpret the
behavior of the electron pair at different excitation ener-
gies by plotting its charge density as a function of the
coordinates r i and r2 (see Sec. III).

Calculationally we solve the Schrodinger equation of
the two-electron system outside a frozen core in a volume
V using a recently adapted version of the eigenchannel R-
matrix approach. Outside V we join these solutions to
Coulomb functions, hence obtaining a reaction matrix.

Diagonalization of this reaction matrix gives the mul-
tichannel quantum-defect (MQDT) parameters and the
eigenmodes. Interpretation of these parameters as a func-
tion of energy gives valuable insight into the underlying
dynamics of the system, as well as providing energy levels,
oscillator strengths, etc.

Our results show better quantitative agreement with ex-
periment and with recent calculations for Be than I; its
basic conclusions, however, are confirmed. We also show
explicitly that the Mg autoionizing resonances similarly
obey the equipartition rule and we calculate the photoioni-
zation cross sections, energy levels, etc. for both Be and

Mg, obtaining good agreement with experiment and with
previous calculations. Although our calculations show
good quantitative agreement with experiment, our main
aim is to study the dynamics of the two-electron system
by analyzing the wave functions as a function of the exci-
tation energy of the system.

Section II describes the calculational procedure. Sec-
tion III presents the results obtained for Be and Mg. Sec-
tion IV gives a discussion and a summary of the results.

II. CALCULATIONAL PROCEDURE

A. General formulation

A noniterative reformulation of the eigenchannel R-
matrix method was presented recently. It enables one to
variationally calculate the R matrix, and from it the quan-
tum defects and other parameters of the eigenchannels at
any given energy E, by a single diagonalization. The main
results of Ref. 5 to be used here are outlined below.

We write the total energy E as

f QHPdv f P( ——,
'

V + U)gdv

f qqdv f yqdv

using atomic units, real wave functions, and

(2)

Letting
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'!t!=g ckyk
k

function of the two outer electrons by a superposition of
independent-particle wave functions, adequate to describe
the correlated motion within the volume V. Therefore for
a pair of electrons coupled to a given L= 1 i+ 1 2 within V
we write

(3)

and taking BE1'Bck——0 would give the usual minimum
principle for F.. Instead we wish to obtain a variational
expression for the normal logarithmic derivative b defined
by 0 ! (r 1 )F !(r2) +I !LM ( 9141 924'2) (12)

n, m
(4)+bg=0

871 where A denotes antisymmetrization. The following set of
energy-independent orbitals were used: the 2snp configu-
rations were represented by products of the Hartree-Slater
orbital of Be+ $2, (r! ) and of the following ten np orbitals
F„(r )2. Five of these orbitals were obtained by numeri-
cally solving the one-electron radial Schrodinger equation
using the Hartree-Slater potential' of an l =1 electron in
the field of a Be+ ion subject to the condition that each
orbital vanish on the boundary r =ro ——9 a.u. which en-
closes the charge distributions of Be (2s) and Be+(2p).
[Note that this potential, used to define the variational or-
bitals, differs from the potential U in Eq. (11).] The other
five np orbitals were found by integration in the same po-
tential at five different energies which yield nonzero
values of the orbitals on the boundary and a variety of
logarithmic derivatives. The energies of these orbitals are
given in Table I as an illustration. Note that these np
wave functions are not in general orthogonal to one anoth-
er but they are orthogonal to the 1s core orbitals. Taking
a nonorthogonal basis set provides added flexibility at the
cost of including overlap integrals in the matrices I and
A. Similarly, nine functions were taken for the ns in the
2pns channel and ten for the nd in the 2pnd channel.
Convergence tests showed that the influence of higher
"strongly closed" channels, such as 3pns in Be or 4pns in
Mg, is negligible in the energy range below the first excit-
ed threshold of each ion.

Substitution of these 29 wave functions into (7) and (8)
and subsequent evaluation of the matrix elements leads to
the generalized eigenvalue problem (9). For the solution
of this problem the rank of the A matrix is essential. In
our case the A matrix reduces to 3 diagonal blocks of
nonzero elements, one for each of the 2sep, 2pns, and 2pnd
channels. Each of these block matrices is of rank 1.
Therefore 26 of the 29 equations of (9) may serve to elim-
inate as many of the unknown coefficients c, the other
three equations giving three eigenvalues. Solving Eq. (9)

on the surface S of the reaction volume V. Integrating (1)
by parts and substituting 81t!/Bn from (4) we get

f [ (&g—) (&g)+2/(& —U)g]d V
b= f ggdS

Substituting further, (3) into (5), gives

g CkPkEC!
k, 1b= (6)

Ck Ak I'CI
k', I'

where

I k!=f [ (&yk) (—&y!)+2yk(E U)y!]dV—, (7)

and

Ak! f yky! d~ . (&)

Taking db/dck ——0 yields the generalized eigenvalue prob-
lem

I c=bAc,
with eigenvalues b p and eigenvectors

PP —Q Ck yk
(p)

k
(10)

for a preselected value of the total energy E. These results
provide the initial conditions for the wave function of an
electron escaping into a Coulomb field outside the volume
V. Interpretation and analysis of the eigenvectors (10)
should aim at understanding the joint motion of the two
electrons.

B. Two electrons outside a closed-shell core

The Hamiltonian for two interacting electrons outside a
frozen core can be written approximately in a.u. as

—
g ~& —

~ ~&+ U(r! )+ U(r2)+2 1 2 1

~]2
TABLE I. Orbital energies of the np states.

Energy relative
to Be+(2s) threshold (a.u. )Orbital

where the Hartree-Slater core potential U(r; ) replaces the
Coulomb potential —Z/r, and part of g,.g.!,!r;! ' in.
Eq. (2). For more quantitative purposes other potentials
are probably preferable to the Hartree-Slater version, as
discussed by Laughlin and Victor and by Lin.

We focus on the Be channels ls 2sep, ls 2pns, and
ls 2pnd 'P' in the energy range below the Be+ (2p)
threshold. The analogous channels in Mg are
ls 2s 2p 3sep, 1s 2s 2p 3pns, and 1s 2s 2p 3pnd 'P', but
we shall refer for brevity to Be alone.

Vhth a frozen 1s core our task is to represent the wave

1

2
3

5
6
7
8
9

10

—0.167
0.023
0.321
0.756
1.317

—0.250
—0.072

0.173
0.540
1.037
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(P; ~gp)=f;(e;, rp)Ip g;(e;,—rp)Jp, r)rp (13a)

r =rp . (13b)

Here P; represents either the Be+(2s) or Be+(2p) ionic
states, together with the spin and orbital couplings of the
escaping electron, and 6j E E'p is the electron energy
relative to the ionization threshold of the ith channel. The
coefficients I;p and J;~ form two 3 && 3 matrices to be
determined by matching the solutions and their deriva-
tives [Eq. (13)] at r =rp to those given by Eq. (12).

The reaction matrix K is defined by

with standard routines, we then get three eigenvalues bp
and three gp in the form (12) with eigenvectors c„'g'. Ex-
amination of these eigenvectors as functions of the total
energy, to reveal the dynamics of the two-electron' system,
will be pursued in Sec. III.

Qutside V the field is Coulombic and the escaping
electron's wave function can be represented by a superpo-
sition of the energy-normalized regular and irregular
Coulomb functions f and g:

We solve the 19&& 19 system of equations given by Eq. (9)
for this two-channel case and proceed by matching the
solutions to Coulomb functions on the boundary as
described. in Sec. II. The orthogonal matrix U in this case
1S

cos0 sinO

—sinO cosO (19)

a function of a single angle 8 which measures the amount
of mixing between the two channels 2sEp and 2pns We.

diagonalize Eq. (9) at different energies in the region of in-
terest, namely, from below the ls 2s 2p bound state up to
the Be+(2p) threshold. Proceeding as described in Sec. II
we obtain the eigenvalues tan(mp ) and eigenvectors U;
of the X matrix. Figure 1 shows the MQDT parameters
8/m. and eigenquantum defects p~ and )M2 in this range.
Studying these parameters as functions of energy helps to
unravel the dynamics of the electron pair.

The most striking feature in Fig. 1(a) is the rise of 8
from no mixing (0-0) at low energies to approximately
equal mixing (0-n/4) at higher energies. This transition
was first demonstrated in I, although we find some quan-
titative differences. In particular, the transition occurs
somewhat more smoothly here, over an energy range
AE-0.2 Ry as compared with AE-0. 1 Ry in I. Also,
our eigenquantum defects p~ and p2 in Fig. 1(b) do not
show the rapid variations below the 2s threshold which

EC=JI (14)

Diagonalizing it,

UrE U =tan(m. p), (15)

f~ =g gp(I ')p; U;icos(n p~) (16)

and have the usual asymptotic form

P =gP;[f;(e;,r)U; cos(m.p, )

we obtain the eigenvalues tan(m. )M ) and the eigenvectors
U. The eigenchannels of the short-range reaction matrix
are obtained from the P& by the transformation

0.5—

Qg—

0.3—
ey

0.2—

O. l—

I

-0.3 —0.2 -Q I

Be(2sj
I

I

I

I

I

I

I

I

0

E, (Ryj

Q. l

I

0.2

Be'(2p)

(o)
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

II

0.3

—g;(e;,r) U~~sin(mp~)], r & rp . (17)

The dipole velocity matrix elements associated with
these eigenchannels are

D =co 'f P + QpdV,
Bz, Bz,

(18)

III. RESULTS

A. Analysis of the beryllium wave functions

%'e focus initially on the two series 2sep and 2pns, as
their interaction with the 2pnd series is known to be weak.

where fp represents the ground-state wave function of Be
and co the photon energy in a.u. The energy levels and
photoionization cross sections are determined by these
quantities p, U;, and D . Explicit expressions can be
found in Refs. 1 and 6.
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FIG. 1. Final-state quantum-defect parameters for beryllium
as functions of the energy e& relative to the 2s threshold. Shown
are (a) mixing angle and (b) eigenquantum defects. [Note: A
different phase convention was used in Fig. 5 of I, in which
0~m/2 at low energies in the region of zero mixing and there-
fore pl was associated with channel 2 and p2 with channel 1.
This should be kept in mind when comparing earlier results
(Ref. 11) with our present calculation. ]



31 DOUBLY EXCITED STATES OF BERYLLIUM AND MAGNESIUM 253

were obtained in I. These differences seem to reAect nu-
merical inaccuracies in the earlier study"' which became
most acute at negative energies. This is discussed further
in Sec. IV below.

The change from zero to approximately equal mixing
was explained in I in terms of the energy dependence of
the two-electron wave function. Here we confirm and do-
cument this energy dependence more thoroughly by plot-
ting the charge densities ~%' (r1, r2)

~
at several energies.

The shape of the potential energy of the two electrons is
crucial to the argument, so we begin by examining this po-
tential in helium.

The potential given by

2
U(r1, r2) =— 2 1+ 2 2(r 1+r 2

—2r, r 2cos012) 1/2 (20)

20.0-

t0.0-

—IO.O-

-20.0

2.0
z lg~)'

FIG. 2. Two-electron potential for helium given by Eq. (20)
with 0&2

——180 .

is shown in Fig. 2 for a particular value of 812. The po-
tential rises about the line r] ——I"2 and has two valleys.
One, at r1-0 and r2 »r1, corresponds to one of the elec-
trons being close to the ion and the other being in an ex-
cited bound or continuum state. The second valley is at
r2-0; r»&r2. The potential is of course symmetric
about the line r1 r2. Tw——o degrees of freedom in the
(r1,r2) plane are singled out by the topology of this poten-
tial. In each valley there is a longitudinal coordinate
which is represented asymptotically by the r & and a trans-
verse coordinate represented by r&. Convenient coordi-
nates which describe the longitudinal and transverse
modes throughout the (r1,r2) plane are the polar coordi-
nates, R =(r, +r2)' and a=tan '(r2/r, ), respectively.
Thus, when one of the electrons escapes from the atom, R
is large and therefore either r1 »r2 and a-0 or r2 »r1
and a-m/2 identifies the valley in which the residual
electron is -trapped.

Ignoring the pd and higher partial waves, our wave
function is the sum of two terms,

gsp(rl~r2)+011M(r1~r2)+@ps(rl r2)I 101M(rl r2) .

As a zeroth-order picture we can think of gsr as satisfying
a Schrodinger equation in ri and rz alone with the poten-
tial (20) averaged over all angles 812 and with a centrifugal
potential 0/r, +1/r2. Similarly, we can think of g~s as
approximately satisfying its own equation. This view is of
course not correct at small distances, where g,z and gz, are
coupled, but it prov'ides a plausible viewpoint for purposes

of discussion. Upon including the centrifugal potentials
for the s and p electrons, the effective potential clearly be-
comes asymmetric about r1 ——r2 (i.e., about a=a/4) in
helium and also in all of the alkaline earths. Nonetheless,
the second transverse eigenmode in the l =0 valley [i.e.,
the energy level of He+(2s), as opposed to the first eigen-
mode He+(ls)] is very nearly degenerate with the first
transverse eigenmode in the 1 =1 valley [i.e., He+(2p)].
This, the so-called "accidental degeneracy, "becomes exact
at large distances R in helium, allowing the wave function
to retain an approximate +/ —symmetry (i.e., symmetry
or antisymmetry about the line r1 ——r2) even at infinity as
it resonates between the two valleys. This resonance is no
longer possible in the large-R limit for Be, since the
Be+(2s) and Be+(Zp) levels are not degenerate, but are
split by AE-0. 3 Ry. This nondegeneracy has little irn-
portance at small distances R (5 a.u. since the local ki-
netic energy is then much larger than hE. Yet at larger
distances it affects the wave function greatly, especially
for low energies well below Be+(2s), as the kinetic energy
available to the longitudinal mode becomes significantly
different in the two valleys.

Figure 3 shows graphs of the i1 ——0, 12 ——1 component of
the charge density, [g,z(r „r2)],for the two eigenchannels
a= 1 and 2 at three successive energies. (While we have
been discussing g,z and gz, heuristically, as though they
separately obeyed their own Schrodinger equation, our cal-
culations include exactly their coupling by exchange. ) Ex-
amining the a=1 channel at the highest energy we see
that the wave function is concentrated and approximately
symmetric about r] ——rz for r& and r2 near the origin
(R-0). As the two-electron wave function propagates
outward in R from the origin it meets a rising potential
which is highest along the line ~] ——r2, as seen in Fig. 2.
In He the wave function breaks off this potential ridge, di-
viding into both valleys with comparable amplitudes. "
The beryllium densities at a low energy, just above the
2s 2p bound level, are shown in Fig. 3(a). This energy is so
low that the "right-hand" valley, associated with Be+(2p)
excitation, is strongly closed even at small distances R & 4
a.u. While the "left-hand" valley associated with Be+(2s)
excitation is closed at R ~ oo, it is locally open at R & R0
as evidenced by the negative curvature of g,z for a=1
throughout the 2s valley (r1-0). The orthogonal (a=2)
eigenchannel wave function is likewise forced into the
Be+(2p) valley and its graph is dominated by the exponen-
tial increase of g,z as r1 increases. (Recall that boundary

'

conditions at r~oo are imposed at a later stage by
MQDT procedures which superpose the a = 1 and 2 eigen-
channel wave functions. ) The vast difference between the
1ongitudinal kinetic energies available in the two valleys
effectively decouples these channels altogether, accounting
for the nearly zero value of 8 at this energy in Fig. 1(a).
At this energy the wave-function components g,& and g&,
are accordingly almost separable in independent-electron
coordinates (r, ,r2).

A dramatic, qualitative change in the wave function en-
sues as the energy is increased. Figure 3(b) shows an in-
termediate energy, just above the Be+(2s) threshold,
where the transition from no mixing to equal mixing has
essentially been completed. The wave function now
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TABLE II. Beryllium 'P' quantum defects.

Level

2$ 2p
2$3p
2s 4p
2s threshold

Experiment
(Ref. 13)

0.166
0.596
0.332

This
calculation

0.085
0.235
0.319
0.389

Norcross
and Seaton

(Ref. 12)

0.151
0.283
0.322
0.374

0.110
0.181
0.202

a =2 eigenchannel wave function has a nodal line running
generally close to the line r& ——rz. At small R this nodal
line diverts from the ridge and intersects the r ~ axis near 3
a.u. , bearing a close resemblance to the behavior of the"—"state in helium shown in Fig. 1 of Ref. 2. Thus the
difference between kinetic energies in the two valleys be-
comes insignificant at higher energies and the heliumlike"+/ —"equipartition of the density between 2sep and
2pes is restored. This supports the view that the two-
electron wave function encounters the ridge "suddenly" as
R increases, which simply shears the wave function into
two equal halves once the energy is sufficiently high.

In summary, we confirm the main points made by I:
although the 2s and 2p levels are nondegenerate for Be,
the nondegeneracy becomes unimportant at higher excita-
tion energies in the critical region of configuration space
(R -5 a.u. ) where the wave function breaks off of the po-
tential ridge and into the vaHeys.

B. Beryllium energy levels and oscillator strengths

To determine the bound-state energy levels lying below
the Be+(2s) threshold we must impose the boundary con-
dition

$~0 as r~ao
on the total wave function

(22)

0= g a~4~, (23)

TABLE III. Oscillator strengths for Be.

with g given by Eq. (17) in the region of configuration
space exterior to the R-matrix volume V. The behavior of
f and g as r~ao is known analytically. They both have
exponentially growing and decaying component at these
negative energies. Equating to zero the coefficients of the
exponentially rising part, so as to satisfy the boundary
condition (22), we obtain a set of equations which deter-
mine the bound-state energy levels, i.e.,

Q F;~a~=0, i =1,2 (24)
a=1

F~(vi, v2) = U;~sinful(v; +p~)], —

1 g

Elon .
2%i

(25b)

Setting det t F, I =0 we get an equation which relates vi to
v2. A second relation between v& and v2 is

1 2 1Eion 2 EIon
2v) 2v2

(26)

where co is the photon energy in a.u. , p is the quantum de-
fect of the 2snp Rydberg levels, and

pN„=v)„+
dE

(28)

The dipole matrix elements for the eigenchannels (Di,D2)
are given by Eq. (18) and ai, a2 are obtained from Eq.
(24). A simple configuration mixing calculation including
s - and p -type configurations was performed to obtain
the ground-state wave function and energy ( —1.016 a.u. ).
Table III gives our results for f„,which agree with previ-
ous "state of the art" computations' much better than the
values obtained in I.

Figure 4 shows plots of D, and D2 as functions of ener-
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~ 30—
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CO~ to-

-io I

-0.30 -0.20 -O.tO
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O. tO 0.2Q
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I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

0.30

Solving for vi we determine the bound-state energy levels
shown in Table II in terms of quantum defects. The levels
close to the 2s threshold show very good agreement with
experiment. Norcross and Seaton, ' by including such ef-
fects as the polarization of the ls core, obtained more ac-
curate values for the two lowest states.

The oscillator strength for the nth d'iscrete level in
terms of the MQDT parameters is

2'(a, Di+a~D~)zf (27)+2

Level

2$2p
2$ 3p
2s 4p

f„(This calculation)

1.13
0.031
0.0019

f„(Ref. 14)

1.38
0.025
0.0013

e, (Ry}

FIG. 4. The eigenchannel dipole matrix elements D
(a=1,2) are shown as functions of e~, the energy relative to the
2s threshold of Be+.
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gy. They reinforce the interpretation of the eigenchannel
wave functions as being large (+ ) or small ( —) near the
origin (R -0), as expected from the hyperspherical point
of view. ' That is, D& is about six times bigger than D2
due to its larger overlap with the ground state. The dipole
amplitudes D& and D2 normally are slowly varying func-
tions of energy. However, in this case D~ shows a large
variation with energy due to the presence of a Cooper zero
in the s~p transition just below threshold (see Sec. 4.5 of
Fano and Cooper' ).

C. Photoionization cross section

6.0—

4 0'

2.0

0
0.05

2p31 2p4d

2p3s

0.!0 O. l 5 0.20 0.25
Photoelectron Energy ( Ry)

Be'(2p)
I

I

I

I

I

I

I

I

I

I

I

I I

0.30

(b)

In calculating the photoionization cross section iri the
autoionization region we include the 2pnd channel and di-
agonalize the full 29&&29 system. This energy region has
two closed channels and one open channel. A brief sum-
mary of the MQDT formalism is given here but the reader
is referred to Ref. 6 for the complete details.

Requiring the closed-channel components to decay ex-
ponentially as r —+ ao and the open-channel wave functions
to be of the form

~4.
W&
CO

2p2d

2pbs

2p3d 2p4d

Second
hnhotlon
threshold

/=$2, (f, zcos5 —g, ,zsin5), r ) ro

gives an equation analogous to Eq. (24),
3

g FI a~=0, i =1—3

where

Fg F; ( —5/m, v——2) .

(29)

(30)

(31)

0.05 O.IO O.IS 0.20 0.25
PHOTOELECTRON ENERGY (Ry}

FIG. 5. The beryllium photoionization cross section is given
as a function of the photoelectron energy using the dipole veloci-
ty form of the dipole matrix element: (a) this calculation, (b)
Dubau and Wells (Ref. 17).

(5)
Qa ' 1/2

2Ca
(32)

It thus yields Eq. (25a) with v, replaced by —5/m. . Setting
det{F~~I =0 gives an equation for 5 at any energy; the
coefficients a are given for a particular energy by

teraction with the background continuum as expected
from our earlier discussion. In fact, these autoionizing
states decay so rapidly that it does not make sense to con-
sider them to be quasistable, even as a first approximation.
%'e obtain good agreement with experiment' and with
previous calculations' ' in this energy range.

where C;~ is the cofactor of the matrix element F;~. The
cross section (in a.u. ) then takes the form

3
(s)D

a=i

137

with the normalization factor

U;icos( 5+up~)a ~
' . —

(33)

(34)

Here i=2sep is the lone open channel in this energy
range. Knowledge of U;~, p,~, and D as functions of en-
ergy thus determines the cross section.

Figure 5 shows a plot of the photoionization cross sec-
tion using the dipole velocity form (18) for the dipole ma-
trix elements. The dipole length form gives a cross sec-
tion with 20go higher peaks but with the same overall
shape. The 2pnd series of resonances are very narrow,
demonstrating the weak interaction between this channel
and the other two. In contrast the 2pns resonances have
very broad autoionization profiles showing a strong in-

D. Magnesium

We initially consider the two channels 3sep and 3pns
only, as we did for Be. Calculated mixing angles and
eigenchannel quantum defects 8, p, ~, and pz are shown in
Fig. 6. The mixing angle 8 goes from 0 at low energies to
approximately m./4 at high energies in the same way as in
Be. Further verification of this equipartition rule is given
in the plot of the sp component of the charge density for
the K-matrix eigenchannel wave functions at @=+0.26
Ry in Fig. 3(d). Note the concentration in density about
r~ r2 where bot——h electrons are near the nucleus (the +
state) for a=1 and the approximate nodal line along
r, =r2 for a=2 ( —state). The similarity between Fig.
3(d) for magnesium and Fig. 3(c) for Be is striking. The
analysis of the eigenmode breaking from the potential
ridge and dividing with approximately equal amplitude
into the Mg+(3s) and Mg+(3p) valleys follows in the
same way as described in Sec. III A for Be.

We have also calculated some bound-state energies for
Mg. In doing this we force the wave functions of the 3pes
channel to be zero on the boundary r =ro, as joining to
Coulomb functions for this strongly closed channel at low



31 DOUBLY EXCITED STATES OF BERYLLIUM AND MAGNESIUM

0.3—
8]„

0.2—

0.90—

0.50—

0—
-O. I 0

-0.2

I

-0.2

-OI

I

-OI

Mg (3sj

O. I

&, (Ry)

I

O. l

0.2

I

0.2

Mg'(3p)
I

0.3

Mg'(3p)

{bj
I

I

I

I

I

I

I

I

I

I

I

I

0.3

4.0

3.0

2.0

I.O

0.05

3p3d 3p4d

O. l 0 O. l 5 0.20 0.25
Photoplay(:tron Energy (Ry j

Mg'(3p)

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

030

e, {Ry)

FIG. 6. Final-state quantum-defect parameters as functions
of the energy relative to the 3s threshold: (a) mixing angle and
(b) eigenquantum defects. 0.08 O. I6

E N E RGY (Ry)

0.24

energies can lead to numerical difficulties. Table IV com-
pares the experimental values' with those calculated here
and with a recent calcula, tion' which applied the
Norcross-Seaton method to Mg. The agreement between
the results is satisfactory considering our use of the crude
Hartree-Slater model potential to represent the e -Mg +
interaction.

The photoionization cross section in the autoionizing
region has been reported by several authors. ' ' A very
recent study attempted to measure the absolute cross
section near the Mg+(3s) threshold. Our calculation
proceeds as in Sec. III C. Figure 7 shows the photoioniza-
tion cross section in the dipole velocity approximation.
The dipole length calculation, as in Be, yielded 20%
higher peaks but with the same general shape. Once again
we see the narrow 3pnd resonances and the broad 3pns
profiles corresponding to strong interaction with the 3sep
channel Stated more graphically, these 3pns autoionizing
states decay before completing even half of a "Rydberg
orbit. "The first minimum above the Mg+(3s) threshold is
the Cooper zero of the s to p transition, which had oc-
curred below threshold in the discrete spectrum for Be.
Our results show good agreement with previous photoioni-
zation calculations. '

FKx. 7. Photoionization cross section for magnesium as a
function of the photoelectron energy: (a) this calculation, (b)
Bates and Altick (Ref. 21).

E. Ca, Sr, and Ba

The equipartition rule discussed in Sec. EEE was also
seen in an empirical MQDT analysis of the 'P' discrete
spectra of Ca, Sr, and Ba and reproduced by a coupled-
channels calculation. One important difference between
these elements and Be and Mg is that the first threshold
above the ns threshold is the (n —1) threshold, as opposed
to the np threshold in Be and Mg. The two strongly in-
teracting series are nsn'p and (n —1)dn'p for Ca (n =4),
Sr (n =5), and Ba (n =6). One other difference is that
the lowest levels of the (n —1)dn'p series lie in the discrete
spectrum of the nsn'p series. Nevertheless, the angle 8
characterizing the mixing between the two lowest channels
is comparable for all the alkaline earths, as is shown in
Table V. The values of 8/m for Be and Mg are taken

TABLE V. Mixing angles for the 'P' alkaline earths.

Atom

Level

3$ 3p
3s 4p

Experiment
(Ref. 13)

0.970
1.016

This
calculation

1.019
1.087

TABLE IV. Magnesium quantum defects.

Ref. 18

0.955
1.007

48e
)2Mg
20Ca
38Sr
56Ba
8SR.a

0.30
0.31
0.33
0.30
0.30
0.30
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matched to (exponentially large) Coulomb functions at
r=ro. That is, the calculation of Wronskians involves a
subtraction of two large numbers, immediately giving a
source of numerical error. When this situation arises we
have found it important to force the strongly closed chan-
nel wave functions to vanish on the surface of the reaction
volume by removing all trial functions nonzero at r =ro
prior to solving the variational problem. Thus we impose
the r = oo boundary condition at the beginning instead of
at the end by the MQDT formulas. This procedure no
longer permits extraction of channel mixing parameters
such as 0, but the channel mixing is normally negligible in
this situation anyhow.

This difficulty of strongly closed channels is most likely
the origin of numerical errors in the calculation of I below
the 2s level of Be+. (The discrepancy with our present re-
sults is greatest in the eigenquantum defects. ) We suspect
this for two reasons. First, the agreement between our
present results and those of I is excellent above the 2s
threshold. More fundamentally, I solved the coupled radi-
al equations out to a matching radius Ro ——14 a.u. , which
should have accentuated the numerical problems associat-
ed with exponentia1 growth. This large choice of Ro
proved necessary in that work because of the slow conver-
gence of the coupled equations in the hyperspherical ra-
dius R to the asymptotic of close-coupling form. (It has
since been demonstrated elsewhere that this difficulty
can be largely circumvented by returning to independent-
electron coordinates in the outer region, even if hyper-
spherical coordinates are used at small R.)

It is worth summarizing, nonetheless, the complementa-
ry nature of the earlier hyperspherical calculation' and the
present R-matrix study. For the qualitative purposes of
understanding the overall physical picture, the adiabatic
hyperspherical method has disti. nct advantages. The po-
tential curve plot of I permits a simple visualization of the
critical regions in configuration space and in energy. On
the other hand, for quantitative purposes of finding ener-

gy levels, oscillator strengths, and autoionization line
shapes, the 8-matrix method is unquestionably much
easier to use. It is a1so easier to systematically improve on
its accuracy, by changing the basis functions, ro, etc. The
information about critical regions of configuration space
and of energy is of course contained in the R-matrix vari-
ational wave functions, but it requires some effort to ex-
tract this information in the form of plots such as Fig. 3.

from this calculation at the lowest np threshold. The
values for Ca, Sr, Ba, and Ra are taken from Ref. 4.
%"hile some analogous photoionization calculations
have also been performed for Ca, Sr, and Ba, their explicit
connection to Be and Mg has not yet been fully under-
stood.

IV. DISCUSSION
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In this work we have demonstrated that the noniterative
formulation of the eigenchannel R-matrix method, using
independent-electron basis functions, provides a simple
and direct approach for studying the correlated motion of
atomic electrons. The results required a relatively small-
scale computational effort. We estimate that the entire fi-
nal calculation at 14 different energies utilized approxi-
mately six minutes of central-processing-unit (CPU) time
of a VAX 11/780 machine, which should translate into
about 30 seconds on an IBM 3081. This time includes the
calculation of energy-independent numerical basis func-
tions in the Hartree-Slater potential, the calculation of all
matrix elements including the dipole matrix elements, the
solution of the linear eigenvalue problem at each energy,
the matching to Coulomb functions, and the calculation
of photoionization cross sections using quantum-defect
theory. One difference of our approach from similar cal-
culations is that we have used a basis of nonorthogonal
continuum trial functions which are in turn not orthogo-
nal to the target states, e.g., 2s and 2p of Be+. This pro-
vides an added flexibility which may prove quite useful in
more complicated problems, although additional overlap
integrals are then required in some of the matrix elements.
One possible drawback, however, is that the addition of
extra basis functions may result in a large redistribution in
the values of the eigenvector components ck~', making it
difficult to pin the correlations onto a limited number of
basic functions with the largest eigenvector components.
In this case the analysis of correlations may be confined to
studying the eigenmodes 4 in the r„r2 space, as we have
done in this paper, rather than examining the basis func-
tions which contribute most to the makeup of that wave
function.

In all R-matrix calculations the choice of the reaction
volume is critical. Here this volume is the region of con-
figuration space for which maxIr&, rzj &ro. Clearly ro
needs to be large enough to enclose all of the "correlated"
regions in which the probability of finding two electvons
(i.e., the exchange) is non-negligible. On the other hand,
the convergence of the linear expansion (12) improves
dramatically when ro is chosen as small as possible. Ex-
perimentation in the case of Be led to the choice ro ——9
a.u. , though our results were identical with ro ——11 a.u.
Magnesium, somewhat larger and softer, required ro 11——
a.u.

The choice of the R-matrix boundary ro is important
for yet another reason. At sufficiently negative energies in
any channel the eigenchannel wave functions diverge ex-
ponentially as r increases. When the channel energy is
sufficiently negative this exponential growth dominates
the variational calculation within the reaction volume,
leading to numerical inaccuracies when these solutions are
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