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Stability analysis of two-dimensional models of three-dimensional convection
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Analytical and numerical methods are used to study the linear stability of spatia11y periodic solu-
tions for various two-dimensional equations which model thermal convection in fluids. This
analysis suggests new model equations that will be useful for investigating questions such as wave-
number selection, pattern formation, and the onset of turbulence in large-aspect-ratio Rayleigh-
Benard systems. In particular, we construct a nonrelaxational model that has stability boundaries
similar to those calculated for intermediate Prandtl-number fluids.

I. INTRODUCTION

The onset of time-dependent flows in large-aspect-ratio
Rayleigh-Benard convection cells show several features
which suggest that a more complete understanding of the
fluid dynamics may be reached than in smaller cells. ' In
particular, in large-aspect-ratio cells (i.e., those of lateral
dimension large compared to the wavelength of the spa-
tially periodic convecting solution) and at low values of
the Prandtl number (10 (the ratio of the viscosity of the
fluid to the thermal conductivity), chaotic time depen-
dence is observed either at driving strengths close to the
initial occurrence of the convecting state, or at only slight-
ly stronger driving at the first instability of a stationary
convecting state. ' At these low driving strengths, the
fluid flows do not show structures on the short length
scales which are typically found at the onset of chaotic
time dependence at stronger driving in small cells. Indeed
the onset of chaotic dynamics has been tentatively associ-
ated with the occurrence of the skewed-varicose instabili-
ty, an interesting long-wavelength instability with a spa-
tial dependence neither entirely longitudinal nor trans-
verse to the local wave vector. The subsequent motion is
a slow wandering of the spatial structure on time scales
much larger than the time scale of the convective flow it-
self (the vertical thermal diffusion time). Such motion
may well be easier to understand than the coupled, highly
nonlinear oscillators characteristic of the time dependence
in small cells. In addition, since the chaotic motion in
large cells is probably not described by low dimensional
attractors, its study may provide further insights into the
development of turbulent motion involving many indepen-
dent degrees of freedom.

The two most obvious approaches for understanding
the slow chaotic dynamics in large cells, analytic expan-
sions, and numerical simulations'are not yet practical to
pursue. An analytic formalism exists for calculating the
slow dynamics of distortions on length-scales large com-
pared to the basic periodicity (roll size) from the underly-
ing Boussinesq equations. The dynamical equation so
obtained leads to the prediction that defects in the roll

patterns, such as dislocations, will develop. This is indeed
seen experimentally. Since defects involve structure on
the roll length scale, their dynamics cannot be treated
within this formalism. On the other hand, a numerical
simulation of the five three-dimensional Boussinesq
equations, for long times and in large cells with realistic
boundary conditions, remains well beyond the scope of
present computing power.

In view of these difficulties we, and others, have pro-
posed analyzing two-dimensional model equations that
may be numerically integrated and systematically studied
with greater ease. The aim is to study model equations
that adequately reproduce the long-length-scale dynamics
of convective roll states as would be predicted from the
Boussinesq equations and which also allow the calculation
of dynamics on the roll length scale. A complete convect-
ing pattern, including defects, may then be simulated. It
is hoped that the details of the roll-length-scale dynamics,
probably poorly approximated in these models, is not cru-
cial in describing the slow dynamics in a large cell near
the onset of convection.

In this paper, we investigate the stability properties of a
large class of model equations and present a two-
dimensional model that reproduces the long-length-scale
dynamics of the Boussinesq equations in that it has a
similar linear-stability diagram. Since the particular
features of the fluid equations that give rise to observed
chaotic behavior are not yet understood, there is no a
priori way of deriving suitable model equations. We pro-
pose that a systematic study for the models of the instabil-
ities that limit the band of stable wave numbers at each
value of the control parameter, and a comparison with the
stability diagram of the fluid equations, may provide a
useful way to select a model for detailed analysis. Our
proposal is motivated by the considerable insight provided
by Busse and co-workers' who numerically studied the
linear stability of the fully nonlinear, stationary, singly
periodic solutions of the Boussinesq equations for dif-
ferent Rayleigh numbers R and wave numbers L. Al-
though these calculations do not strictly apply to convec-
tion in finite experimental geometries (the periodic solu-
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tions correspond to an infinite aspect ratio), they have
proved to be a useful guide for qualitatively understand-
ing instabilities observed experimentally.

The models we present satisfy three important criteria.
First, they match at lowest order the singular perturbation.
expansion of the Boussinesq equations at the convective
threshold. ' Close enough to onset, they therefore have
the same dynamics and instabilities in slow variables as
the Boussinesq equations. Second, the models are rota-
tionally invariant. Unlike the amplitude equations to
which they reduce near threshold, the coordinate system
does not have to be oriented locally with respect to the roll
axis. This is important for global studies of defects and
textures in the presence of lateral walls. Third, the
models are not restricted to be relaxational; their solutions
can have an oscillatory or nonperiodic time dependence.
This is a necessary requirement for the onset of turbulence
in large-aspect-ratio cells. In addition we follow Siggia
and Zippelus in modeling the singular mean drift effects
encountered in finite Prandtl-number fluids by an addi-
tional field representing the vertical vorticity. With this
modification the models do indeed show the important
skewed-varicose instabihty-. -

A particular goal in our study of various models is to
find a model for which the skewed-varicose instability has
the same qualitative stability boundary as that calculated
by Busse and Clever for finite-Prandtl-number convec-
tion, namely, the boundary R (K) is a decreasing function
for increasing wave number K. While this can be
achieved, as we show below, special care must be taken to
ensure that short-wavelength instabilities do not preempt
the skewed varicose by occurring at lower Rayleigh num-
bers. This occurs, for example, in the model proposed by
Manneville if the short-wavelength filtering procedure we
suggest below is not included.

II. DISCUSSION QF MODELS

The study of model equations in convection was initiat-
ed by Swift and Hohenberg who used the equation

B,f=[r —(V +1) ]g—'(t' (2.1)

to investigate the nature of the transition to the convect-
ing state. ' Here 8, denotes a time derivative, V is the
two-dimensional (horizontal) gradient and g(x,y, t) is a
real field of the horizontal coordinates (x,y) and time t.
The parameter r is the control or bifurcation parameter.
Equation (2.1) shows a transition at r=0 from a state
with /=0 (associated with the conducting state with zero
fluid velocities) to a spatially periodic state for r &0 with
critical wave number K, = 1 (the convecting state). The
equation may be derived for r~0 as-a rotationally invari-
ant equation that reproduces to lowest nontrivial order the
perturbation expansion of the Navier-Stokes equations
near threshold. " In this limit the temperature field, for
example, is given by T(x,y, t)=g(x,y, t)TO(z) with To a
known function.

The analysis of Eq. (2.1) as a model equation for r ( I
has yielded considerable insight into questions of pattern
formation and wave-number selection. ' However the
simple structure of Eq. (2.1) leads to certain undesirable

features in this regime. Firstly, the dynamics derives
from a potential, i.e., there exists a functional V[/],
bounded below, such that

—5V
(2.2)

&,P= [» —(V'+ 1)']P+dV'P(V P)'

+(3—d)(a, y)(a, q)a, a, y, (2.5)

is suggested by the work of Gertsberg and Sivashinsky on
Rayleigh-Benard convection between poorly conducting
upper and lower plates. ' Here the parameter r, as before,
can be considered a reduced Rayleigh number while the
parameter d provides a convenient way to interpolate be-
tween potential (d =1) and nonpotential (d&1) equa-
tions. For poorly conducting horizontal boundaries, the
wavelength of the spatially periodic solution at threshold
diverges as the ratio of the conductivity of the plates to
the conductivity of the fluid tends to zero. This allows a
direct slow-gradient expansion of the hydrodynamic equa-

with

V= f f dxdyI —,'rP—+„'f +——,'[(V +1)g] I . (2.3)

This implies the motion is relaxational and that no per-
sistent dynamics occurs. ' Secondly, the simple nonlinear
term f, chosen solely to reproduce the behavior to lowest
order near threshold, leads to stability boundaries K+ that
are monotonic functions of r, in contrast to the behavior
for the fluid equations. ' Furthermore, the structure of
the gradient terms does not allow the skewed-varicose in-
stability, which depends on the singular nature of a slow
gradient expansion about a spatially periodic solution.

The first class of equations we discuss are generaliza-
tions of the Swift-Hohenberg equation:

B,f=[» —(V +1) ]g ag b—g(VQ—) +cg V f . (2.4)

The extra nonlinear terms allow more flexibility in the
choice of the behavior of the stability boundaries by vary-
ing the coefficients a, b, and c. It is known, for example,
that the cubic nonlinear term a/ in the Swift-Hohenberg
equation does not directly correspond to the fluid equa-
tions even near threshold. The threshold expansion of the
Boussinesq equations shows that the correct nonlinear
term is, in fact, a cubic sum of Fourier modes for which
there is no local real-space expression. " Thus the cross-
roll instability of the Swift-Hohenberg equation will not
coincide with that calculated from the fluid equations
even close to threshold. The additional terms included in
Eq. (2.4) may be suggested as the terms in a gradient ex-
pansion of the kernel and may be used to include more of
the correct structure. (For b = —c the equation remains
potential. ) On the other hand, Manneville has suggested
that the choice a =b =1, c=O gives a better description
of convection between free slip boundaries, although his
derivation is not systematic in any small parameter. Al-
ternatively, for b& —c the other two cubic terms in Eq.
(2.4) may be used to study the difference between potential
and nonpotential evolutions.

A second class of model equations,
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tions, which Gertsberg and Sivashinsky developed in one
horizontal dimension.

Our motivation for also studying Eq. (2.5) is that the
structure of the nonlinear term for locally one-
dimensional solutions is derived directly from the hydro-
dynamic equations, albeit in a situation rather different
from the usual circumstances. In addition, since their ex-
pansion parameter is e-b'~ (1 r—) ' with b small (see
Ref. 14), the derivation of the Gerstberg-Sivashinsky
equation is not restricted to the weakly nonlinear region
r &&1. Thus Eq. (2.5) may describe the basic features of
the convecting roll solution, especially the structure of the
nonlinearities, more successfully than the lowest-order
truncation leading to Eq. (2.1).

We remark in passing that the correct two-dimensional
equation describing convection between thin poor conduc-
tors is given by d= 1 in Eq. (2.5), which leads to a poten-
tial equation. This can be seen from the work of Busse
and Riahi' or the 1ater direct calculation by Pismen. '

Also the case d=O applies to experiments with thick
plates if.the heat flow and Rayleigh number are controlled
to eliminate the nonlocal nonlinear term calculated in the
work of Busse and Riahi. Both these equations lead to
square cell solutions as the stable pattern and so are not
useful to our present purpose. The stability of such solu-
tions will be discussed elsewhere. '

Both Eqs. (2.1) and (2.5) may be further generalized by
adding terms which model the coupling to vertical vortici-
ty. This coupling has been suggested to play a key role in
the onset of turbulence; the skewed-varicose instability, in
particular, depends crucially on the introduction of'such
terms. ' We thus consider models for which the left side
is modified to include an additional advection by a
solenoidal drift velocity U,

U=(U, U )=(8 g, —B„g),
where

(2.7)

(2.6)

The drift velocity U is defined in terms of the vertical
vorticity potential g(x,y, t):

V g=gV(V g)X Vg z, (2.8)

and g is a non-negative coupling constant. Note that
—V g is simply the vertical component of the fluid vorti-
city.

Equations (2.6) and (2.8) are the natural extension to a
rotationally invariant form of the conjecture of Siggia and
Zippeluis for rigid boundaries. For small r, Eqs.
(2.6)—(2.8) reduce in perturbation theory to their expres-
sion and also to the more general calculation by Cross and
Newell for rigid boundaries. Similar equations have been
proposed by Manneville and also by Pismen' for convec-
tion between poor conductors. Note that Eq. (2.8)
neglects the intrinsic dynamics of the vorticity field (there
is no time derivative of g). As a result, the imaginary part
of the growth rate of any instability will be zero and only
soft-mode instabilities will occur. The hard-mode oscilla-
tory instability of Busse is not contained in our equations.
It could be incorporated by replacing V g by
(V~+c —Q, )V2$ in Eq. (2.8) with c an O(1) constant, but
we have not investigated such a modification.

The parameter g in Eq. (2.8) defines the strength of the
singular mean drift effects relative to the nonsingular
nonlinear terms. We expect that large g will correspond
to small Prandtl numbers. This is indeed consistent with
the behavior we find below for the variation of the stabili-
ty boundaries with g.

These stability boundaries also show that the simple
form of Eqs. (2.6)—(2.8) in fact is not adequate; we find
that these equations have short-wavelength contributions
to the vorticity flow that in turn enhance short-
wavelength instabilities (such as the cross-roll instability).
These then preempt the long-wavelength instabilities that
are our main concern. Although we believe that such
short-wavelength flows do exist in the real fluid equa-
tions, parametrizing both long- and short-wavelength
components in terms of the single parameter g turns out
to be too crude to balance their effects properly. We thus
introduce a filtering operator that reduces the amplitude
of the short-wavelength components. For simplicity we
choose a Gaussian,

F [f(x,y)]=(4wy2) ' f dx'dy'f(x', y')exp
—(x —x')'+ (y —y')'

4y2
(2.9)

V'g =gFr[V(V'f) X Vg.z J . (2.10)

For numerical simulations, these equations need to be
supplemented with boundary coriditions for g and
Periodic boundary conditions are the simplest to imple-
ment but fail to include the effect of rigid lateral walls or,

In Fourier space, the effect of I'z is to reduce the ampli-
tude of a Fourier component with wave number q by
exp( —y q ). For y) 2 the filter effectively eliminates
any components at the roll wavelength or shorter while
leaving the long-wavelength components unchanged. We
then replace Eq. (2.8) by

in the case of rectangular cells, of, corners. The experi-
mentally relevant, rigid boundary conditions for P should
remain unchanged when vorticity is included. They are'

B„g=(n.V)/ =0, (2.11)

where n is the normal to the boundary. The natural
boundary condition on the drift velocity would be U=O
on all boundaries. However this results in too many con-
straints for Eq. (2.10) which has only second-order spatial
derivatives on the left side. This problem arises because
of the reduction in the order of the horizontal differential
operator used on the left-hand side. Solutions which are
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localized near the walls and decay in an 0 (1) length scale
from the wall are thereby eliminated. It is then clear, in
analogy to the derivation of the boundary conditions on
the complex amplitude function, '9 that the boundary con-
dition

boundaries, providing a rapid way to analyze new models.
The long-wavelength instabilities are contained in the

phase-diffusion equation introduced by Pomeau and
Manneville to study small perturbations to straight rolls
with wave vector K=(K,O):

=0 (2.12) ra, O=D~~(K)a„O+Di(K)a@0 . (3.1)

(i.e., n.U=O) is sufficient for the slowly varying com-
ponent of the vorticity potential. The nonzero tangential
component of the drift velocity (n V)g would, in a real
fluid cell, then decay to zero on an O(1) length scale.
This should not give important differences in a large cell.

In summary we have defined a large class of models
that are more general than the Swift-Hohenberg model.
The nonlinear term there has been changed to eliminate
the potential nature of the dynamics and to allow more
flexibility in adjusting the wave-number dependence of the
stability boundaries. In addition we have included a cou-
pling to a vorticity field that is driven by inhomogeneities
in the periodicity of the field. This incorporates in a
physically sensible way the singular nature of the gradient
expansion for slow changes to a periodic state. We sum-
marize the models in Table I. They are much simpler
than the full fluid equations and are more tractable for
both analytic and numerical work.

Here 0 is a phase variable such that the field variable is
locally periodic in 0 with period 2~. Then the wave vec-
tor is given by

(3.2)

The straight-roll pattern at wave number E is stable to
long-wavelength perturbations for positive diffusion con-
stants D~~(K) and Di(K) An . instability is signaled by
D~~ (Eckhaus) or Di (zigzag) passing through zero.

The addition of the vorticity coupling to the models
leads to the modified diffusion equation

a,e=D„a„'8+(D,+ )a,'9+p(a,'+a,')-'a„'a„'8, (3.3)

with r, D~~, and Di as before. Values for a and /3 for the
various models are derived in the Appendix.

For a perturbation of wave vector k=k (cosP, sing), the
growth rate A, is given by

III. STABILITY ANALYSIS z =D~~cos p+(Di+a+pcos p)sin (b . (3.4)

If we consider the stability of the straight-roll solutions
with respect to a restricted class of perturbations, namely,
those of long wavelength, significant analytic progress can
be made before resorting to numerical work. This is a
useful complement to the direct Galerkin analysis dis-
cussed below, since that approach can become delicate in
the search for long-wavelength instabilities. In addition
we remark that for the model equations that we have in-
vestigated, it is usually a good approximation to use a
single-mode truncation of the unperturbed solution, over
most of the range 0 & r & 1 on which we have concentrated
our study. This makes it easy to derive approximate alge-
braic expressions r(K') for the long-wavelength stability

a, l(+(U V}g=[r—(V +1) ]ib —ag bp(VQ} +—cpV p

Model II

a,p+(U V }Q=[r—(V'+1} ]p+d(VQ} V g

+(3 d}(a;g}(BJQ}a;—aj p

where

U= (aye, —B„gi

V2g=gFr[V(V'g}X Vi( 'R]

Fr(p}=(4my'} ' f dx'dy'l((x', y'}exp
—(x —x') —(y —y')

4y2

Boundary conditions for finite cells: /=a„/=/=0

TABLE I. Two-dimensional models of three-dimensional
convection.

Model I

Since a & 0, vorticity acts as a stabilizing influence on the
zigzag instability (P=rr/2). However, for the ranges of r
and k for which p is negative, a new instability develops
at an intermediate angle; this instability may be identified
as the skewed-varicose instability. It is straightforward to
find analytically the value P" maximizing the growth rate
A, in Eq. (3.4).

Only long-wavelength instabilities are given by this
phase-diffusion approach. A complete stability analysis
that includes short-wavelength instabilities must be calcu-
lated by numerical methods from the original equations.
We used a Galerkin method simi1ar to that used by Busse
and Clever, but much simpler since the z dependence of
all fields in the model equations has been eliminated.
(The technique is also briefly explained in Greenside and
Coughran, ' who calculated the stability boundaries of the
Swift-Hohenberg model. ) A numerical Galerkin method
yields the maximum eigenvalue for an eigenfunction of a
particular symmetry, on a discrete mesh of points in the
"control-parameter" —wave-number plane. Interpolating
betw'een values of wave number where the eigenvalue
changes sign yields an approximation to the stability
boundary for an instability of known symmetry. For the
two-dimensional model equations of interest, the numeri-
cal problem of calculating stability boundaries is essential-
ly trivial and high accuracy can be achieved. The only
difficulty arises when distinct instabilities, such as the
long-wavelength zigzag and short-wavelength cross roll,
have the same symmetry in which case the straightfor-
ward numerical method can change stability branches and
yield incorrect boundaries (Fig. 1). The analytical long-
wavelength boundaries calculated above turned out to be
crucial in interpreting and understanding the numerical
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E

CL

{o) results, especially for small roll wave numbers E for
which many eigenvalues of different symmetry become
positive at the same time.

The properties of the four instabilities that occur for
our model equations are summarized in Table II. These
instabilities are similar to the ones studied for the Bous-
sinesq equations by Busse and Clever.

IV. RESULTS

We have analyzed a number of models representative of
classes I and II (see Table I). We will first discuss a par-
ticular model that most successfully reproduces the stabil-
ity diagram near onset of the Boussinesq equations. The
direct simulation of this model in a finite geometry should
provide useful insights. We then describe our experience
with other choices of the models.

A model that qualitatively reproduces the fluid stability
diagram is an example of model II (d =3); the complete
equations are

/
/

/
/

/
/

/

FIG. 1. Schematic example of numerical difficulties in find-

ing a stability boundary, i.e., a zero crossing of Re(A, „)where
A, ,„ is the growth rate with the largest real part for an eigen-
function of given symmetry. (a) As the roll wave number k„ is

varied, an unstable long-wavelength branch changes over to a
short-wavelength branch, hiding the zero crossing of the latter
(shown by an arrow). The short-wavelength instability may be
missed. (b) An unstable short-wavelength branch crosses a
stable long-wavelength branch: a zero crossing of the latter
(also indicated by an arrow) may be incorrectly deduced. In
both cases, the kinks in Re(A, ,„)do not allow zero-finding algo-
rithms that use derivatives.

&,g+U vp=[» (v'+ I)—'Jg+3v'q(vq)',
U=(U„, U, ) =(a,g, —a.g),
V g=gI'»[V(V g)XVg.z],

where the short-wavelength components of g are eliminat-
ed using the filter F», Eq. (2.9), for y )2.

First, we show in Fig. 2 the stability diagram for no
vorticity coupling, g=O. For values of the control param-
eter r & 1, there is an interval of wave numbers
K (r) &K &K+(r) in which the periodic solutions are
stable to all small perturbations. The stable region is
bounded by the longitudinal long-wavelength Eckhaus in-
stability on the upper side K+, and for r&0.65, by the
purely transverse long-wavelength zigzag instability on
the lower side E . The only other new instability appear-
ing in the diagram is the short-wavelength cross-roll insta-
bility, where the perturbation eigenfunction corresponds
to a new set of rolls, always orthogonal to the existing set.
For r ~ 0.6 and E &0.45, the model is complicated by the
existence of and transitions between multiple solutions.
The new solutions grow out of the (»,K) points where K
and nK, n =3, 5, etc., are both marginally stable (the even
n solutions do not connect to the basic solution). Ap-
proaching the point (r= 1,K=O), more and more of these

Name Character

TABLE II. Instabilities of rolls for models I and II.

Perturbation
wave vector
k=(k„,ky) Comments

Cross roll (knot)
Zigzag
Eckhaus
Skewed varicose

short wavelength
long wavelength
1ong wavelength
long wavelength

k =0, ky ——O(1)
k„=0, 0& k„«1
0( ky (( 1 ky 0
0( k„,ky «1, ky/k„ finite

Only short-wavelength instability
Curve for which Dj ——0
Independent of g, curve for which DPI=0
Occurs only for g&0
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0.5 0.7 0.9 I.O l.2

FIG. 2. Stability boundaries for model II (g=O, d=3), as a
function of the roll wave number K and the control parameter r.
The labels N, E, ZZ, and CR refer to the neutral, Eckhaus, zig-
zag, and cross-roll instabilities. There is no skewed-varicose in-
stability (denoted SV in later figures). The plus and minus signs
on either side of a stability boundary show where A. ,„is positive
or negative. The region of wave numbers stable to all perturba-
tions is shaded. The accuracy of the calculation is +0.002 in X
for a given value or r.

1.0

solutions are found with some overlapping of existence re-
gions. Cleary the neighborhood of this special point is
highly singular; we will not discuss it further here.

In Fig. 3, we show the stability diagram with the addi-
tion of the vorticity coupling with the long-wavelength
filtering y=2 and for an intermediate value of g=10.
The vorticity has two effects. Firstly, the zigzag instabili-
ty is suppressed, so that it no longer forms the lower sta-
bility boundary in Fig. 3 except for very small r. Second-
ly, a new long-wavelength instability appears with wave
vector neither entirely transverse nor longitudinal to the
original wave vector; this is the skewed-varicose instabili-
ty. Both these trends for increasing g follow the trends in
the Boussinesq stability diagram with decreasing Prandtl
number. Note also that Fig. 3 shows a stability interval

K (r) ~K &K+(r) that tends towards decreasing wave
number with increasing r, so that the critical wave num-
ber becomes unstable to the skewed-varicose instability at
some value of r .[The trend towards decreasing wave
number K is clearly a result of the decreasing strength of
the nonlinear saturating term in Eq. (4.1) with decreasing
K, which is also present in the full fluid equations. In the
model equation, in fact, the K=O mode grows without
bound for r & 1, consistent with the cutoff in the diagram
at this point. ] In addition, on Fig. 3 we plot the path of
the zigzag instability for no vorticity coupling g=O. This
is the wave number selected at large distances in axisym-
metric convection, independent of g since vorticity is not
driven in this symmetry. This wave number may be im-
portant in more general situations where there are focus
singularities in the pattern. Note that this line does not
intersect the skewed-varicose instability boundary in this
model. It is not known whether these lines intersect for
the fluid equations, an important issue which has not yet
been settled by calculation.

The model equation is sufficiently simple that it is easy
to study in detail the properties of the skewed-varicose in-
stability. In particular, we find that it grows continuously
out of the Eckhaus instability both for increasing g and
increasing r; for finite g and r, the Eckhaus instability is
the limit of the range of skewed-varicose instability for
k /k„—+0. These remarks should also apply to the full
fluid equations. In Fig. 4 we show the variation with r of
P'=tan '(k~/k~) for the skewed-varicose boundary (i.e.,
for the most unstable perturbation) for g=10. As r~0,
we find analytically that P" approaches a constant value

$0 ——59 for this value of g, with $0 P(r) —r '—
We have also studied this model for the vorticity cou-

pling without the filtering Fr for g=10 in Fig. 5. The
long-wavelength boundaries are, of course, unchanged.
However the short-wavelength cross-roll instability on the
large K side is dramatically enhanced by the short-
length-scale vorticity flows; it preempts the skewed-
varicose instability for most values of r In fact f.or
r )0.65, no stable stationary singly periodic solutions ex-
ist. We believe that the enhancement of the cross-roll in-
stability by the vorticity is a real effect and that the insta-
bility becomes the knot instability of Busse and Clever.

0.8 60

0.6

OA

40

0.2

0
0.5 0.6 0.7 0.8 0.9 I.O l.2 0

0
I

0.2 0.4
I

0.6
I

0.8 I.O

FIG. 3. Stability boundaries for model II {d=3) for g=10
with the Gaussian filter on the vorticity equations (2.9) and
(2.1D) with y &2. The dashed line is the wave number selected
in axisymmetric convection.

FIG. 4. The r dependence of the perturbation angle
P*= tan '(k~ /k ) which maximizes the growth rate 1, for the
skewed-varicose instability of model II, when g= 10 (Fig. 3).
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FIG. 5. Stability boundaries for model II (d=3) for g=10
and no Gaussian filter (y =0).

1.0

These authors found a delicate competition between the
knot and skewed-varicose instabilities for low and
moderate Prandtl numbers. Our parametrization of the
vorticity at both long and short length scales by a single
parameter g does not give this delicate balance correctly.
We have therefore suggested the filtering Fr to suppress
the short-wavelength effects and to allow the 1ong-
wavelength effects that are our main interest to play a
dominant role.

To complete the stability picture of the model, we show
in Fig. 6 the variation of the boundaries with vorticity
coupling for fixed r (we used the value r=0.3). Again if

the unfiltered vorticity is used, the short-wavelength
cross-roll instability on the high K side is enhanced: it
preempts the skewed-varicose instability for g&7 and
leaves no stable singly periodic solution for g& 25 for this
value of r.

We now discuss the stability for other choices of the
constants. For model II, as the parameter d changes, the
long-wavelength instabilities remain qualitatively un-
changed (the Eckhaus instability is independent of d).
However as d decreases, the cross-roll instability is
enhanced, and for d & —,

' there are no stable singly period-
ic solutions remaining even in the absence of voiticity
coupling. Wc have shown that rectangular cell solutions
are stable in this region, as found for convection between
poor conductors. A complete stability analysis of these
solutions will be presented elsewhere. '

The stability diagram of the Swift-Hohenberg equation
(model I, a= 1, b =c =0) is shown in Fig. 7. The stabili-
ty interval is bounded on the low wave-number side by the
zigzag instability. The stable interval grows with increas-
ing r, and there is no interesting r-dependent wave-
number selection.

The effect of including vorticity is shown in Fig. 8 for
g=25. The zigzag instability is suppressed, so that it no
longer bounds the stable region except for small r, and the
skewed-varicose instability is enhanced. The skewed-
varicose instability boundary has positive slope and does
not play a role in forcing the wave number to smaller
values in this model. If the long-wavelength filtering is
not employed, the cross-roll instability on the high wave-
number side is again enhanced and preempts the skewed-
varicose instability for most values of r as shown. For
still larger g ( —100), this instability eliminates the stable
solutions except very close to threshold (r 1/g) -and for
r & 0.3. In Fig. 9 we show the dependence of the stability
boundaries on g for a fixed value of r=0.3. This figure
shows clearly how the short-wavelength cross-roll insta-
bility depends sensitively on the coupling to vorticity.

Although we have not explored the full parameter space
of coefficients a, b, and c in model I, calculations similar

W Qg 1.2
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FIG. 6. The g dependence of the positions. of the instability
boundaries for model II (d=3), with r=0.3. The shaded region
is stable for the model with Gaussian filtering (@=2). The
dashed line denotes the cross-roll unstability with no Gaussian
filtering and further limits the stable region in this case.
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FIG. 7. Stability boundaries of the Swift-Hohenberg model
(model I with g=0, a= 1, b =e =0).
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1.2 V. CONCLUSIONS
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K

to those described above on several different choices of
these parameters- give results qualitatively similar to those
described for the Swift-Hohenberg model with vorticity.
In particular, no combination of these coefficients were
found which avoided the preemption of the skewed-
varicose instability by-the knot instability, which gave a
skewed-varicose stability boundary that bounded the re-
gion of stable wave numbers, as shown in Fig. 3, or for
which the preferred wave number intersected the skewed-
varicose instability boundary.
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FIG. 8. Stability boundaries of the Swift-Hohenberg model
for g=25. The shading shows the stable region employing 'the

Gaussian filter, Eq. (2.9), with y =2. In this case the CR line is
not displaced from that in Fig. 7. The dashed line is the CR
boundary without using a Gaussian filter (y =0).

The linear-stability diagrams of straight-roll patterns in
Sec. IV provide a first analysis of various model equa-
tions. Direct numerical simulations may now be per-
formed to investigate the dynamical behavior of the
models and to compare them with the real fluid systems.

For example, in analogy to the experiments of Busse
and %'hitehead, ' one can numerically set up an initial
condition of parallel rolls in a system with periodic boun-
dary conditions and investigate the evolution following
the various instabilities. The stability analysis predicts the
initial linear growth of a perturbation to the pattern, but
says nothing about the later time evolution, such as
whether the system settles down at a new wave number
within the stability region, or evolves continuously in time
without reaching a new steady state. This numerical ex-
periment may be particularly interesting in comparing the
behavior following the Eckhaus instability and following
the skewed-varicose instability. Gne could easily believe
that a longitudinal instability (Eckhaus) may simply result
in the addition or subtraction of rolls. On the other hand,
one might speculate that the skewed-varicose instability,
leading to a more complicated two-dimensional distortion,
may lead to a continually evolving state. Model II with
d=3 is particularly convenient for this comparison: for
no vorticity coupling (g=o), .increasing the control pa-
rameter at fixed wave number leads to the Eckhaus irista-
bility, whereas for g&0, the skewed-varicose instability is
encountered first.

The same model (particularly with the Gaussian filter-
ing of the vorticity) seems to reproduce qualitatively the
behavior of the original equations. Thus it seems that the
natural extensions of the models to include vorticity pro-
duce equations in which the short-wavelength cross-roll
instability becomes too prominent a feature. It may be
remarked that the cross-ro11 instability in fluids is
enhanced at low Prandtl numbers (becoming the "knot"
instability), a feature reproduced by the model equations,
and that the competition between knot and skewed-
varicose instabilities is a delicate one. The simple vortici-
ty coupling, Eqs. (2.6)—(2.8), tips the balance too strongly
towards the knot so that the filtering procedure is needed
for the skewed-varicose instability to bound the stable re-
gion.

& further use of these model equations is to test general
ideas such as wave-number selection. In particular the ex-
perimental configurations used to investigate various
wave-number selection processes ' (a single dislocation,
a grain boundary, axisymmetric convention) may be simu-
lated. These experiments led to the conclusion that a
common wave number was selected by these different pro-
cesses, a result not expected from theoretical analysis.
%'ork to investigate this question on the general model
equations discussed here is currently in progress.

FIG. 9. The g dependence of the positions of the instability
boundaries for the Swift-Hohenberg model (a= l, b =c =0),
calculated for r=0.3. Again the shading shows the stable re-
gion with Gaussian filtering (y =2), for which the CR values be-
come independent of g.

APPENDIX: DERIVATION OF THE EXPRESSIONS
FOR THE DIFFUSION CONSTANTS

For simplicity, we develop the method for model I with
a=1, b =v=0:
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(Al) (ab) = J d8ab =(ab) . (A14)
The reader may readily repeat the algebra for the other
models. For more details of the formalism see Ref. 4.

To incorporate the slow variation of the periodic pat-
tern introduced by the long-wavelength perturbation, we
introduce slow space and time variables

y ~2~ T —~4t

and a scaled phase variable 8:
8(x,y, t)=rj O(X, Y, T) .

(A2)

(A3)

The derivatives of O with respect to its arguments (the
scaled variables) are 0 (1). Thus the local wave vector is

K(X, Y, T)=V„8=V~O . (A4)

We assume g «1 and develop the solution as an expan-
sion in g:

P=g(P)(8,X, Y, T)+ g g & (8,X, Y, T), (A5)
p=1

where P" are periodic in the phase 8 with period 2m. The
solution is obtained by expanding (Al) in power of g us-

ing

Vf(8,X, Y, T)=KB()(f+g Vxf, (A6)

where Vx (()/—a—x,d /8 Y) denotes the gradient with
respect to the slow variables. Then we find

V f(8X, Y, T)=[K &e+g D(+g (g+dy)]f (A7)

with

(e+,F("&=0, (A15)

where ep is the zero-eigenvalue periodic eigenvector of
the adjoint 50 + to 50. In general ep+ is not simply relat-

ed to the unperturbed solution to 0 and must be solved
for independently. It is easy to see, however, that if the
Fourier expansions of the solutions are truncated to one
mode as discussed in the text, then eo+ is simply con-
structed:

((t)p=A cos8, 'ep+ =sin8 . (A16)

The expressions for model II with this approximation are
quoted in the text. We have not pursued the calculation
for this model beyond the one-mode approximation at
present. Note that although model II is generally not po-
tential, the operators 0 and 50 defined for this model are
self-adjoint with the simple scalar product (A14).

The calculation of the vorticity correction induced by
the coupling introduced in Sec. II is straightforward. For
slowly varying perturbations, the only contribution to the
drift U at 0(g ) is the uniform part U (i.e., with no
dependence on the fast scale 8). Then adding the vorticity
correction to F"' in Eq. (A12) leads to the change

For Eq. (Al) this leads to the explicit equations quoted in
the text.

For non-self-adjoint operators 0, such as those appear-
ing in model II, the procedure is more complicated. The
solubility condition takes the form

D) ——2K Vx+(Vx K) . (A8)
5F("= —K.U(a,y, ), (A17)

At zeroth order we obtain the equation giving P( )=fp,
the unperturbed solution

showing immediately that at this order the vorticity leads
simply to an extra convection of the phase field

0= 0' r(t)p (K de+——1) f—p f() . —
At 0 (g ) the equation takes the form

50'(1) F())

(A9)

(A10)

50T———K.U . (A18)

It is a matter of straightforward substitution to show that
the 8-independent component of Eq. (2.10) reduces to

(B++B&)5"'=—qz K)&V+[V+ K((Be(t)p) )] . (A19)
~ ~ ~ ~

where 50 is the linearization of the operator 0 about the
unperturbed solution

50=r (K Be+1) —3—go (A 1 1)

and F"' contains all terms of 0(g ) involving only gp,
K, and their derivatives

F(')=(K ()e+1)D,B()gp+D)(K'() +1)& fo —OT(()gp)

(A12)

where OT =Br0. The phase-diffusion equation arises as
the solubility condition removing secular terms for F'",
namely, that F"' contains no component in the null space
of 50. For a self-adjoint operator 0 this simply requires

Finally, linearizing in small derivations from a simply
periodic pattern leads to the phase Eq. (3.3) quoted in the
text. We now quote the results for the models, first in
complete generality in terms of the fully nonlinear unper-
turbed solution 1(, and then with the one-mode truncation

gp=A cos8, 8=K x

with A determined from the equation for P by taking the
scalar product with cosO.

Model I with a=1, b=c=0:

(A13)

with Qgbp the zero eigenvalue translation mode and where

(, ) denotes the scalar product

D~)(K) =

~(K)=((B()gp) )=—,A

D) (K)=2(K (Befp) —(Beep) )=(K —1)A

[KD) (K)], '

(A20)

(A21)

(A22)
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A2= —', [r —(K —1) ] .

In these expressions ( ) denotes an average over one
wavelength.

Mode/ I, general case. For arbitrary a, b, and c we
have analytic results only for the one-mode approximation

Di(K)=(K 1)A —+ , bA- (A24)

Dii(K)= [KDi(K,d =1)],
dK

r(K) = ((a,y, )')=-,' A',
with

(A29)

(A30)

Model II:

D, (K)=2(K (Bgb ) —(Byb ) )+dK ((r)yko) )

(K —1)A + dK—A (A28)

Dii(K)= [K(K —1)A ]++(b —c)K A + ,'bA—
dK " dK

A = —,[r (K2—1) ]—. (A31)

r(K)= —,
' A2,

with

(A25)

—=gK'((a, y, )2) =-,' gK'A' .
7

(A32)

The potential model IIA is given by d= l. The parame-
ters a and P giving the modifications on adding the vorti-
city coupling as defined in Eq. (3.3) are given by

A =( ~a+ ', bK +—,'cK ) '[r ——(K —1) ] . (A27) —=gK ((degc) )= ,
'
gK —A

dK
(A33)
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