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The quantum mechanics of nonlinear Hamiltonians whose classical limit is of the form
H =Eq p is studied in several dimensions. Such Hamiltonians arise in the canonical formulation
of the hydrodynamics of an ideal, incompressible fluid, where the canonical variables are Clebsch
potentials. They also appear in the study of the propagation of electromagnetic radiation through
an optically active medium. Despite the nonhnearity, exact solutions are obtained in both the classi-
cal and quantum-mechanical formulations. The relevant Heisenberg operators for the dynamical
behavior of the system are found and compared to their corresponding classical counterparts.

I. INTRODUCTION 4-( —,I(w+v). V(w+v) I+VP) =0,
Bt

(1.7)

Symmetrized dynamical equations for many physical
theories may be interpreted as referring to either classical
functions or to quantum-mechanical operators. In this
paper we formulate the hydrodynamics of an ideal, in-
compressible fluid so that the equations refer to
quantum-mechanical operators as well as to classical
fields. Although a fundamental view would consider the
appropriate hydrodynamic quantities as statistical aver-
ages over microscopic variables, interesting results are ob-
tained if the averaging process is assumed completed and
"macroscopic" variables are used.

We consider the velocity and pressure fields for an
inviscid, incompressible fluid, u(x, t) and P(x, t) to be
quantum-mechanical operators satisfying the equations

Bll + —Iu VuI+VP=O,

V v=O.

Thus the evolution of the fluid is given by

Bv +v.Vv = —( —, I w. Vw I +VP ) .1

Bt
(1.9)

—,( Iw. VwI & = ( —,(w;w, +w, w; &)
1 B

BXJ

so that the total stress is given by

(1.10)

(TJ+P5~J)
BXJ-

The quantum-mechanical fluctuations, therefore, give
rise to an internal stress which does not appear in the
inviscid Navier-Stokes equation. Using the incompressi-
bility condition, we obtain

V.u =0, (1.2) where

where the curly brackets denote symmetrization so that
1

Ttj =
2 (Wtwj+Wjw/ ) (1.12)

Bu, Bu
I u VQtI =uJ + Qj

BXJ BXJ.
(1.3)

We assume the classical velocity and pressure, v, P, are
given by the mean of the corresponding quantum-
mechanical operators,

v(x, t) = (u(x, t) ),
P(x, t)=(P(x, t)) .

Letting

w(x, t) =u(x, t ) —v(x, t),
we obtain from Eqs. (1.1) and (1.2)

Note that the above result does not depend upon the de-
tails of the commutation relations.

For a two-dimensional incompressible fluid, u.to=0,
the vorticity field to(x, t) =V&&u=cok, and the dynamical
equation reduces to vorticity convection

Bco +(u V)to=0
Bt

(1.13)

For such a system it has been shown' that a canonical
formulation exists using variables of the type first em-
ployed by Clebsch. In this formulation, the velocity
field is given by

u= P (aVP),
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where P is a suitable projection operator and a,p are
canonical variables for the fluid. The canonical equations
of motion obtained by variation of the Hamiltonian5

form also arise in the study of plasma transport perpen-
dicular to a uniform magnetic field.

H=-,' Ju'dx
are given by

aa.'

at
+u Va=0,

+u VP=O .
at

(1.15)

(1.16)

(1.17)

II. GENERAL STRUCTURE

For a dynamical system with 2N degrees of freedom,
one can construct N linearly independent Hermitian
operators 0;, i=1,2, . . . , N, from the N forms q;pj.
The canonical operators q; and pJ satisfy the commuta-
tion relation

a= gq f (x), (1.18)

The fluid equation (1.13) is obtained from the above equa-
tions using the relationship co=Va XVp. Equal-time
canonical commutation relations are assumed for a and P.

We may introduce a complete set of functions f (x)
and define

[q;,p~] =i A5;J, i,j =1,2, . . . , N . (2.1)

The N operators 0; satisfy the closed algebraic system

[0;,OJ ) =inc, jkOk (2.2)

where the structure constants c,jk are real.
A quantum Hamiltonian is constructed which has the

classical limit

P=gp f (x) . (1.19) H„=—,Kq p (2.3)

Since the a,p are canonically conjugate and the f are
complete, we have the Poisson bracket

Iq .P IPB=&

The functions f may be chosen such that

(1.20)

I dxP. ( f Vf ) P (f„Vf„) (1.21)

= f dx(f Vf ) P (f„Vf„)(1.22)

=&mm &mn&m.

so that the Hamiltonian is given by
2 2

+mm'qmpm'

(1.23)

(1.24)

2 2H, i
———,Kq p (1.2S)

For our model we choose a small number of modes and
assume Km =K5mm for these modes. We are, therefore,
led to the study of a model Hamiltonian for quantum hy-
drodynamics composed of qp pairs with the classical limit

which is obtained assuming q; and p; commute. The
operators 0; are chosen such that the quantum Hamil-
tonian contains only terms of the form 0; .

In Sec. III we present both the classical and quantum-
mechanical solutions for the one-dimensional case. For
this case, results are given for the more general Hamil-
tonian

0=Kq "p" (2.4)

and its corresponding quantum analog, as well as specific
results for n =2. We note that for this model, energy sur-
faces in phase space are hyperbolic.

Solutions for a two-dimensional system, of particular
interest for the fluid model described in Sec. I, are
presented in Sec. IV. Solutions for the three-dimensional
case are given in Sec. V.

The solutions given for the two- and three-dimensional
models exhibit conservation of angular momentum. Us-
ing Eqs. (1.18) and (1.19) for the canonical variables a and
I3, the vorticity is given by

The corresponding Lagrangian is

L, =—1 j.

& Kq

co=VaXVp= g q p Vf XVf ~ .

(1.26) Therefore, for our model

(2.5)

Thus, the Hamiltonian (1.2S) may be viewed as describing
a system with a position-dependent mass. The transition
to quantum mechanics proceeds with the standard as-
sumption that

1
I qm pm' l pB~ . [qm «pm' j

I', A

Another system of current interest to which this
analysis may be applied is the propagation of electromag-
netic radiation through an optically active medium. For
each mode of the field, q-E and p-8; thus terms of
the form q p will correspond to a medium in which there
is a Faraday effect. In addition, Hamiltonians of this

r0= gL;F;,

where

Li =&sj'k9) Pk ~

and

F;= 2~p Vf; XVfk . —

Note that the enstrophy

N= Jcodx

(2.6)

(2.7)

(2.8)

(2.9)
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is a constant of the motion.
In terms of the q,p variables, we see that the vorticity is

related to components of the angular momentum in the
multidimensional space they define. Hence the quantiza-
tion of angular momentum leads to the quantization of
vorticity.

e(i/2A)Ku t e —(i/2A')Ku t~+ —e (3.17)

(K/2)ut (K/2)ut~+ —e

e -(K/2)ut e —(K/2)utp+ —e pe

(3.18)

(3.19)

Using the canonical commutation relation, Eq. (2.1), we
obtain

III. ONE-DIMENSIONAL CLASSICAL
AND QUANTUM SOLUTIONS

We consider the classical Haxniltonian

(3.1)

Equations (3.18) and (3.19) are in close correlation with
the corresponding classical expressions of Eqs. (3.8) and
(3.9). Higher moments of q and p are obtainable from q+
and p+ since Eq. (3.11) implies

S S

ff o, = ff(o, ), . (3.20)

u =qp (3.2)

q =I-nu"-'q, (3.3)

Clearly, u is a conserved quantity. The resulting Hamil-
ton equations are

8u= . q + q21 Bq Bq
(3.21)

One can find eigenfunctions P„(q)of the Schrodinger
operator

p =—Eflu p

with solutions given by

(3.4)
corresponding to the eigenvalue u. The resulting expres-
sion is

q( t) q(0)extlfl

p(t) p(0)e Ksg—
(3.5)

(3.6)
where

e(ilk)u 1ni q i

1

2&M Iq I

(3.22)

H= —Ku 2
2 (3.7)

For the interesting case of n =2 we have the "hyperbol-
ic" oscillator (3.23)f dq $*„$„=5(u—u') .

Thus the spectrum of H is continuous.
The resulting Green's function for the n =2 case is

for which we obtain

q(t)=q(0)e "',
p( t.) p(())e —Kgf

(3.8)

(3.9)
Thus

q& ql )—(q2 I
U( ) I qt )

= f (q2 IU(t) Iu)&u Iq, )du . (3.24)

u = —,
'
(qp+pq) (3.10)

The corresponding quantum-mechanical Hamiltonians
are obtained by setting G(q2, qi, t)= f du e " "' ""1t„(q2)p„(qi).

Upon performing the above integration, one obtains

(3.25)

which makes these Hamiltonians Herrnitian.
Defining the Heisenberg operator

0+ ——U+OU

where

(3.11)

G(q, q, ,t) =e 1

2+2vrfiKt
I q, I I q2 I

2
—( new& (3.26)

—(i /A)Ht=e (3.12) ~e now study the more general Hamiltonian for arbi-
trary n

one obtains

q+ ——. [q+,H],iR
1p+=. [p+ ~].

iA

Note that Eq. (3.7) implies

so that u is a conserved operator.
From Eq. (3.11) we have

(i/2A')Ku t —(i/2A)Ku t
+

(3.14)

(3.15)

(3.16)

H =Lu"

for which

e(i /A)Ku "t e —(i/A)Ku "t
q+ —e qe

e(i/R)Ku "t e —(i/fi)Ku "t
p+ —e pe

Equations (3.13) and (3.14) yield

i
Bt A'

= ——KUt[q, u "]U,

~p+ i= ——KU [p, u "]U.
Bt

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)
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[q,u "]= [(u + iiri)" —u "]q,
[p, u "]=[(u —iiri)" —u "]p .

Equations (3.30) and (3.31) become, therefore,

(3.32)

(3.33)

Using the canonical commutation relations, one finds
by induction

the operator Q is conserved. As H, Q, and C commute
with each other, one can find simultaneous eigenfunctions
of these operators.

In cylindrical coordinates

E.fi2 2 8 8 B2H= — r +3r + (4.10)ar' Br a82

= ——K[(u + iiri)" —u "]q+,
t A'

(3.34) We search for eigenstates of the Hamiltonian such that

Hg(r, B)=EQ(r,8) . (4.11)
P+ i= ——K[(u —iA')" —u "]p+,t

so that

(3.35) Setting

g(r, 8)=F(r)G(8), (4.12)

e —(i/A)X[{u+ifi)" —u")t
q+ —e

(i/A)rt. [(u —iA)"—u "]t8 (3.36)

the resulting equation is
r

1 2dF
3

dF
dr dr

8E 1dG
KR 6 d8

(4.13)
—(i/A')K f (u —iA)"—u "]tp+ =e p

e (i/fi)E[(u+ifi)" —u "]t (3.37)
Setting each side of Eq. (4.13) equal to —m and requir-
ing periodicity in 8 yields

The latter expressions in Eqs. (3.36) and (3.37) follow
from the fact that q+ and p+ are Hermitian operators.
Equations (3.36) and (3.37) imply that

G(8)=e', m =0,+1,+2. . . .

Setting

(4.14)

( qp)+ ——qp,

(pq)+ =pq .
(3.38) F(r)=r rf(r)

(3 39) the equation which f(r ) must satisfy is

(4.15)

Therefore, not only is u a conserved operator but also the
operators qp and pq are separately conserved, in close
proximity to the classical result.

IV. TWO-DIMENSIONAL MODEL

The four linearly independent Hermitian operators
- chosen are

r f"(r)+(2y+3)rf '(r)

f( )
(1k+ I/2) (4.17)

+ —m +y(y+2) f=0 . (4.16)
LA

Choosing y = ——,
' eliminates the second term of Eq.

(4.16). The equation then has the solution

u 1
=

2 (qlp2+q2p1 )

1

u2 2 (ql apl q2P2) ~

2 (qlP2

C = 4 [(qlp1 +P 1ql )+(q~2+P2q2)] .

(4.1)

(4.2)

(4.3)

(4.4)

KA'E= (k'+m'+1) .
8

In Eqs. (4.17) and (4.18) k is continuous.
The eigenfunction gk (r,8) of H is

(4.18)

The three operators u&, uz, Q are closed under commuta-
tion

[ul, u2] =ilriQ,

[ul, Q]= iViu2,

[u2, Q] = —ilriu 1 .

(4 5)

(4.6)

(4.7)

H = —,K(u 1 +u 2) (4.8)

The operator C commutes with u &,u2, Q. Note that 0 is
one-half the angular momentum operator I.&. It is also of
interest to note that the Lie algebra described by Eqs.
(4.5)—(4.7) is isomorphic to the two-dimensional Lorentz
algebra.

The Hami1tonian

iA 8
2 88'

C= — r +1iA
Br

(4.21)

(4.22)

(r, 8)= r' e', —oo (k ( oo, m=0, +1,. . . .
277r

(4.19)

In Eq. (4.19) we have normalized gl, (r,8) such that

f d« f d8gk gk ——5(k' —k)5 . (4.2())

In cylindrical coordinates, the expressions for the
operators Q and C are

has the classical limit of Eq. (2.3). Since

[Q,H] =0 (4.9)

Thus gk~(r, 8) is a simultaneous eigenfunction of the mu-
tually commuting operators 0, Q and C, with associated
eigenvalues
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ER
Ei, = (k2+m2+1),

mA&m=
2

RkCk=
2

(4.23)

(4.24)

(4.25)

The Green's function is given by

G(r, e,r', 8', t)= &r, e
~

U(t)
~

r'8'& .

Thus

(4.26)

G(r, e,r', 8', t) =(r,e
~

e ' "' '~ r', 8')

k'm k'm (4.27)

G(r, e, r', 8', t)=e 1

fiKt

Evaluating the above expression we obtain
' 1/2

1 . 2
, exp ~ i

P'I" fiKt

I

ln —+ (8' —8)

i AKtg exp
8 m= —oc

exp
i AKt

m + (8' —8) (4.28)

Defining the expressions

u'+'=u1+iu2, (4.29)

au( 'u+ ~ I(.
(Q ( —)+u( —)Q)

Bt
(4.39)

u =u1 —Eu2 ~
( —) (4 30) These equations imply

the Hamiltonian (4.8) can be written as the sum of two
commuting Hermitian parts. Thus

(+ ) —i(K/2)Qtu (+ )e —i(K/2)Qt
+
( —) i(K/2)Qt ( —) i(K/2)Qt
+

(4.40}

(4.41)

a =a(+-)+0(-+),
where

(4.31) Using the definitions of Eqs. (4.29) and (4.30) we obtain
the result

(+—) u (+)u ( —)K
4

II(—+) + ( —) (+)
4

(4.32)

(4.33)

( u )
) (e i(K/2)Q—tu (+)e i(K/2)Qt—1+———, e

+ei (K/2)Qtu ( —)ei (K/2)Qt)

( u )
i

(e i(K/2)Qtu (+ )e i(K—/2)nt-u2 + —— e2'
(4.42)

The states fk (r, e) are eigenstates of the operators
H(+ ' and H' +' with respective eigenvalues ei (K/2)Qtu ( —)ei (K/2)Qt) (4.43)

E'+ '= [k +(m+1) ]
K

EA
Ek +'= [k2+(m —1) ] .km

Since

(4.34)

(4.35)
V. THREE-DIMENSIONAL CASE

We choose the following nine linearly independent Her-
mitian operators of the form qtpj

..

t}(ui )+
dt

(}(u2)+
Bt

one obtains

Ut[u (,FX]U

X=—[Q(u2)++(u2)+Q],
2

U [u2,H]U
sA'

= ——[Q(u i )++(u i )+Q],K
2

(6)~u+ - + (+) (+)
at 2

i (Qu++ +u++ Q—),—

(4.36)

(4.37)

(4.38)

u1=9'&P2+CzP1 ~

wi =T~(9(p) +p(9i }

1=01P2 —qZP I

u2 71P3+93I 1

W2 =
2 (g2P2 +P 2 12 } ~

&2=9'113—9'3P i

u3 =9'zP3+9'372 ~

(Op+PC }

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)
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Alternatively, instead of the three w operators, we can
construct the operators

satisfies Eq. (2.3) in the classical limit with the assump-
tion that q;,p; commute. In Eq. (5.23) we have used

1Cl =
z (q1P1+Plql +R2P2+P2R2),
1

C2 2 ('q 1P 1 +P 1'q 1 +q 3P 3 +P 3'q 3 ) r

C3 2 (R2P2+P2R2+R3P3+P3R3) ~

(5.10)

(5.11)

(5.12)

V1 0171 q2J 2

V2 =91P1 —93P3

V3 =QZP2 —9373 .

(5.24)

(5.25)

(5.26)

so that Note that the v operators are linearly dependent. They
may be expressed in terms of the w operators by

C1 =W1+W2 ~

C2 =W1+W3,

C3 ——W2+W3 .

(5.13)

(5.14)

(5.15)

U1 =W1 —W2,

V2 =W1 —W3,

U3 =W2 —W3 .

(5.27)

(5.28)

(5.29)
The operators C;, i =1,2, 3, commute with the operators
u;, w;, 0;. Furthermore, their sum

C=C1+C2+C3 (5.16)

q[0 01i]=iA g cP, O1, .
k=1

(5.17)

The nonzero structure constants c,J~ have the values +1
and +2. Specifically

C 123 —C 347 .—C 369 —C491 —C693 —C 897 —1 (5.18)

C149 =C153 —C167 —C176 —C]94 —C231 —C246 —C264 —C351

commutes with all of the operators of Eqs. (5.1)—(5.9).
These nine operators form an algebraic systein that is
closed under commutation. Denoting the nine operators
of.Eqs. (S.l)—(5.9) by 0;, i =1,2, . . . , 9, one obtains

Substituting Eqs. (5.27)—(5.29) into Eq. (S.23) yields the
alternative expression for the Hamiltonian

3 2 3
H= $(u —+w,') —2$ $ w;w,.

i=1 i=1 j=2
i(J

(5.30)

~ith the structure constants given in Eqs. (5.18)—
(5.22), we find

[L;,H]=0, i=1,2, 3 (5.31)

where the L; are the components of angular momentum.
Thus, angular momentum is conserved and one can find
simultaneous eigenfunctions of L3 and FA In spherical
coordinates, the Hamiltonian is

—C 374 —C 396 —C 473 —C 486 —C 579 —C 597 —C 67 1
—C 684

=C789 = —1

C132 =C462 C795 =2,
C135 C468 C798 = —2 .

From Eq. (5.17)

C"k= —C IjJ Jj

so these quantities need not be listed explicitly.
The Hamiltonian

38= $ ( Qg +U1 —W1 )
2 2 2

/ =1

(5.19)
K 2 282 a L' 3H= ——A r +4r
2 (jr 2 Br 1r22 4

(5.20)
where

(5.22)

Setting

(5 23) one finds the normalized eigenfunctions

(5.32)

(5.33)

(r, 8,$)=
3&2

r' Y~ (e,p), —oo &k & oo, 1=0,1,2, . . . , m= —l, —l+1, . . . , l .
2m- r3~2

(5.34)

The normalization of these eigenfunctions is given by

qk1 dx=5(k k)51/5— (5.35)

The corresponding eigenvalues of IIare'
fi KZ«= [k'+l(1+1)+3] .

2

The Careen's function is given by

(5.36)
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G(r, 8,g, t, r', O'P') = (r,8, ttt
i
e ('i") '

i
r', O', P')

= f dk g g (r, 8,$ i
e ' "' 'i k, l, m )(k, l, m

i
r', 8', it)' )

1=0 m= —1

f dk y y (iA—KI2)[k +I(1+1)+3]tq ( 8 y)yt (
i 8i yi)

1=0 m= —1

Performing the k integration and using the addition theorem, one obtains
1/2

(5.37)

G(r, 8, (tt, t, r', 8', ttt') = e
—i m/4

4m

1

4MKt
1

e
—i (3/2)fiKt

~3/2pr 3/2

r

l 2 P'

& exp. ln
2fiKt r

(2l+ 1 )P ( cos y )e (iM—/2)l(1+1)t

1=0
(5.3S)

where Pz is a Legendre polynomial and y is the angle be-
tween (O', P') and (8,$).

VI. CONCLUSION

The Green's-function operator satisfies

VG, =1
corresponding to the Green's function

(A3)

We have shown that there exists a Hamiltonian formu-
lation of phenomenological fluid mechanics. We have
then proceeded to quantize the model and obtained exact
solutions of a truncated version of the full nonlinear
Hamiltonian, which has the classical limit, H, i

———2Eq p .
These solutions exhibit conservation of angular momen-
tum which we have shown is related to the quantization
of vorticity. Although the motivation for this work arose
from fluid mechanics, similar Hamiltonians are found in
electrodynamics.

We are presently developing the field theoretical exten-
sion of this work. The model Hamiltonian of interest for
quantum hydrodynamics is of the form

V G(x,x') =5(x—x') . (A4)

g P,JPik =P;k,
J

(A5)

(A6)

(A7)

The projection operator ensures that the constraint con-
dition Eq. (1.2) is satisfied. The basic properties of P are
given by

&aprstlatlpPrPs
a,P, y, 5

(6.1)
so that

where the summation is over field modes, so that mode-
mixing phenomena must now be included. We plan to ap-
ply the results obtained from the field theory to fluid flow
and to quantum-optical systems. and
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APPENDIX: DERIVATION OF THE CANONICAL
EQUATIONS

V u=o

We examine the variational derivatives of

H= — u dx2
2

= —,
' f (aVp) p (aVp)dx

=—'(aVP P (aVP))

(A9)

(A10)

The velocity field u satisfying Eq. (1.1) and the in-
compressibility condition Eq. (1.2) may be written as

where we have employed Eq. (AS) and the Hermiticity of
P to simplify the integral. The variation of H gives

u= P (aVP), (A 1)

8 8
Xi XJ

(A2)

where a and p are nonlocal potentials and the projection
operator P has components

5Hs ———,
' ((5a)VP, P.(aVP) )

+ ,
' (aVp, P.(5a)Vp)—

=(5a,VP P (aVP))

=(5a,u VP) .

(A 1 1)

(A12)

(A13)
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Therefore, we obtain from Hamilton's equation

aP 5H = —u. Vp .
Bt 5a

Similarly, variation of H with respect to p gives

(A14)

Ba 5H
at

=
5p

=-'~ (A15)

The canonical variables may be viewed as Lagrangian
"particle" labels that follow the flow of the fluid.
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