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Structure and thermodynamics of a classical hard-sphere fluid: A self-consistent theory
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A self-contained Ornstein-Zernike approximation scheme for calculating the structural and ther-
modynamic properties of a hard-sphere fluid is proposed within a simple functional ansatz for the
tail function d(r) and without resorting to any a priori availability of numerical simulation data.
This is done by adopting a complete thermodynamic closure on the solution of the model by means
of internal-consistency constraints which arise from demanding, through the knowledge of the
structural correlations in the fluid, a unique estimate for the equation of state whatever route is fol-

lowed for its evaluation.

I. INTRODUCTION

The comprehension of the role played by hard spheres
as a primitive “reference system” for describing the
structural properties of dense classical liquids may well be
considered as one of the most important achievements in
this field over the past two decades. A unique feature of
this model system, which arises from the postulated high-
ly singular law of interaction between the particles, is that
its excess free energy is entirely entropic.! Moreover, as
clearly appears from numerical simulation experiments,
the excluded volume effects which are produced by the
hard-sphere potential already yield a close-fitting picture
of the short-range structure in a monatomic liquid at
moderately high densities. Such peculiarities, together
with the recognition of the different roles played by the
repulsive and attractive parts of the interaction potential,
are at the very root of the successful use of hard spheres
as the proper reference system on which to engraft a per-
turbative theory of real dense fluids.

The absence of an exact solution of the model for space
dimensionality higher than one makes it necessary and re-
warding to set up semianalytical approximation schemes
for describing at a quantitative level both the structure
and the thermodynamics of this basic system. Most
liquid-state theories usually start from a functional ansatz
(which can be variously justified) on some relevant
structural property of the fluid.

Recently, a very effective methodology for constructing
at least a partially self-contained theory has become that
of resorting to the requirement of thermodynamic con-
sistency in order to evaluate the free parameters which
enter the approximation scheme.! ~® Identity between the
pressures as calculated from the virial theorem and from
the fluctuation-theory expression for the isothermal
compressibility is demanded as the proper thermodynamic
constraint on the solution of integral equations for the
pair distribution function g(r). Other distinct ad hoc
conditions may also be introduced to fix the residual in-
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dependent parameters of the theory.

Within the context of this general philosophy, it is the
purpose of this paper to point out that the existence of
further explicit statistical-mechanical routes to the ther-
modynamics of a hard-sphere system can be conveniently
used to ensure a more complete internal consistency be-
tween all the possible structural estimates of the thermo-
dynamic properties of the fluid. This is done after a
well-defined ansatz for a typical structural function of the
system is postulated. A totally self-contained scheme is
thus set up, requiring no external information such as that
provided by computer simulation experiments.

The starting point is obviously the calculation of the ra-
dial distribution function which fully describes the static
structure of a classical fluid on a “pair level.” In this
respect, it is well known that one of the most fertile ap-
proaches to the explicit evaluation of this function for a
variety of model systems is provided by the Ornstein-
Zernike (OZ) equation which relates g(r) to an auxiliary
function c(r), known as the direct correlation function:”®

h(r)=c(r)+p f dr'h(|t—1'|)e(r'), (n

where h(r)=g(r)—1 is the total correlation function, and
p=N/V is the particle number density. The OZ route to
a model calculation of pair correlations in the fluid re-
quires the construction of suitable approximations for
c(r). A deeper insight into the mathematical structure of
this function can be achieved if one resorts to its formal
expression in terms of the “tail” function d (7):

c(r)=f(riy(r)+d(r), (2)

where f(r)=exp[—pBu(r)]—1 is the Mayer function,
B=1/kgT is the inverse temperature, y(r)
=exp[Bu(r)]g(r) is the cavity distribution function, and
u (r) is the interatomic pair potential. The function d (r)
is independently defined in diagrammatic language as the
set of those connected graphs which are free from bridge
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points and lack direct bonds between the root points.® For
hard spheres, one has exactly

0, r<o (3a)
EN=1y01), r>o (3b)
where o is the hard-core diameter, and
d(r)—y(r), r<o (4a)
cM=14r), r>o (4b)

which imply a finite discontinuity of both g(r) and c(r)
across r=o, while the functions y (r) and d(r) are every-
where continuous for »>0.° Furthermore, a remarkable
feature of the OZ equation for systems with a hard-sphere
interaction is that g(r) is known to be zero inside the hard
core, so that only c(r), or equivalently—by Eq. (4b)—
d (r), outside is required for the evaluation of the pair dis-
tribution function over the whole range of r.!°

However, this is not tantamount to a complete solution
of the model. In fact, if one is also interested in the
behavior of y(7) in the interior of the core, then the tail
functil%n d (r) needs to be independently specified also for
r<ao.

There are several reasons why one would like to obtain
reliable theoretical information on y(r) over the whole
range of r. This function is intrinsically relevant since its
logarithm yields the potential of mean force between two
particles in the fluid.® In the limit of »—O0, the cavity dis-
tribution function is also asymptotically related to the
thermodynamics of the system, and in the case of hard
spheres one explicitly finds'!12

Iny(r)=Bu™—5(BP™/p)r/o+ "+ , (5)

where u® and P®* are the excess parts of the chemical po-
tential and pressure, respectively. In addition, some wide-
ly used perturbation theories for the structure of fluids
with a soft-core potential require the knowledge of the
hard-sphere cavity distribution function inside the core.!?
Furthermore, y(r) is directly available via the free energy
of the fluid excluded from two overlapping spheres.'*

The layout of the paper is as follows: In Sec. II we in-
troduce the basic assumption on the functional behavior
of the tail function d(r). The proposed thermodynamic
closure of the theory is discussed in Sec. III. A short
description of the numerical procedure adopted for the
solution of the model is given in Sec. IV. The results are
presented in Sec. V and compared with those obtained by
suitable accurate parametrizations of the numerical simu-
lation experiments. Section VI is finally devoted to con-
cluding remarks with an -emphasis on the possible im-
provements of the present scheme.

II. THE BASIC ASSUMPTION
ON THE STRUCTURE OF THE MODEL

In view of setting up a self-contained Ornstein-Zernike
approximation scheme with a fully consistent thermo-
dynamic closure, we now introduce our key approxima-
tion for the hard-sphere tail function:
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3
exp | > a,(r/o—1)"|, r<o
n=0
d(r)= ’ (6)
exp[ —z(r/oc—1)], r>o.
r/o

The function d(r) is positive definite in real space. It is
also positive definite in the Fourier sense for the relevant
set of parameters «,, K, and z. Inside the core our func-
tional ansatz for d(r) is equivalent to the one Henderson
and Grundke (HG) proposed for the whole range of 7 in
order to construct a simple but reliable semiempirical
parametrization of the structural properties of a hard-
sphere fluid.!"> This goal was actually achieved in a way
which is conceptually analogous to what Verlet and Weis
(VW) had previously done for the radial distribution func-
tion, !¢ viz., by fitting the guessed d (r) to external data for
the thermodynamics and structure of the fluid essentially
provided by computer simulation experiments. However,
this procedure, even if very effective and successful, is
intrinsically unable to yield independent theoretical pre-
dictions.

The reason for assuming a Yukawa decay for d () out-
side the core is closely related to the solution of the OZ
integral equation. In fact, our approximation is clearly
less flexible and thus in principle less accurate than the
original HG ansatz, but has the distinct advantage of al-
lowing an analytical solution of the model, leading to
closed-form results for both the thermodynamic proper-
ties and the direct correlation function inside the core.!” It
is evident that such an assumption on the functional
behavior of d(r) does not contain what presumably ap-
pears to be a relevant feature of the direct correlation
function for hard spheres at high densities, namely the oc-
currence of damped oscillations outside the core.!>!®
Nevertheless, a good overall description of the structure
and thermodynamics of the fluid is already possible on a
quantitative basis even in this simplified picture. These
conclusions are anticipated by previous results obtained by
Waisman!” and Grundke and Henderson!® who showed,
with two different procedures, that, after fitting the pa-
rameters K and z to the “exact” values of the pressure and
compressibility, the Yukawa form for c(r) is able to
reproduce the experimental pair distribution function for
hard spheres with a remarkable accuracy.

The analytical solution of the OZ equation supplement-
ed by the “core condition” on g(r), as given by Eq. (3a),
and by the Yukawa assumption on the spatial decay of
¢ (r) outside the core leads to!”

—c(x)=a+bx+mnax3/2+v[1—exp(—2zx)]/(zx)
+v?[cosh(zx)—1][2Kz%exp(z)] !,

x=r/o<l (7)

where n=(m/6)po> is the packing fraction. The Wiener-
Hopf factorization method in the form introduced by
Baxter?® further yields analytical expressions for the three
coefficients appearing in Eq. (7), viz., a, b, and v, in terms
of K, z, and an auxiliary parameter B which, at a given
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density, is the only physically meaningful solution of an
associated quartic equation.’’"?> The above relations for
a, b, and v are obtained by requiring the continuity of the
function

O(r)=y(r)—d(r)

=g (r)—c(r) (8)

together with its first two derivatives across »=0. No ex-
plicit constraint is imposed on the third derivative of ®(r)
which for hard spheres in three dimensions should also be
continuous at contact.” In order to be consistent with
such continuity requirements we demand d(r) to be con-
tinuous at »=o up to its second derivative. This readily
leads to the following relations between the coefficients
which parametrize the tail function:

a0=1nK N (9a)
a=—(z4+1), (9b)
a2=% . (9¢)

III. THE THERMODYNAMIC CLOSURE

The thermodynamics of the hard-sphere system can be
entirely described in terms of a single equation of state.
From the virial theorem one has

BP*/p=4ny(o), (10)

where the contact value of the pair distribution function
does only depend on the packing fraction 7.

On the other hand, statistical mechanics provides a
number of additional exact relations which can be used to
force the structure of the fluid, as modeled for instance by
an approximate d(r), to self-consistently adhere to the
thermodynamics of the system.

Two such internal constraints for the asymptotic
behavior of the function y(r) near the origin clearly
emerge from Eq. (5). In fact, this twofold condition may
also be read as supplying an independent ‘“‘structural esti-
mate” for the excess parts of the chemical potential and
pressure through the value of Iny(r), together with its
first space derivative, at » =0. We thus require

d
E;Iny(r) | r—0o=—6my(o) . (11)

Furthermore, from the knowledge of the pressure it is
possible to calculate the corresponding “thermodynamic”
value for Bu®* as a function of 7:

Bﬂex:Baex+BPex/P , (12)

where the excess free energy per particle a* is given by

Ba*(n)= fJ’(ﬁP“/p)iJ{— . (13)

Hence, we consistently demand that the two estimates for
the excess chemical potential coincide:

Iny(0)=(BP/p) + fo"(ﬁpevp)i%’!— . (14)
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Upon differentiating Eq. (14) with respect to 77, we find
d 9 2
= 0)]=—[4 , 15
"3 [Iny(0)] an[ 7°y(0)] (15)

where use has been made of Eq. (10) for SP®*/p.

The last structural constraint follows by requiring the
second correlation moment for density fluctuations in the
fluid to be given by the isothermal compressibility of the
system, evaluated as the density derivative of the virial
pressure. Use of the OZ equation readily yields

a=1-24y fow c(x)x2dx
149 g2
=1+ an [4n%y(0)] . (16)

Obviously, Egs. (11), (15), and (16) would be identically
satisfied with the exact input for the structural properties
of the system. However, in the context of an approximate
theory, these conditions play the role of well-defined con-
straints which ensure an intrinsic consistency in the quan-
titative description of both the structure and the thermo-
dynamics of the model fluid.

After expressing the function y(r) inside the core in
terms of d(r) and c(r) through Eq. (4a), we make explicit
use of our basic ansatz for the tail function which is for-
mulated in Eq. (6), together with the derived expression
for the direct correlation function inside the core as given
by Eq. (7). Equations (11), (15), and (16) constitute the
thermodynamic closure of the model, and are used to
determine the three independent parameters of the theory,
namely K, z, and a3, as a function of density.

IV. NUMERICAL PROCEDURE

The analytical solution of the OZ equation for hard
spheres with a Yukawa closure is formulated, at a given
density, in terms of K, z, and an additional parameter S.
These quantities are further related by the equation??

K*4+B(12B87—Y)K +B*(369p°B—X)=0, 17
where
X=6n |zexp(—z)— 2(16 [2—2z—exp(—2z)(2—z%)]
TZL—[Z——Z exp(——z)(Z—l—z)] (18)
and
Y= _ZI_L—[Z——Z —2exp(—z)(1+2)]
2
— B 1y s exp(—2)(242)]. (19)
z9(1—7n)

- Equation (17), complemented by Egs. (18) and (19) for the

coefficients X and Y, leads to a simple expression for K as
a function of B, z, and 7, the physical root being that one
which preserves the ideal-gas behavior in the limit of van-
ishing density. We are thus lead to choose 3, z, and a; as
the most convenient set of independent parameters for the
model at a given density. Our system of nonlinear dif-
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ferential equations is then numerically integrated for a
series of densities increasing stepwise from zero, the low-
density boundary condition being provided by the Percus-
Yevick solution for the hard-sphere system.?>?* Our nu-
merical procedure is strictly equivalent to selecting out of
the oo? solutions supplied, at a given density, by the alge-
braic equation (11) that one which evolves as a function of
7 in accordance with the two differential constraints (15)
and (16), the free parameters being thus fixed so as to en-
sure the self-consistency of the model up to that density.
The isothermal compressibility K is then systematically
used for a numerical check on the achieved level of inter-

nal consistency via the three independent routes provided
by the model for its calculation:

3(BP)
dp

_, (a(ﬁfy

[pkpT)Kr]™'=

B

dp

B

=q . (20)

The three estimates for the inverse compressibility are
then required to be congruent within 1%.

V. RESULTS AND DISCUSSION

The system of differential equations (11), (15), and (16)
has been integrated for a number of densities up to the
freezing region. The calculated values for the three in-
dependent parameters of the theory are given in Table I.
As expected, 3 correctly tends to zero at low densities.

In order to assess the quality of the basic ansatz adopt-
ed in this theory, we first present our results for d(r) in
Fig. 1 in a range of densities. The comparison with the
correspondent HG parametrization'> clearly shows that
the composite thermodynamic closure succeeds in model-
ing the structure of the fluid with remarkable accuracy.
The small quantitative discrepancies which still emerge
with respect to the external fit can be easily explained in
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FIG. 1. The function d(r) for hard spheres. Solid curves:
present theory. Dashed curves: Henderson and Grundke pa-

rameterization. The curves are labeled with the appropriate
values of the packing fraction 7.

to the value at r=0" of the direct correlation function
c(r), information which can thus be independently ex-
tracted from the numerical simulation data for g (r) after
use of the OZ equation. The agreement between the
theoretical prediction and the corresponding experimental
values is good over the whole range of explored densities.
We now turn to a critical discussion of our results for

terms of our simplified approximation for the tail func- 15l
tion outside the core.
A more detailed insight into the behavior of d(r) at K
contact as a function of density is gained from Fig. 2.
This quantity is directly given by one of the parameters Lol
which appear in our theory, namely K, and is also equal )
TABLE 1. Values of the three independent parameters of the 0.5
theory as a function of the packing fraction 7.
n B z as
0.10 0.001 4.16 1.30 0.0
0.20 0.006 4.87 1.26 0.0 0.2 04
0.30 0.021 5.84 1.04 1
0.35 0.031 6.84 0.86
0.40 0.041 8.34 0.59 FIG. 2. Contact value of d(r) as a function of 5. The con-
0.45 0.057 10.46 0.16 tinuous line is obtained via the Verlet and Weis parametrization
0.49 0.069 12.87 _030 Whereas the open circles indicate the predictions of the present
theory.
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TABLE II. Thermodynamic properties of the hard-sphere fluid as given by the present theory and

by the Carnahan and Starling equation of state.

BP/p a(éi)P ) Bus
n Theory CS Theory CS Theory CS
0.10 1.52 1.52 2.19 0.98 0.98
0.20 2.39 2.41 4.70 4.71 2.40 2.47
0.30 3.91 3.97 10.02 10.25 4.68 4.87
0.35 5.09 5.21 14.76 15.31 6.38 6.65
0.40 6.69 6.93 22.22 23.22 8.60 9.04
0.45 8.98 9.38 33.60 35.92 11.71 12.33
0.49 11.51 12.16 48.12 51.85 14.95 15.92

the three relevant thermodynamic properties of a hard-
sphere fluid, i.e., pressure, inverse isothermal compressi-
bility, and excess chemical potential, which are given in
Table II at different values of 7. It is apparent that this
theory systematically underestimates the experimental
values of such quantities as calculated from the Carnahan
and Starling (CS) phenomenological equation of state?
with a discrepancy which steadily increases with 7. At
the Alder transition density such discrepancies reach
5.3%, 7.2%, and 6.1% for BP/p, o(BP/dp)r, and Bu,
respectively.

The compressibility factor is also graphically displayed
as a function of density in Fig. 3. In order to illustrate in
a pictorial way the most relevant feature of the present
scheme we also show in the same figure the four different
estimates which can be obtained for BP/p versus 7 when
following an inconsistent approach as that given, for in-
stance, by the Percus-Yevick integral theory which is
equivalent to assuming d(7)=0.” Besides the two well-

15.0
, PY ()
/ cs
/o SCT
10.0 A
/l //l
// 4
S Yy
= A
5.0 4
g ___--PYW)
- PY(sev)
1.0 = :
0.0 0.2 04 0.6

FIG. 3. Equation of state of a hard-sphere fluid. Solid curve:
Carnahan and Starling (CS) reduced pressure. Open circles:
present self-consistent theory (SCT). Broken curves: indepen-
dent estimates for BP /p obtained in the Percus-Yevick (PY) ap-
proximation. Labels refer to the different methods adopted for
the evaluation of the PY equation of state, as fully discussed in
the text.

known virial and compressibility equations of state, we
plot the value of the compressibility factor calculated
from the independent knowledge of the excess chemical
potential when this quantity is obtained from the Percus-
Yevick value of Iny () at r =0. Furthermore, as appears
from Eq. (5), the space derivative of the cavity distribu-
tion function at the origin is in principle directly related
to the virial pressure via the Yvon-Born-Green integral
equation.?® Of course, this relation is not necessarily veri-
fied in an approximate scheme, but it can be used as a fur-
ther measure of the level of structural inconsistency
present in the theory. The assumption of a vanishing tail
function in the whole range of r clearly leads to a most
dramatic discrepancy from the correspondent CS value of
these last two estimates for BP /p.

The agreement between our calculated equation of state
and the experimental results is comparable with that
achieved by other theories which also make use of partial
consistency criteria.>~¢ However, as already emphasized,
the novelty of this approach is that, at variance with pre-
viously exploited approximation schemes, fully consistent
information is obtained for the whole body of thermo-
dynamic properties which can be calculated from the
knowledge of the pair correlations in the fluid. This, in
turn, leads to a more reliable description of the way the
structural properties of the system globally evolve as a
function of the thermodynamic state.

The direct correlation function c¢ () is shown in Fig. 4
for 7=0.2, 0.3, and 0.4. The same function when calcu-
lated after Fourier inversion of the VW radial distribution
function'>!6. is also plotted for the same values of the
packing fraction 7. For r <o it is difficult to resolve be-
tween the two curves on the scale of the picture. Further-
more, the naive Yukawa form for c(7) outside the core,
when modeled by the thermodynamic consistency require-
ments, succeeds to mediate between the oscillations exhib-
ited by the hard-sphere direct correlation function at high
densities. Such an oscillating space decay appears at
71 ~0.3, on the scale given by the contact value of d(r).
In passing, it is interesting to note that roughly in
correspondence with this density the quantity ¢ (r=0)
starts to grow exponentially as a function of 7, as can be
verified through the data shown in Fig. 2. Furthermore,
the Kirkwood superposition approximation, which is fair-
ly accurate for 17 <0.3, dramatically breaks down just in
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-0.60

0.30

0.00

0.04
0.00

FIG. 4. Direct correlation function for hard spheres at
n=0.2, 0.3, and 0.4. The solid curves are obtained via the Ver-
let and Weis parametrization for g(r) whereas the dashed
curves give the results of the present theory.

this region of densities, as is apparent, for instance, from
the density derivative of g(r) at contact.”’” The joint oc-
currence of the above peculiarities in the density evolution
of the hard-sphere structure might be understood in terms
of a change of fluid behavior which would take place well
before the Alder transition.

We finally present our theoretical prediction for the
hard-sphere bridge functions

b(r)=[h(r)—c(r)]—Iny(r) (21)

whose role for developing a “universal” picture of the
short-range structure in simple fluids has been amply dis-
cussed.! In Figs. 5—7 the b(r)’s are shown at different
densities against their “experimental estimate” which is
obtained by Eq. (21) after use of the VW and HG parame-
terizations for the structural properties of the fluid. The
agreement is very good at each density even in the range
of medium to large values of » where the b (r) also attains
negative values showing very small oscillations. Still,
after a magnification of the tail, the phase of these oscilla-
tions turns out to be accurately reproduced by this theory.
In this respect we recall that the Percus-Yevick bridge

G. GIUNTA, C. CACCAMO, AND P. V. GIAQUINTA

n=0.2

0005

1.0

0.5 20

Yo

0.0

20 ;30

0.0 1.0

FIG. 5. The bridge function for hard spheres at 7=0.2.
Continuous line: results obtained via the Verlet and Weis, and
Henderson and Grundke parametrizations. Dashed line:
present theory.

functions are always positive definite."® We would finally
like to comment that a conclusive quantitative assessment
on the relative height of the second peak in the VW b (r)
in the region of high densities heavily rests upon a more
detailed analysis of the space decay of c(r).28
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FIG. 6. Same as for Fig. 5 at n=0.3.
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FIG. 7. Same as for Fig. 5 at n=0.4.

VI. CONCLUDING REMARKS

An analysis of structure versus thermodynamics con-
sistency requirements, beyond the usual virial-
compressibility route, for developing a self-contained pic-
ture of pair correlations in a hard-sphere fluid, is the main
contribution given in the present paper on methodological
grounds. In order to verify on a quantitative level the
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consequences of imposing such nontrivial constraints on
the equilibrium structural properties of the system, we
have resorted to a simple but reliable ansatz for the tail
function d(r) which allows an analytical solution of the
OZ integral equation. The numerical results, which have
been obtained without using any external data, demon-
strate that this theoretical approach is quite promising,
leading to a close quantitative description of the equilibri-
um properties of the model fluid. A refinement of the an-
satz for d(r), so as to include the possible occurrence of
oscillations in the medium-range decay of this function, is
being considered in order to produce a more realistic
description of the hard-sphere fluid in the high-density re-
gion, without losing the simplicity of an analytical OZ
representation of c(r) inside the core. This structural
feature may turn relevant for a proper theoretical descrip-
tion of the freezing transition. In this respect we antici-
pate that our numerical procedure appears to meet with
serious convergence problems in the region of the Alder
transition. In particular, gradually beyond 7 ~0.51, we do

not succeed in obtaining a totally consistent solution

within the previously invoked numerical accuracy. This

might be interpreted as an intrinsic instability occurring

in the system due to a progressive inability of the fluid to

simultaneously saturate the set of coupled thermodynamic
constraints. More-detailed investigations are in progress
to clarify this point.
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