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Molecular-lattice-theory results reveal that the steric (hard-repulsive) packing of rigid cores and
partially flexible tails can explain the relative stabilities of the smectic- 4, smectic- 44, and higher-
temperature and lower-temperature nematic (including reentrant-nematic) liquid-crystalline phases,
and the isotropic liquid phase. These phases and transitions between them are presented as a func-
tion of temperature, pressure, tail-chain length and flexibility, and orientational and positional order
of the molecules for different systems. Critical exponents calculated at the smectic- A4 to nematic
transitions are consistent with an identification of the fraction of one-dimensional positional align-
ment (i.e., the fraction of segregated packing of cores with cores and thus of tails with tails) of the
molecules in the smectic- 4y phase as an order parameter.

INTRODUCTION

The partial orientational alignment of the long axes of
molecules parallel to a preferred axis (and also, in some
cases, the partial positional alignment of the centers of
mass of molecules) to form liquid-crystalline phases is
very common in nature and therefore is of considerable
basic interest to theoreticians and experimentalists, as well
as of significant practical importance to engineers. The
simplest (least-ordered) phase with both partial orienta-
tional and partial positional ordering of the molecules is
the smectic-4 (S,) phase. Depending on the relation be-
tween the molecule length d; and the S, layer thickness
L, there are distinct types of S, phases, with real phase
transitions between the different types.!

In this paper we shall be concerned with two types of
S4 phases, the smectic-4; (S4,) phase and the smectic-

Ay (S4,) phase. These phases are physically defined! by

the following relations between L and d;: L =d; in the
S, phase and dy <L <2d; in the SAd phase.

The major purpose of this paper is to show, for the first
time, that different S, phases—in particular, distinct S 4,

and S, phases—can exist in systems of molecules that

are composed of rigid, rodlike cores and pendant, partially
flexible tail chains and that interact through only hard-
repulsive (steric, or infinitely large repulsive) site-site (seg-
mental) forces. It is not necessary to invoke dipolar forces
(or even attractive forces) to have these phases. This pa-
per also shows, for the first time, the relative stabilities of
the Sy, S4,, high-temperature nematic (N), and low-

temperature N [including reentrant-nematic (Ng)] lig-
uid-crystalline phases and the isotropic (I) liquid phase as
a function of temperature, pressure, tail-chain extended
length, tail-chain flexibility, orientational ordering, and
positional ordering in these simple molecular systems.

In the nematic phases there is no long-range positional
alignment of the molecules, but there is partial orienta-
tional alignment of the molecules. The Ny phase is a
stable N phase that reenters (reappears) at temperatures
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lower than those at which the more-ordered S, (or other
smectic) phases appear.

This paper shows, for the first time, critical exponents
for some molecular properties at the S, d-N transitions in

these simple molecular systems. The nature of the
SA;SA i transition in these molecular systems is also

presented.

A theory for these simple molecular systems provides a
base or reference theory to which other molecular features
[such as site-site (segmental) intermolecular forces, includ-
ing (1) attractions (arising from London dispersion
forces), (2) soft repulsions (i.e., finite-sized repulsions),
and (3) dipolar forces (including dipole-dipole forces and
dipole-induced dipole forces)] can be added. In fact,
theories with these additional molecular features have
been studied? by this author and are in the process of be-
ing written up for publication. This stepwise theoretical
approach provides a method for determining on an indivi-
dual basis which molecular features are sufficient and/or
necessary (and/or helpful) for the existence of S 4, Say

and Ny phases and also the relative importance, one with
respect to the other, of these features in affecting the rela-
tive stabilities of the various phases.

The motivation for starting with these simple systems
of molecules that are composed of cores and partially
flexible tails and that interact with only segmental hard
repulsions is the experimental observation that almost all
systems that form S, and Nz phases [in fact, that form
any kind of smectic (i.e., layered) liquid-crystalline phase]
are composed of molecules each of which has one or more
pendant partially flexible tail chains: as the tail chain is
shortened, the smectic phases disappear.> While there are
a few exceptions* to this observation, our purpose here is
to focus on what the tail chains are doing in the S A Sy »

and Ny phases in the much more commonly observed sys-
tems. While many of these molecular systems with tails
also have dipolar forces, our purpose in this paper is to
focus on and isolate the effects of steric packing of cores
and partially flexible tails in stabilizing S 4, S4 » and Ny
phases.
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THEORY

We use here a mean-field-like simple cubic lattice
theory>® derived by this author for a system of molecules
where each molecule is composed.of a rigid, rodlike core
and one or two pendant, partially flexible (semiflexible)
tail chains. Each molecule has a total of m cubic seg-
ments occupying m contiguous lattice sites; there are r
rigid core segments, f semiflexible tail segments, r —1
rigid core bonds, and f semiflexible tail bonds. By semi-
flexible we mean that it costs an energy E; to bend a tail
bond out of the direction of the long molecular axis of the
core. To mimic alkyl chains, each tail bond has three
choices of direction, two of which each cost an energy E,.
In this theory the average fraction 2u of bent tail bonds
depends only on E, and the temperature T and is set by a
Boltzmann distribution.’

The molecules interact only through steric (hard-
repulsive), site-site (segmental) intermolecular interactions.
By hard-repulsive we mean that it costs an infinitely large
energy to place two molecular segments on the same lat-
tice site.

The general configurational partition function for this
theory is derived and discussed in detail elsewhere.>® To
summarize, the partition function is derived for given
orientational and positional orderings of the molecules at
given pressures and temperatures by counting (via approx-
imate combinatorial lattice statistics) the number of ways
that the molecules in the system can be laid, segment by
segment, in a lattice of given volume in a manner such
that two molecular segments do not occupy the same lat-
tice site (hence, hard repulsions), and then taking the ther-
modynamic limit. '

I

More specifically, the configurational partition function
is a function of the following molecular and thermo-
dynamic variables: P, pressure; T, absolute temperature;
p, average density of the system (average fraction of lat-
tice sites occupied by molecular segments; 0 <p < 1); v,
volume of one lattice site (thus, hard-repulsive volume of
one molecular segment); m, total number of segments in a
molecule; r, number of core segments in a molecule; f,
number of tail segments in a molecule; E;, tail-bond
bending energy, as described earlier; 7, average orienta-
tional order of the molecular cores [given by
n={(3cos’0—1)) /2, where 0 is the angle between the
core long axis and the preferred axis of orientation for the
cores; 0<m<1]; and A, average fraction of one-
dimensional (1D) positional alignment of molecules whose
cores are oriented parallel to the preferred axis for core
orientation [A in this theory is a real number defined>® in
terms of the literal physical packing of the core and tail
parts of the oriented molecules. More specifically, A is ac-
tually the average fraction of the length of an oriented
molecule that overlaps (positionally aligns with)—in ex-
cess of overlaps from random positional packing—the
lengths of oriented neighboring molecules, such that cores
tend to pack with cores and tails tend to pack with tails
for oriented molecules. This A is used in the actual
molecular packing statistics>® for a S, layer and in the
resulting thermodynamic equations of this theory;
O0<A<l].

Four pertinent thermodynamic equations® resulting
from this partition function are given below to illustrate
how the molecular structure is coupled explicitly to the
molecular ordering and thermodynamic properties of the
system:

6
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N is the number of molecules in the system, k is the
Boltzmann constant, ¢ and G are the configurational
chemical potential and configurational Gibbs free energy,
respectively, of the system, v is the average tail in-
tramolecular orientational order, where

v=((3cos®p—1))/2=1—3[A/(1+2A)], (12)
where
A=exp(—E, /kT) , (13)

and ¢ is the angle between a given tail bond and the core
of the molecule to which the tail bond is attached.

The 1D positional alignment of oriented molecules is
the basis of S, layers. This actual positional alignment
(i.e., segregated packing) of cores with cores (and thus, of
tails with tails) for oriented molecules in this theory re-
sults in a core-rich region (labeled R) and (a) tail-rich
region(s) (labeled F) in each layer. If /=R in the above
equations, then g =41, if /=F, then g=—1. When
A =0, these regions have the same segmental composition
and there is no layering. A S, phase of some kind exists
for any value of A for which 0 <A < 1.

Within the physical constraints 0<p<1, 0<n <1, and
O0<A<1, Egs. (1)—(3) are solved simultaneously (via nu-
merical computer iteration) to obtain the numerical values
of p, 17, and A in the various phases of the system at given
P and T. At a transition between two phases 1 and 2,
Hy1=H).

By the physical definitions of the various phases, 7=0
in the I phase, and 0<7n <1 in the N and S, phases.
A=0 in the I and N phases.

Physically, the only way to have a S 4, Phase (e, to

have L =d ; recall the definitions in the Introduction) is
to have total 1D positional alignment of the molecules
(i.e., to have A=1); therefore, A=1 in the S4, phase. The

only way to have a S, phase (i.e., to have d; <L <2d;)

is to have partial, but not total, 1D positional alignment
of the molecules (i.e., to have O<A<1); therefore,
O<A <1 in the S4, phase. (See Fig. 7 in Appendix A for

schematic diagrams of the S 4, and S 4y phases.)

The exact mathematical relation between A and L in
this theory is determined in the following manner. Since
A is the average fraction of positional alignment of mole-
cules, 1 —A is the average fraction of positional disalign-
ment and hence the average fraction of the length of a
given molecule that is out of register with its neighbors in
the S, plane. Therefore, the layer thickness L in this
theory is given® by ’

L =d; +(1—-A)dy=2-AN)d; , (14)
where the molecular length ‘a’ r 1s given by
dr=r+f[(1+2v)/3]. (15)

Because of the mean-field-like approximations, this
steric theory® here does not distinguish between the cases
of a molecule with one tail and a molecule with two tails.
Consequently, there is no mechanism in this theory for
identifying the bilayer smectic-4; (Sy4,) phase' (in which
L =2d;) formed by one-tail molecules. The addition of
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FIG. 1. Phase transition temperatures 7 (indicated by dots)
as a function of tail extended length f for the system in which
r =4, Pvy/k =43.25 K, and E,/k =250 K. The phase names
are abbreviated in the following manner: isotropic (), nematic
(N), smectic-A4, (A4,), and smectic-Ay (Az). The dotted lines
are drawn to aid the eye in following lines of constant value on
the abscissa.

other segmental intermolecular forces (such as attractions,
etc). to this theory does result? in such a distinction in tail
number, as will be seen in papers presently being prepared
by this author for publication.

RESULTS AND DISCUSSION

Some representative results calculated from the lattice
theory summarized above are presented in Figs. 1—6.
These results are shown to illustrate general patterns and
trends. Numerical results from this theory are somewhat
time consuming to obtain since they are produced by
somewhat tedious computer iterations that simultaneously
solve Egs. (1)—(3). Therefore, fine details of the general

182.00
181.75 3
181.50 L
181254 | -
3
~  181.00+ N Ag -
—
180.75 L
Ad
180.50 N -
180.25 N N -
180.00 L
43.00 43.25 43.50
Pvo/k (K)

FIG. 2. Phase transition temperatures as a function of small
changes in pressure (specifically Pvy/k) for the system in which
r =4, f =8, and E,/k =250 K. The symbols and dotted lines
are defined as in Fig. 1.
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FIG. 3. Phase transition temperatures as a function of larger
changes in pressure (specifically Pvo/k) for the system in which
r =4, f =8, and E,/k =250 K. The symbols and dotted lines
are defined as in Fig. 1.

patterns and trends presented in Figs. 1—6 are properly
left to be generated for later, more exhaustive papers.

As outlined in the Theory section, the partition func-
tion (and thus the resulting thérmodynamic equations,
and in turn the resulting thermodynamic properties and
molecular orderings) is a function of certain molecular
and thermodynamic variables. It should be noted that
these variables are not treated as ad hoc, arbitrarily adjust-
able parameters, but rather (if used as input to the equa-
tions of the theory) are taken from experimental data or
(if explicitly calculated by the theoretical equations) are
compared with experiment. A discussion of specific nu-
merical values for these variables used in this paper fol-
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FIG. 4. Phase transition temperatures as a function of re-
duced tail bond-bending energy E,/k for the system in which
r=4, f=8, and Pvo/k=43.25 K. The symbols and dotted
lines are defined as in Fig. 1.
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FIG. 5. Molecular ordering and thermodynamic variables A,
n, 7, v, and p as a function of temperature in different phases
for the system in which r =4, f=7, Pvo/k=43.25 K, and
E,/k =250 K. The dotted lines denote phase boundaries at

‘constant 7. The phase-name abbreviations are defined as in

Fig. 1.

lows.

The number r of core segments used in this paper is 4.
The value r =4 is reasonable compared with length-to-
breadth ratios for cores in real liquid crystals;”~° further-
more, a stable N phase is not observed for rigid rods hav-
ing an r less than about 3.6 in the simple cubic lattice
model with only hard repulsions.°
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FIG. 6. Critical exponents 8 and y* at the S, N transitions

as a function of AT for different systems, indicated by the fol-
lowing symbols ( Pvy/k and E,/k are in K): (+) r =4, f =5,
Pvy/k =43.25, E,/k=250; (X)r=4, f=T7, Pvo/k =43.25,
E,/k=250; (O) r=4, f=8, Pvy/k=43.25, E,/k=250;
(A) r=4, f =8, Pvy/k=43.5, E,/k =250; (V) r=4, f=8,
Pvy/k =300, E,/k=250; (O)r=4, f=8, Pvy/k=43.25,
E,/k=100. The dotted lines are drawn to aid the eye in fol-
lowing lines of 8=0.5 and y*=1.



2468 F. DOWELL 31

In this paper the number f of tail segments varies from
4 to 9. Using simple space-filling models, one can argue
that each cubic tail segment in this lattice theory contains
one to two methylene (—CH,—) units. This range in f
values and the corresponding range in methylene units are
in good agreement with tail extended lengths in experi-
mentally observed systems that have S, and Ny phases.

Most calculations in this paper were performed for the
reduced tail bond-bending energy E,/k =250 K, the ap-
proximate lower limit (as estimated from experimental
data) for the energy to make a trans-gauche bend in a hy-
drocarbon chain.”!! (The approximate upper limit corre-
sponds to Ej /k =400 K.)

In this paper results are reported for values of the more
general ratio Pvg/k, rather than for the less general quan-
tity P, the pressure. To convert the Pvy/k values in this
paper to P values, an appropriate value for the hard-
repulsive volume v, was calculated to be 2.98x 10~?* cm?
via the procedure outlined in Appendix B. Most calcula-
tions are reported for Pvo/k=43.25 K, which corre-
sponds to P=198 atm, using this value of v,.

As is well known,®” condensed phases can only exist at
higher pressures and/or lower temperatures in theories in
which the molecules interact only through hard-repulsive
forces than in theories in which molecules also interact
through attractive forces. Though the temperature ranges
over which some phases are stable in the following figures
are sometimes somewhat small, these T ranges are both
significant and real.

Figures 1—4 illustrate the relative stabilities of the S4 ,

Sy - N, and I phases and the temperatures of the transi-

tions between pairs of these phases as a function of tail-
chain extended length, of small pressure changes, of larger
pressure changes, and of tail-chain flexibility, respectively.
Figure 5 shows the average values of the density, the 1D
positional order of the molecules, the orientational order
of the cores of the molecules, the intermolecular orienta-
tional order of the tails of the molecules, and the in-
tramolecular orientational order of the tails of the mole-
cules calculated in the stable phases in a representative
system as a function of temperature. Figure 6 shows criti-
cal exponents 3 and y* calculated for the 1D positional
order of the molecules and the density, respectively, for
the Sy -N transitions for molecular systems with different

tail-chain extended lengths, pressures, and tail-chain flexi-
bilities.

In the following figures these transitions are second or-
der: S, d-N (except as noted) and S Ax'S Ay These transi-
tions are weakly first order: N-I, S Ad-I, S A]-I, Sy 1'N' In
accord with experiment,>!? the relative density and rela-
tive entropy changes at the S 4-I transitions are about the
same order of magnitude as the changes at the N-I transi-
tions and are about an order of magnitude larger than
those at the S4 -N transition.

Effect of tail-chain extended length

The results in Fig. 1 for tail-chain extended length
f =8 for a representative molecular system can be under-
stood as follows. At higher temperature T, the system

volume V is large enough that the molecules can pack
randomly, and thus the drive for maximum entropy leads
to the existence of a stable I phase. As T is lowered, V
decreases, the molecules must order partially to fit in the
volume, and there is thus a transition to a stable /N phase.
As T decreases further, V decreases further, and there
is a very weakly first-order transition to a stable S, phase
(here, the S4 B phase). In the S, range the tails are flexi-

ble enough and V is small enough that the molecules will
pack with lowest G if, for oriented molecules, cores tend
to pack with other cores and tails pack with other tails.
The semiflexible tail chains bend and twist well around
each other, but do not pack as well with the rigid cores.

As T decreases even further, there is a transition from
the S,, phase to a low-temperature nematic phase (here, a

Ny phase). As T decreases, the tails become less flexible
and more closely resemble a rigid extension of the rigid
core. The difference in packing cores and tails thus de-
creases; the need for segregated packing of cores with
cores and tails with tails (as in a S, phase) is diminished
and is now overcome by the entropy of unsegregated
packing, thereby leading to the reappearance of a stable N
phase. The transition is precipitated by subtle changes in
the flexibility of the tails, as evidenced by the fact that
while the tail chains are less flexible at the transition, they
are still somewhat flexible and are certainly not complete-
ly rigid. (See, for example, the v values in Fig. 5.)

The results for f=5—7 are somewhat similar, except
that the higher-temperature N phase has been replaced by
a S, phase. For f =57, the differences in packing cores

and tails is large enough so as to force total positional
alignment of oriented molecules (i.e., A=1, and thus the
stable phase is S4,, as opposed to a S, or N phase). As

T is lowered, the tails become less flexible, and the differ-
ences in packing cores and tails decrease—at first just
enough such that some, but not total, positional alignment
is needed (hence, the stable S 4, phase) and finally enough

such that no positional alignment is needed (hence, the
stable low-temperature N phase).

No stable S, phases [that satisfy Egs. (1)—(3)] were
found for f <4; this result is consistent with the observa-
tion® (see the Introduction) that smectic phases disappear
as the tail chain is shortened in practically all systems that
have been studied experimentally thus far. Whether one
tail segment in this theory is assigned one or two
methylene units, the smallest f in Fig. 1 for which a S,
phase exists is in good agreement with the minimum
number of carbon atoms needed in the tail chain(s) of
many experimental systems>!3~!° to have S, behavior.
When the number f of tail segments becomes much small-
er than the number r of core segments, the packing of the
tail segments seems to act as a minor perturbation to the
packing of the cores—so minor that the segregated pack-
ing of cores with cores and tails with tails in a S4 phase is
no longer necessary, and the drive to maximize entropy
favors the (more-disordered) N phase over a S, phase.

No stable S, phases [that satisfy Eqs. (1)—(3)] were
found for f>9 for Pvg/k=43.25 K. When f becomes
much larger than r, the packing of the cores seems to act
as a minor perturbation to the packing of the tails—so
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minor that the segregated packing of cores with cores and
tails with tails in a S, phase is no longer necessary, and
the drive to maximize entropy favors the N phase over a
S 4 phase.

For f=5—7 in Fig. 1, the size of the combined tem-
perature range of the S, phases decreases with increasing
number of tail segments, a trend that has been observed
experimentally!>—'° (although the opposite trend has been
seen in experiment more frequently to date!®). For
f =5—7, the size of the temperature range of the S, y

phase increases with increasing f, a trend that has also
been observed experimentally.!

Effect of pressure

As seen in Figs. 2 and 3 for a representative system, the
S 4 phases become stable as the pressure P is increased at
constant lattice site volume v,, as expected. Also as ex-
pected, the S, g phase (which has less positional align-

ment) becomes stable at lower P than the S 4, phase

(which has more positional alignment). Larger P leads to
larger p, which favors the more ordered phases.

Effect of tail-chain flexibility

As seen in Fig. 4 for a representative system, the S,
phases become stable as the tails become more flexible
(i.e., as the tail bond-bending energy E, decreases), as ex-
pected. Making the tails more flexible increases the pack-
ing differences between the cores and the tails, thus favor-
ing the segregated packing of the S, phases. As expected,
the S,, phase (with less segregated packing) is stable at
larger Ej, than is the S, phase (with more segregated
packing).

As discussed earlier, the ranges of E;,/k =250—400 K
are considered to be especially appropriate for hydrocar-
bon chains. The smaller E, /k values in Fig. 4 might pos-
sibly be realized experimentally in hydrosilicon chains.

Values of molecular ordering and thermodynamic variables

The average density p, 1D positional order A, core
orientational order 7, and tail intramolecular orientational
order v were defined in the Theory section. The tail inter-
molecular orientational order 7 is the tail analog of 1 and
is given® by 7=nv. For each of the A, 1, 7, and v vari-
ables, unity denotes complete order, and zero denotes no
order. 7 (and thus 7) and A are zero in the I phase, and A
is zero in the N phase. A is unity in the S, phase.

As seen by the values of  and 7 in Fig. 5 for a
representative system, neither the cores nor the tails have
complete orientational order, even in the S, phases.
While the tails become less flexible (i.e., more rigid) as T
decreases, the tail intramolecular order v indicates that
the tails are still somewhat flexible and are certainly not
completely rigid even at the transition between the S,

phase and the low-temperature N phase.
changes in v (and in 7, 7, and p) in the N, S, , and S,

The small .
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phases in Fig. 5 show that the relative stabilities of these
phases are governed by small changes in the packing
differences of the cores and tails precipitated by small
changes in the flexibility of the tails as a function of T.
As seen in Fig. 5, the S A]-S 4 transition is second or-

der, as evidenced by a continuous change in p through the
transition and a discontinuity in dp/97T at the transition.
In Fig. 5,  and 7 also go through a maximum at the
S4,-S 4, transition.

Critical exponents at .S d-N transitions

In Fig. 6 we look at the power-law dependences of A
and of p on the temperature as a second-order S 4 ,-N tran-

sition is approached in different molecular systems. Here,
the exponents B and y* appear in the following relations:

| 1=A/Ao| < |AT|P, |1—p/po| « |AT |7, (16)
where
AT=1-T/T,, (17)

and the subscript O refers to the transition value.

The values of these exponents are not known a priori in
the theory of this paper. An inspection of Egs. (1)—(3) re-
veals that these exponents cannot be determined analyti-
cally in this theory. Therefore, these exponents have been
calculated numerically from the values of p and A calcu-
lated numerically from the simultaneous solutions (via nu-
merical computer iteration) of Egs. (1)—(3) at different T.

B is calculated from the S, B side of the transition, and

v* is calculated from both sides of the transition. In
Fig. 6, B~0.5 and y*~1. Not surprisingly, mean-field
exponents are recovered from this mean-field-like model.

The important point, though, from these calculations is
the realization that a B~0.5 is consistent with the identi-
fication of A (the fraction of positional alignment, or
segregated packing) as an “order parameter.”!® This re-
sult constitutes a successful test of self-consistency in the
original choice of this A as an order parameter and in the
subsequent appearance of A in the actual molecular pack-
ing statistics™® and resulting equations of this theory.

Concluding remarks

The results in this paper showing that it is not neces-
sary to invoke dipolar forces (or even attractive forces of
any kind) to have S 4 Sy » and Ny phases should en-
courage the search for an experimental realization of the
results in systems with nonpolar molecules. Experimental
progress along this line includes the identification of S,
and Nz phases in binary mixtures of terminal-nonpolar
compounds.!”
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FIG. 7. Schematic diagrams of the relation among the posi- .

tional alignment of oriented molecules, the layer thickness L,
and the molecule length d; in the S’ 4 and S, ., phases.

APPENDIX A: SCHEMATIC DIAGRAMS OF THE
5S4, AND SAd PHASES

Schematic diagrams of the relation among the position-
al alignment of oriented molecules, the layer thickness L,
and the molecule length d; in the S 4, and S i phases are

shown in Fig. 7 for systems in which each molecule is
composed of a rigid rodlike core and two pendent partial-
ly flexible tail chains, one at each end of the core.

Several points about the schematic character of these
diagrams should be mentioned. (1) The molecules in S,
layers in reality and in the theory of this paper do not all
have to be oriented. (See, for example, the values of the
core orientational order 7 in Fig. 5 and the discussion ac-
companying Fig. 5.) For simplicity, the molecules whose
cores are not oriented parallel to the. preferred axis of core
orientation have not been shown in Fig. 7. (2) The tails
are not completely rigid (all-trans) in S 4 layers in reality
or in the theory of this paper (see, for example, the values
of the tail intramolecular orientational order v in Fig. 5
and the surrounding discussion) and are not intended to be
interpreted as all-trans in Fig. 7. (3) No positional order-
ing of the centers of mass of the molecules in the direc-
tions perpendicular to the preferred axis of core orienta-
tion exists in S, layers in reality or in the theory of this
paper, and none is intended to exist in Fig. 7. (4) In reali-
ty and in the theory of this paper, the molecules have fin-
ite breadth (more than the thickness of a line). (5) In real-
ity as well as in the theory of this paper, it is possible for
each molecule to have just one tail, or to have two tails (as
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shown in Fig. 7). Furthermore, the two tails need not
have the same extended length. (6) In the S, phase the
empty regions in a layer in Fig. 7 caused by the partial,
but not total, positional alignment of the molecules in a
layer can be filled in reality and in the theory of this paper
by empty spaces and/or by parts of molecules from im-
mediately adjacent layers. :

APPENDIX B: CALCULATION OF v,

There are no experimental measurements of vy, but it
can be estimated from experimental measurements of oth-’
er quantities in the following manner. The separation dis-
tance o between segment centers at the zero of energy in
the Lennard-Jones (12,6) pair potential was taken as
4%10~% cm, an approximate average value for a CH,
molecule'® or for a benzene molecule;!® these chemical
species are reasonable approximations for the chemical
species in the segments in the tails and cores, respectively,
of liquid-crystal molecules. The reduced value €/k of the
absolute value of the minimum of energy in a Lennard-
Jones (12,6) pair potential is approximately'® 150 K for
CH4.

In a simple cubic lattice, v, =0, where v, is the
volume corresponding to the separation distance o. Using
this relation and values of 0=4X10"% cm and e/k
=150 K with an estimate of the reduced hard-repulsive
segmental pair-potential energy Uy=1Xx10* K, a vy of
2.98% 1072 cm?® was calculated using a Lennard-Jones
(12,6) pair potential.

While the hard-repulsive energy U, is really infinitely
large, a numerical calculation requires a large but finite
estimate of Uy. The above estimate of U, is reasonable to
use here since it gave? good numerical agreement between
the experimental values of the temperature'®?° and the
relative density change!® at the N-I transition for PAA
(p-azoxyanisole, or 4,4’-dimethoxyazoxybenzene) and the
N-I transition temperature and relative density change
calculated for the lattice-theory analog of PAA (i.e., the
system in which r =4; f =0; the segmental ¢/k =300 K,
a value appropriate for a benzene molecule!® and thus for
a core segment; and o=4X10"% cm) using a lattice
theory?! with segmental Lennard-Jones (12,6) pair interac-
tions. In the limit that the molecules have only hard
repulsions, this lattice theory?! is exactly the same for N
and I phases as the lattice theory® of this paper here.
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