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Autoignition phenomena in combustion problems exhibit a remarkable random behavior. We
show on a simple model of an exothermic reaction that the phenomena has strong analogies with the
transient behavior of a chemical explosion (Malthus model). These analogies lead to the construc-
tion of a simple theory of fluctuations. This theory is a natural extension of the theory already
developed for the transient behavior associated with the Malthus-Verhulst problem and laser insta-
bility. Although we study only a very simple model, the approach that we propose is expected to be

valid also in more complicated and realistic cases.

I. INTRODUCTION

Chemical kinetics relevant to combustion phenomena
can be very complicated and only partially known. How-
ever, the presence of typical branching processes' and ex-
othermic reactions are a common characteristic of all
combustion processes. The formation of the first free rad-
icals (or the dissociation of the first fuel molecules) is as-
sociated with a very high activation energy. As a conse-
quence, the reaction rate is initially very small and igni-
tion is characterized by a typical delay time. Ignition
occurs abruptly after such a time delay which is affected
by fluctuations of the active radicals in the initial regime.
The knowledge of the ignition delay time and its fluctua-
tions is important both from a fundamental point of view
and for various engine design and operation problems.’
From the first point of view the interest on the subject has
grown only recently® with the study of a simplified model
of an exothermic reaction. This study evidentiates a new
evolution pattern for the probability distribution function
of the active species with a long tail and multiple humps
during the transient. These results have been obtained by
a numerical solution of the master. equation associated
with the probability time evolution and have been dis-
cussed in terms of analytical calculations based on a piece-
wise approximation for the probability rates.

The main difficulty in studying the explosion problem
is how to match the initial linear regime dominated by
fluctuation to the subsequent evolution in which nonlinear
effects are essential but fluctuations are negligible.

The same difficulty is present in the well-known prob-
lem of fluctuations associated with the decay of an unsta-
ble state.* In the transient anomalous enhancement of
fluctuations has been detected by several experiments.” A
theory for the phenomenon has been developed in Ref. 6.
An improved version of the theory has been developed in
Ref. 7 and compared with available experiments in Ref. 8.
On the other hand, the analogy between the laser instabili-
ty problem and the autocathalitic chemical reaction
known as the Schlégl model I, or Malthus-Verhulst (MV)
problem in the population dynamics context, has been
recognized since 1974 in Ref. 9 in the particular case in
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which the multiplication probability rate is equal to the
immigration rate. This relation between the two probabil-
ity rates is a consequence of the Einstein relation between
spontaneous and stimulated emission of photons in the
laser instability problem, but appears quite peculiar in the
chemical context. The results have been generalized in
Ref. 10 for an arbitrary ratio of probability rates. The
time evolution of the Schlégl model I is associated with a
stochastic process which leaves an initial unstable state
under the influence of an additive noise. The process is
an n-dimensional vector whose modulus is related to the
concentration of the reacting species. The number of
components of the vector is associated with the ratio be-
tween the immigration and multiplication probability
rates. The final results are shown to be valid, by means of
an analytical continuation, also for noninteger values of n.

It is worth noting that the process for the concentration
exhibits a multiplicative noise which vanishes at the initial
unstable state. The presence of such a noise enhances the
time spent by the system close to the unstable state. This
feature and the strong nonlinearity is at the very origin of
the bimodality phenomenon. It is worth recalling that
strong multiplicative noise can produce a double-peaked
probability distribution function also at the steady state
(Refs. 11 and 12).

The master equation of the exothermic reaction can be
linearized in the early stage of the evolution and in such a
linear regime it coincides with the chemical explosions re-
gime of the MV problem (i.e., in the regime in which the
intraspecific competition is neglected).

In the chemical explosion problem, as we shall see in
Sec. 11, the exact solution of the stochastic evolution can
be read as a mapping between the process x associated
with the concentrations of the fluctuating species and an
auxiliary Gaussian process # which in each realization ap-
proaches quickly a time-independent value.

The mapping is given by the solution of the determinis-
tic evolution problem obtained by neglecting fluctuations.
This peculiar structure of the solution of the linearized
problem suggests to approximate the solution of the non-
linear problem using the same process 4 as in the linear
case, but a nonlinear mapping.
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As a consequence, each realization of the process ap-
proaches very quickly a deterministic trajectory which
starts from an effective random initial state. The proba-
bility distribution function of these initial states is the
asymptotic probability distribution of the process 4.

This approximation scheme amounts to the QDT
(quasideterministic theory) which has been fully discussed
in Refs. 4, 7, 8, and 10. The QDT is expected to work in
the present case because fluctuations are important only in
the early stage of the evolution.

The QDT accounts for the appearance of a doubly
humped probability distribution function in reasonable
agreement with the numerical integration of the master
equation.

The paper is divided into four sections. In Sec. II, we
summarize the stochastic representation of the exothermic
solution in the linear regime where it reduces to a purely
explosive chemical autocathalitic reaction (the Malthus
model). We develop the QDT for the exothermic reac-
tion.

Section III is devoted to the discussion of results and
Sec. IV to conclusions.

II. THE LINEAR REGIME OF THE EXOTHERMIC
REACTION

Following Ref. 3 we study the pure death process

X > R. (2.1)
K(T)

We assume the Arrhenius formula for the kinetic constant

K(T)=Kgexp(—uy/kgT) .

The reaction is exothermic and occurs adiabatically in a
closed vessel.

In the previous hypothesis the temperature is deter-
mined by the instantaneous concentration of the X
species. As a consequence we have

Ug
- . 2.2
kB[Tmax_(ru/Cv)(X/n)] (2.2)

N

K [_){ }:KO exp

Here 7, and ¢, are, respectively, the heat of reaction and
the specific heat at constant volume, u is the activation
energy associated with the disappearance of a single fuel
molecule. kg is the Boltzmann constant, N is the initial
number of fuel molecules. Ty, is the asymptotic tem-
perature which is reached when all the fuel molecules
have disappeared. The master equation for the probabili-
ty of having X fuel molecules at time ¢, P(X,t), is

4 pxn=x+Dk | XEL P +1,0
dt N
X
_xk | X |lpix,),
XK[N (X,2)

2.3)
P(X,0)=8y x

for 0<X <N, where K(X/N)=0 for X > N. We first in-
troduce a complementary variable ¥ =N —X which de-
scribes the already transformed fuel molecules. In terms
of the new variable Y we have

%P(Y,t}:N P % P(Y—1,1)
—H N P(Y,1) |, (2.4)
P(Y,00=8y,, 2.5)
where
m —])V’ =[N1;Y K N];Y (2.6)
The linearized expression for y is
w| X | ~viry /N, 2.7)
N
where
v=K(1),
(2.8)
A=K(1) “o

kp

-
Tmax“ l—u J

CU
In this limit we recognize the MV model, where v is the
immigration probability rate and A/N is the multiplica-
tion probability rate

Y - 2Y,
A/N

(2.9)
R—->Y.

With respect to the MV model of Ref. 10, we have
neglected the intraspecific competition and the death of
individuals, i.e., the reverse reaction rates of the kinetic
scheme of Eq. (2.9).

We now introduce the standard Poisson representation
technique of Ref. (13). The procedure can be easily sum-
marized. First we introduce an integral transform of
P(Y,t) in terms of Poisson’s distribution, i.e.,

. Y
P(Y,0= [ fla,) e da (2.10)
Then it can be shown that the distribution function f(a,t)
satisfies the following Fokker-Planck equation:

flat) 3 IN(yyr/Na)f(an], 2.11)
ot da
Fla,00=5(a) . (2.12)

The distribution function f(a,?) acts as a probability dis-
tribution function in the sense that the binomial moments
associated with the P(Y,?) given by

C,(t)=2yY(Y—1):-- (Y —n +1)P(Y,t) (2.13)
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are eéqual to the moments of the distribution function

fla,t),
C,(0=["daf(ana.

The Fokker-Planck equation (2.11) is equivalent to the
stochastic differential equation (SDE) in the Itd sense,'*

(2.14)

da=N (2.15)

v+A% ]dt +V2hadw(t) .

Here dw is the Ito differential of the Wiener process

dw)=0,
(dw) (2.16)
07 ty L

(dw(t))dw (1)) = {dt, t=t; .

We find the formulation in terms of a stochastic differen-
tial equation of our problem very convenient in order to
get an intuitive picture of the evolution in the linear re-
gime. We first divide by the total number of fuel mole-
cules, introducing instead of the extensive variable a the
corresponding intensive variable ¢ =a/N. We have
172
A

de =(v+Ac)dt + ‘%c dw(t) . 2.17)

Fluctuations arise from the stochastic term of Eq. (2.17),
which scales with the inverse of the square root of the sys-
tem size parameter N. As expected, fluctuations disap-
pear for very large N.

Typical values of parameters as those used in Ref. 3 are

v=3.7x10"%K, ,
(2.18)
A=6.6X107°K, .

Due to the smallness of the immigration rate v fluctua-
tions are expected to be relevant in early stage of the evo-
lution.

The connection with the problem of the decay from an
unstable state is easily established defining

1 &,
c=—3,¢%, (2.19)
B =1
where
de;=2c a1 vvaw, (2.20

C,(O)ZO .

The SDE equations (2.20) are equivalent to (2.17), as can
be easily shown by means of the Ito differential calculus
rules provided that

Y
N2
Equation (2.21) is a constraint on the possible values of
the probability rates which will be eventually removed by
means of an analytical continuation of results to nonin-

tegers n as in Ref. 10.

(2.21)

In the n-dimensional space the initial state is an unsta-
ble state. The model is that of a particle sitting on the top
of a hyperparabola. It will leave the unstable position be-
cause of the stochastic perturbation. The process is
Gaussian and the solution of Egs. (2.20) can be expressed
as

C,'(t)zet}‘/zhi(t) ’ (2.22)
where the process A4;(z) is given by
t .
h(D=Vv [ e~ dw (') . (2.23)

We see that Eq. (2.22) is a mapping between the process c;
and the process h;. The mapping is that induced by the
deterministic limit of SDE [Eq. (2.20)] between the posi-
tion of the particle at time ¢ and the initial position at
time zero.
ci(t)=e*2¢,(0) . (2.24)
Moreover, we see that the process h; becomes time in-
dependent for Az>>1. As a consequence, Eq. (2.23) in
such a time range describes a deterministic trajectory
starting from an “effective” initial position given by
t
5(0)=lim Vv [ e ="*"2dw;(¢') .
t— o0
In the linear regime it is also easy to calculate the
characteristic time spent by the system close to the unsta-
ble state and its fluctuations. The relevance of the first
passage time concept for the study of the decay from an
unstable state has been emphasized in Ref. 15. We shall
use the results for a linear vectorial process of Ref. 16.
The mean first passage time, i.e., the average time for the
vectorial process c¢; to attain a given value M? for the
modulus squared and its variance are given in our nota-

tion by
a1 M| |n
[t]av(M )= In|= - ] 111[2] , (2.25)
1 ,1n
[AtZ]av(Mz):[(t —[t]av)z]aVZFdj 5 (2.26)

The 3 and ¢’ are, respectively, the digamma and trigam-
ma functions given.in Ref. 17.

In our case the number of components n =(2v/A)N is
of the order of 10% as a consequence an asymptotic ex-
pansion of the poligamma function is justified:!”

n n 1 1
1/}[2 n 2 n+ nz ’
(2.27)
n 2 1
"= ]==4+0|—|.
(4 '2 ] Pl e ]
As a result we obtain
2
[aM)=1|m |2 Lol L1 o
A nv n n?
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1 |2 1
A, MY)=— |Z |40 |— 2.29
[AZL(M) =5 [n +0 |5 (2.29)

If we now take into account that the concentration

c :;ll—zcizz(Mz/n) ,
i

we obtain the first passage time for the concentration
which does not depend to the leading order on the number
of components n. This is equivalent to saying that the
size of the system N =(A/2v)n does not play any role to
the leading order in determining the time the system needs
to leave the unstable state. This remarkable difference
with respect to the usual phenomenology of the decay of
an unstable state derives from the fact that in the present
case we have a vectorial process with a large number of
components and the ratio between the number of com-
ponents and the number of particles is indeed constant. It
is convenient to express the mean and the variance of the
first passage time in terms of the reaction rates.

We have
1. |2 1 1
S S - PR SN 0 U (2.30)
[lav(e)=7"In N0 N ]
1 1
(A0 = +0 |~ (2.31)

The results for the contribution of fluctuation to the mean
and the variance of the first passage time agree, as far as
the dependence on the size of the system is concerned,
with those of Ref. 3.

Finally, we want to emphasize that the above represen-
tation of the early stage of the exothermic explosion al-
lows us to put the phenomenon in the general framework
of the theory of the decay of an unstable initial state.

III. THE QDT AND THE NONLINEAR REGIME

The difficulty of the nonlinear regime is due to the lack
of an exact stochastic representation of the master equa-
tion. We shall overcome this difficulty assuming, on
physical basis, that fluctuations are negligible in the non-
linear regime. The point is therefore to match the deter-
ministic evolution characteristic of this regime to the
fluctuation-affected linear regime. This matching is
naturally introduced assuming the solution of the deter-
ministic nonlinear equation as a mapping between the
process ¢ and the process # defined in Eq. (2.22). This is
the main idea of the QDT theory. The deterministic
equation of motion in the vectorial representation is given
by

dCi
7d—t‘=f(0)0i s . (3.1
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(c)—pu(0
fle)= LZcM , (3.2)
where u is given by Eq. (2.6).

Expansion to first order of Eq. (3.1) gives the linear re-
gime. The nonlinear regime is defined for uic) >>u(0).
In this limit Eq. (3.1) is obviously equivalent to the deter-
ministic evolution equation for the concentration

dc

ar =ulc) . (3.3)
The numerical integration of Eq. (3.3) is reported in Fig.
1. Equation (1.3) defines a mapping between the vector
¢;(t) and the vector c;(0) associated with the initial state.

We get the QDT substituting ¢;(0) with the process
hi(t). Unlike the linear case the QDT is now an approxi-
mation which can be understood as the first step of a non-
perturbative expansion. This expansion has been studied
in some details at least in the case of bistable potentials in
Ref. 4.

The QDT allows to calculate the moments of C

n K
(Ck(t))=< %Z, ¢’

2 )

+ 1 & K
:f_w dh, - - - dh, gz,c,-z(t,h,-)
i

XP(hy-*- hy,t), (3.4a)

where P(hy - - - h,,t) is the multivariate Gaussian proba-
bility distribution function given by

Phy - by =[] P(hs1), (3.4b)
i=1
1 1 A2
Plht)=—Fr—— ——t , 3.4
270172 P |72 o1 (3.40)
o¥(t)= %(l—e"“) . (3.4d)
19
c(t)
o ‘IID 2'0 10'3 t/KD

FIG. 1. The deterministic evolution of the exothermic explo-
sion. The curve is derived by numerical integration of Eq. (3.3).
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FIG. 2. The average concentration C of already transformed
fuel particles as a function of time in the QDT approximation.

The multidimensional integral of Eq. (3.4) is easily done
in generalized spherical coordinates. In fact, it can be
easily seen from Eqgs. (3.1) and (3.2) that

¢ —_—%2,. c2(t,h)

is the solution of the differential equation (3.2) and there-
fore it depends only on ¢ and on its initial condition

1
h=;2’h,2 .

The result is

(&)= [ P(hypic(e,h)%dh (3.52)
N n/2| "
P(ho= |27r |2 | |2
’ 2 n
Xh"*lexp __h . (3.5b)
20%(t)/n

At this point we note that the analytical continuation of
Eq. (3.5) to noninteger values of n is straightforward.
This allows to release the constraint for the ratio between
the probability rates given in (2.19).

The explicit calculation is more easily done recalling
the known result valid for large n

&Y

01057

! L 1 ! L ! L J

20 10°¢/Kq

FIG. 3. The variance of the concentration ¢ as a function of
time in the QDT approximation.
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P(ht)~[27v(1)]"?exp 2000

_ (R—m@)P }

with
m ()=o),
4
o(t)=22E)

The numerical integration has been performed for the
first two moments. The results are reported in Figs. 2 and
3. It is remarkable how the enhancement of fluctuations
in the early stages of the explosion is able to give rise to a

Pia

Pmax = 1.06x102
t = 13.500K,,

L

Prax = 827103
t = 14.000 K,

Prax =6.2x103
t = 14000K,

7 g x

FIG. 4. The ratio between the probability distribution and its
maximum value at various times as a function of the concentra-
tion of already transformed fuel particles. Note the appearance
of a double peaked structure at intermediate times.
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quite large variance in the neighborhood of the explosion
time. It must be noted, however, that the maximum value
of the variance decreases as the number n of components
increases. The present phenomenon is different from the
previously studied case of “microscopic activation pro-
cess” of Ref. 10 because the number of components 7 is
proportional to the total number of fuel particles N.” As a
consequence anomalous fluctuations will eventually disap-
pear for N very large.

The main advantage of the QDT is not in the possibili-
ty of calculating moments, which in this case can be more
accurately derived by a perturbation expansion around the
deterministic trajectory, but in the capability of describing
very easily the transient bimodality phenomenon which is
the main characteristic of the evolution pattern of the
probability distribution function.

Performing an obvious change of integration variables
in Eq. (3.5) we have

[ c¢"P(e,nde = [ c"(h,0)P(h,0)dh (3.72)

Ple,=P(h(c,0,1) 90 . (3.7)
dc _

The mapping is defined through the integration of Eq.

(3.3), i.e.,

c dc
et —1 2 3.8
L vo—mr =t 3.8)

Differentiating Eq. (3.8) with respect to the concentration
¢, we have

dh _ p(h)—p(0) 49)
de  ulc)—p(0) '

It is just the above factor which depresses the probability
distribution in the concentration range which corresponds
to high-velocity rates values.

As shown in Fig. 4 a typical double peaked probability
distribution function appears in the transient. Some reali-
zations still leave close the unstable state while some oth-
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ers have already reached the stable state. Due to the
abrupt variation of the kinetic potential very few realiza-
tions are found in the intermediate states.

IV. CONCLUSIONS

This work is intended to contribute to a deeper under-
standing of the fluctuations enhancement in thermal ex-
plosions. It has been shown that early stages of the evolu-
tion of such systems can be usefully represented has the
decay from an unstable state in a multidimensional space.
From this point of view there is a complete analogy with
the well-known enhancement of fluctuations during the
transient behavior associated with the laser transition
problem. The essential difference is that the dimensional-
ity of the order parameter instead to be two as in the laser
case is now of the order of magnitude of the number of
fuel particles. The transient bimodality is a consequence
of the abrupt switch from a very low reaction velocity re-
gime to a very high one.

A simple theory which predicts bimodality has been
developed along the lines which were successful in the
laser problem. The quantitative predictions of the theory
could be improved by successive expansion of the process
around the QDT process. The same approach should be
successful in more realistic ignition chemical models. The
idea is that also in more involved kinetic schemes the ear-
ly stage behavior should be easily understandable and the
QDT actually needs only the knowledge of the early stage
fluctuations and of the deterministic evolution laws.
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