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Early-stage domain formation and growth in one-dimensional systems
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We study, theoretically and numerically, domain formation and growth in a one-dimensional sys-
tem with nonconserved order parameter, which evolves from an initial unstable state, through the
field model equation of Ginzburg and Landau. We are able to distinguish two time regimes and to
give an estimate of the separation time, associated with early-stage domain formation and their final
slow growth related to domain-wall interaction.

I. INTRODUCTION

The study of domain formation and growth in systems
quenched below a critical point is one of 'the most chal-
lenging problems in nonequilibrium statistical mechanics.
From the theoretical point of view systems of this kind
have been extensively studied' since the pioneering
works of Lifshitz and Allen and Cahn. More recently
there have been many investigations using computer simu-
lation especially for the late-stage development of domain
growth. ' Finally, several experiments have been done on
various systems with particular preference for systems
with a conserved order parameter, such as metal alloys
and binary fluids. ' What can be inferred from an
analysis of the quoted literature is the existence of dif-
ferent time regimes, at least two, namely, the early stage
of domain formation dominated by fluctuations followed
by their growth and dominated by their interaction. As a
consequence of the existence of different stages of
developments one can guess a strong dependence of the
second stage, the growth, on the dimensionality of the sys-
tem. These two regimes can be considered as being typi-
cal of the evolution of the system from an unstable con-
figuration. The final approach to equilibrium dynamics
is a later regime which, we feel, needs further investiga-
tions. In particular it would be worth understanding the
mechanisms responsible for the fact that the domain
growth stops, since in one-dimensional systems with
short-range interactions no phase transition is possible at
finite temperature.

In this work we report the study of the kinetics of
phase separation of a one-dimensional nonlinear dissipa-
tive stochastic model of the time-dependent Ginzburg-
Landau (TDGL) type for a single-component noncon-
served order parameter. ' The theoretical technique we
have adopted is the generalization of the quasideterminis-
tic theory (QDT) that was developed and successfully used
in the case of systems without spatial diffusion and close
to an unstable state. "' This approach was applied to the
study of the kinetics of systems such as the laser near
threshold. We have also developed a scheme, based on the
work of Rao, Borkwankar, and Ramkrishna, ' to. solve
numerically the stochastic differential equation with space
diffusion. The main result that comes from the numerical
solution is the existence of at least two time regimes in the
formation and growth of the domains. The early stage of

formation is dominated essentially by diffusion, i.e., it has
the characteristic t' time behavior, while the domain
growth has the much slower ln(t) behavior. This latter
result is in perfect agreement with the recent statistical
mechanics theory of interacting kinks developed by
Kawasaki and Nagai. The overall behavior is in turn in
good qualitative agreement with the recent experiment on
layered dilute antiferromagnetic systems by Ikeda. On
the other hand, the QDT is able to reproduce the simulat-
ed data completely in the first time regime, i.e., the whole
early stage of formation of domains. It is unable to ex-
plain the successive slow growth, although it is capable of
giving a rather precise estimate of the time needed for the
domains to form. In a rough sense this time can be con-
sidered to be the mean first passage time starting from the
initial unstable state to the final stable one. It can be
evaluated since the theoretical approximation can be con-
trolled up to that time.

II. THE TDGL MODEL AND THE QDT
The field model equation one can use to describe in a

simple way the complicated problem of ordering of a sys-
tem with nonconserved order parameter is the TDGL
model. ' %'e consider the situation of a doubly degenerate
ground state and an initially unstable configuration of a
one-dimensional scalar field y(x, t). Strictly speaking, in
one space dimension it is impossible to prepare such an
unstable situation. However, it seems plausible that situa-
tions of this kind could arise in quasi-one-dimensional
systems such as those investigated experimentally by Ike-

6, 7

We start then with the following stochastic differential
equation (model A in the literature' ):

M
y(x, t)= L+v eg(x, t)—,

dt 6y(x, t)

A [y]= Jdx ——p (x,t)+ p(x,t)—
2 ' 4

2a aq(x~)
2 Bx

with I. the kinetic coefficient, r )0, and u coupling con-
stants. e is related to I. and the temperature T by the
fluctuation-dissipation theorem

@=21-k~T,
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where k~ is the Boltzmann constant and we assume
natural boundary conditions at infinity. The properties of
the Gaussian white noise g(x, t) are

We are guided from our previous experience in homo-
geneous systems. ' The system can be visualized as a
chain of particles and the displacement of each point is
given, at a given time, by qr(x, t) O.n each location there
is an on-site double-well potential, and linear interaction
among nearest-neighbor sites is also present. In the unsta-
ble situation each particle is initially undisplaced but
starts to move if the stochastic force acting on it is dif-
ferent from zero. When the displacement is sufficiently
large the particle leaves the unstable position and its
motion is essentially deterministic. When close to the
equilibrium position, close to the bottom of either well,
the stochastic force becomes effective again. This model
is valid as long as the strength of the linear interaction be-
tween sites is small and each particle can be considered
essentially independent of the adjacent particles. When
the diffusive term is comparable with the other terms
some particles very quickly tend to fall towards the stable
position, carrying along the neighboring particles. Conse-
quently some of them will be trapped in the unstable posi-
tion since the closer particles have already fallen in dif-
ferent local equilibrium state positions. From this mo-
ment on the system evolves deterministically and domain
walls form. At the end of this stage the dominant mecha-
nism of evolution will be the interaction among kinks dis-
cussed by Kawasaki and Nagai. This qualitative model
is sketched in Fig. 1. The figure shows a particular reali-
zation of the time development of the stochastic field
p(x, t) for successive instants labeled a f. It shows how-
the local order parameter rapidly tends to saturation
forming local domains and kinks.

The full dynamical solution of Eq. (1) has intrinsic dif-
ficulties which have inhibited so far any explicit solution.
Also the perturbative approaches fail, in the sense that
they only give an answer in very restricted regions of
time. The reason is that essentially one performs a linear-
ization close to the unstable state. Some more ingenious
methods have been devised by I.anger, Bar-on and Mill-
er they are able to describe the early stage of binary-
alloy spinodal decomposition although, as showed by Bil-
lotet and Binder, ' there are some difficulties associated
with this study.

In this work we want to contribute to the understanding
of these phenomena by extending to this case the
quasideterministic approach already introduced with some
success in the spatially homogeneous case. ' The central
point of the QDT is the mapping between the original sto-
chastic process and a new process which is associated with
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FIG. 1. A typical configuration of the field y(x, t) and its
time evolution from an unstable configuration for successive in-
stants labeled a, b, c,d, e,f.

the initial condition. This mapping is induced by the
deterministic solution of the evolution equation. From
the analytical point of view this physical idea means a
resummation of the nonuniform perturbative expansion,
analogous to a singular perturbation expansion. '

A procedure analogous to that just described when the
system is inhomogeneous is impossible since no time-
dependent general solution of the deterministic evolution
is known. We have tried to overcome this difficulty using
the simpler mapping which originates from a local deter-
ministic solution, i.e., ignoring also the effect of the
nearest-neighbor interaction (D =0)

p(x, t) = h(x, t)e "
[I+(Q/r)h (x,t)(e i" I)]~—(4)

Since h (x, t) is considered to be a stochastic process this
equation gives the above-mentioned mapping between
y(x, t) and h (x, t) It is . therefore apparent that the
mapped process is the one associated with the initial con-
figuration of the system. A further consequence of the
mapping is the fact that the process h(x, t)e "' is the
linearized process of Eq. (1) and consequently the
behavior of h (x, t) will be strongly influenced by the un-
stable initial condition h (x,0)=0.

It is worth mentioning that up to this point no approxi-
mation has been made; it is possible to derive from Eq. (4)
a stochastic differential equation exactly equivalent to Eq.
(1)

—(e "'—l)h (x, t)
Bh(x t) D 8 h( t) x3& r

Bt 1+—h (x,t)(e "'—1)

t)h(x, t)
C)X

h (x, t)

'2

+vee "' 1+ —h (x, t)(e "'—1)
T

' 3/2

g(x, t) . (5)
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As long as we can assume

—h (x, t)(e "'—1)«1,
Eq. (5) becomes

Bh(x, t) 8 h(x, t) + ee "gxt
Bx

(6)

(7)

( g(q, t)g(q', t') ) =5(q +q') 5(t t'—)
and we have chosen h(q, O)=0 as initial condition. The
two-point correlation function is

—x'y8L, D(t —t')
(h(x, t)h(O, t)) = f dt'e2' 4LD (t t')—

(14)
Equation (7) together with the mapping (4) represents the
above-mentioned generalization of the QDT theory to the
present system. From the assumption (6) we can obtain a
rough estimate of the times region in which we expect the
approximation should work, i.e.,

0'(t)(e "' 1)«——,
Q

where

cr'(t) = (h'(x, t) )

is the one-point correlation function obtained by solving
Eq. (7) and taking the expectation value with respect to
the assumed Gaussian distribution of the white noise
g(x, t)

III. PROPERTIES OF THE QDT

In the homogeneous case the QDT (Ref. 12) is very ef-
fective since the main features of the evolution from an
initial unstable state are completely determined by the
knowledge of the process h (t), which is associated with
the behavior of the system close to the unstable initial
state. The probability distribution function of such a pro-
cess becomes rapidly time independent; this amounts to
saying that in each realization the process itself reaches a
constant limit. Such a constant acts as an effective initial
condition for the successive deterministic evolution.

In the inhomogeneous fluctuations case we are now
considering it is worthwhile to discuss the characteristic
properties of the new space-dependent process h(x, t).
However, the space dependence makes it difficult to ex-
tract from the behavior of the process h (x, t) its charac-
teristic properties. A physical quantity which can give in-
sight into the process itself is its two-point correlation
function, or better, the averaged square correlation length
defined as

f dxx (h(x, t)h(x, O))
l (t)= (10)f '"dx(h(x, t)h(x, O))

where the expectation is with respect the probability dis-
tribution functional of h(x, t) The calculat. ion of this
quantity is straightforward. In fact, the solution of the
space Fourier transform of Eq. (7)

h(q, t)= LDq h(q, t)+v ee—"g(q, t)

1S

h(q t) V ee Lrt dt Pq t )eL{r Dq ){—t t')——
0

where g(q, t) is the Fourier transform of the Gaussian
white noise whose correlation is

which when substituted into Eq. (10) gives

i2(t) =4LD
e

—2Lrt

IV. GROWTH OF THE SPATIAL CORRELATION

We now describe how the QDT allows us to predict the
growth of spatial correlation in the early stage of the evo-
lution of the system. The time-dependent correlation
length has been defined in Eq. (10); in the present case
taking into account the spatial homogeneity of the system
we have

f dx x (tp(x, t)q)(O, t))
g (t)= (16)f dx (q)(x, t)q)(O, t) )

The process tP(x, t) is given by the mapping of Eq. (4) in
terms of the effective initial configuration process h (x, t)
which is approximated according to Eq. (7).

The statistical properties of the process y(x, t), because
of the mapping, can be derived in terms of the probability
distribution functional associated with the configurations
of the process h(x, t). This functional is known because
h (x, t) is a linear functional of the Gaussian white noise
g(x, t) In order . to calculate the correlation length (16) we
only need the reduced two-point joint probability distribu-
tion function. ' Defining h; for i =1,2 as h;=h(x, t) and
h2 ——h (O, t) we have

)
pr —1(1/2

Pq(h „h2;t)=
2m'

2
1

exp ——, g h;W,J hJ

(17)

where 8' is the covariance matrix associated with the pro-
cess h, i.e.,

W~ =(h;hj )

and
~

8' '
~

is the determinant of the inverse of the co-
variance matrix. An explicit calculation gives

We see that for long times I (t) is linearly divergent. The
effect of the mapping on a single realization of the pro-
cess h (x, t) is to give rise to a configuration of y(x, t) that,
eventually, leads to a saturation in amplitude. No analo-
gous phenomenon concerning the width is expected be-
cause of the local character of the mapping. As a conse-
quence, the extension of our approximation in the time re-
gion beyond its validity, as given by Eq. (6), predicts a
time growth of the length of the correlation which is quite
different from the true one as we shall see in the following
sections.
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~

8'~ =(1—p )o

where the one- and two-point correlation function

can be obtained from the explicit evaluation of Eq. (14).
to2(z) is the imaginary part of the error function for corn-
plex arguments. Thus Eq. (17) becomes

cr (t) =(hj ) = w2(1 2Lrt )
4L v'Dr

(independent of j) and

(hih2)
p(x, t) =

(20)

P2(h), h2;t) = 1

2mo (1—p )'i

h ) +h 2
—2ph )h2

2 2

Q exp
2o (1—p) (22)

—x 2/8LDt

X
w2 V 2Lrt +i

SLDt

m2(v'2Lrt )
(21) a bivariate normal probability function. The correlation

function of the field y(x, t) is then given by

/ ~ 2Lrt +ao +ao
(y(x, t)y(0, t) )=, f dh

& f dh2exp
2mcr (1—p )'

h ~ +h 2
—2ph ~h2 h)h2

2cr (1—p ) [(1+f h ) )(1+f h 2) j'~ (23)

where

f2(t) (e2Lrt 1)I.r (24)

P)(h,t)=, e
(2n.o )'i

By using (25) we can calculate the expectation (qP(x, t))
and its variance ((gP —(qP)) ). The theoretical results
obtained in this section will be discussed in the following
section in connection with the numerical solution of the
full problem.

In closing this section we want to cornrnent on the
above-mentioned work of Ref. 21. The application of
their global relaxation theory to one-dimensional systems
has two difficulties. The first one is its failure for very
short times; the second is its inadequacy to describe the
long-time behavior. As a consequence, the overall range
of validity of the theory is restricted to a time regime be-
tween the early stage of formation of domains and the in-
teracting kink regime. Naturally it is worth stressing that
the above authors did not intend to treat the one-
dimensional case which is rather peculiar. In fact the t '~

growth is valid for late times for higher space dimen-
sionality and the theory of Ref. 21 should be valid then.

The dependence on the space variable x appears only
through the normalized correlation function p(x, t) of the
linearized process given by (21). Given the values of the
functions fz, o, and p the double integral (23) can be par-
tially performed and some limiting cases evaluated as in
Kawasaki, Yalabik, and Gunton. ' However, we want to
stress here that the functions f, cr, and p have different
behaviors with respect to the similar expressions of Ref.
21. The reason for that is the fact that they use an early
version of Suzuki's" mapping which fails in that region.

Before closing this section we want to add some re-
marks on the space-independent moments of the field. In
particular we want to check whether a phenomenon such
as anomalous fluctuations typical of the homogeneous
system is still present. For this purpose we introduce the
one-point reduced probability distribution function

The lnt growth for late times is typical only for one-
dimensional systems.

V. NUMERICAL SOLUTION AND COMPARISON
WITH THE QDT

We have solved the TDGL equation (1) numerically in
order to check the range of validity of the QDT. At the
same time we have studied the slow evolution of the
domain size, a process dominated by kink interaction.

We have used an array of 200 particles evolving accord-
. ing to the space-discretized equation

d 3 DL(t)= Lrcp; LuA. + —
2 (f; i

—2V'1+0" +&)

+v'e/a g; (i =1, . . . , 200), (26)

where a is the lattice spacing and g; independent random
Gaussian white noises with correlation function

(g;(t)g, (t') ) =5;,5(t t'), (g;(t—) ) =0 . (27)

Equation (26) is solved with periodic boundary conditions,
and a totally unstable initial configuration y; (0)=0
(i= 1, . . . , 200). In order to solve the set of coupled equa-
tions (26) we have used the algorithm developed in Ref.
13, suitably modified to take into account the space dif-
fusion. The detailed approximate equations are correct up
to the order ht in the elementary time interval At.

The averaged quantities have been calculated using both
averages over many configurations (typically 1000) and
over the sites. Since we start from an homogeneous initial
state we expect this procedure to work; in order to check
its validity in the situation we have considered, we
checked the equality of the results with long chains
(-2000 sites) and only space averages, or relatively short
ones (-200) and many configurational averages (-1000).
To improve the efficiency of the averaging we have used
both methods, i.e., averaging over 200 sites and 1000 con-
figurations. Finally, we have checked whether there is
any effect due to the finite size of the sample. This has
been done in the only case analytically accessible, that is,
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FIG. 2. The averaged squared field M(,t) vs time for the pa-
rameters given in the text and @=10,10 ', 10 ' . The QDT
goes asymptotically to one, the numerical* results to lower
values.

the linearized form of the TDGL model which is valid
only for short times. The continuum model, the discre-
tized model, and the numerical solution all give the same
results in this linear regime.

The quantities we have computed are

N e

M(t)= g gp;(t ~a), (28)
NN, ,

N c
V(r)= g g[p;(r ~a) —M(t)]',

X c

C, (&)= g g q;(r ~a)y;, (& ~a), (30)
i =1 a=1

(29)

i.e., the average of the field squared, its fluctuations, and
the field space correlation function, respectively. X is the
number of sites and X, the number of the stochastic con-
figurations p;(t

~
a) of the field. The correlation length

g(t) given by Eq. (16) has beeu evaluated at the width at
half amplitude of the normalized correlation function
Cz(t)/M(t), a quantity which is numerically much easier
to evaluate than the integral defining g(t), and contains
the same information.

Figures 2—5 show our numerical and theoretical results
for the values Lr =1, Lu =1, DL/a =1, and
e/a = 10,10, and 10

In Fig. 2 we show M(t) vs t; the curves obtained nu-
merically tend asymptotically to a value less than l, the
value roughly obtained by the theoretical results. It is
clear that a large part of the temporal development is well
described by the QDT. The approach to the equilibrium
value is instead much faster in the QDT, reflecting the
fact that the mapping (4) tends to the local equilibrium
value r/u for large times. In the homogeneous case' the
QDT leads to the correct equilibrium value; the discrepan-
cy in the present case is obviously due to the presence of
space diffusion.

In Fig. 3 we report the fluctuation V(t) of qP which
shows the phenomenon of anomalous fluctuations pecu-
liar to systems close to an instability. "' ' Again, the
QDT gives a final state without fluctuations for the same
reason outlined above. The numerical result clearly shows
the fluctuations in the neighborhood of the local equilibri-
um positions.

It is worth noting that the characteristic time corre-
sponding to the maximum fluctuations can be estimated
from the time up to which the QDT is valid. In fact Eq.
(8) furnishes the following values for the limit times to of
validity of the theory: t&-15.65, 10.95, and 6.19 for
@=10 ', 10, and 10 ", respectively. The significance
of to is related to its meaning of characteristic time of
domain formation. This time can also be roughly estimat-
ed from the mean first passage time that can be effective-
ly evaluated as t = —,

' 1n2/e (Ref. 23) and gives values only
slightly lower than the previous ones.

Figure 4 summarizes our results for the correlation
length (width at half-height), both numerically and
theoretically. In the first case g has an initial purely dif-
fusive behavior t, then a saturation occurs, and finally
becomes almost constant or grows very slowly.

Theoretically, the QDT is capable of reproducing the
entire initial stage up to the mean first passage time which
corresponds to a formed interface among domains. At
that moment a saturation and a small shrinking of the
average width of the domains occur, which is qualitatively
well reproduced by the theory. The shrinking involves
only one or two adjacent sites and tends to disappear for
larger values of the noise. The QDT is controllable up to
this point; in fact for later times it gives a growth of the
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FIG. 3. The same as Fig. 2 for the variance V(r). The QDT
tends to zero.

FICx. 4. The correlation length g(t) vs r for the sam'e values
of the parameters as in Fig. 2. The numerical solution tends to
grow very slowly compared to the QDT.
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VI. DISCUSSION AND CONCLUSION
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FIG. 5. g(t) vs 1nt for e=10 which shows the two time re-

gimes discussed in the text.

domain size which seems to follow a t' law. This fact is
a consequence of the already discussed property of the
process h (x,t) whose correlation function tends to grow
too rapidly in time.

The results are those of an early-stage theory which de-
scribes how the local order parameter tends to saturation.
It would be very useful to compare this with a theory of
the type of Ref. 16, which is also an early-time theory.
This approach was extended to the case of a nonconserved
order parameter in Ref. 17. Unfortunately the theory
only allows a numerical solution which was not developed
for the one-dimensional case. The two theories start from
different points of view, the QDT makes assumptions on
the stochastic process while the Langer —Bar-on —Miller
decoupling is made on the correlation functions. The two
schemes coincide in the linear instability region but are
expected to disagree in the time region around the mean
first passage time. In other words, no phenomenon relat-
ed to anomalous fluctuations would appear in a theory in
which the homogeneous limit reduces to a mean-field ap-
proximation.

In order to check the later stage of growth we have per-
formed a numerical calculation for longer times. It is re-
ported on a semilogarithmic scale in Fig. 5 for e= 10
and shows a lnt law of growth. This behavior allows us to
make contact, as we mentioned earlier, with the results of
Kawasaki and Nagai. ' In particular, with our choice of
the parameters, the exponent v of the growth law (I t')n
given in Refs. 3 and 6 would be v=v 12=3.46 in agree-
ment with the value reported by the quoted authors.

To summarize and discuss our study of the TDGL
model close to an instability let us start from the analogies
between our results and the experimental data on layered
dilute antiferromagnetic systems reported by Ikeda. The
most striking similarity is the existence of two distinct
temporal regimes. According to our model theory, the
first can be interpreted as being related to the formation
of the domains, while the second reflects the much slower
domain growth. Our interpretation is supported by the
following fact. Since we assume to start from an initial
unstable configuration the fluctuations are extremely im-
portant in starting the entire process. The QDT gives a
detailed explanation of the behavior of the system for very
short times and in the subsequent regime in which the sys-
tem itself is still dominated by the initial fluctuations.
The important point here is the fact that our numerical
solution indicates then a transition from the previous
behavior to a much slower one when the domains are fully
formed. This is in agreement with the conclusions of
Kawasaki and Nagai who developed a theory based on in-
teracting domain walls. Their independent numerical
simulation further confirms the given explanation.

Two further consequences of the QDT are worth men-
tioning. The first is the good estimate of the time needed
by the systems to fully separate in well-formed domains,
essentially the mean first passage time. The second is the
existence of some structure in the behavior of the correla-
tion length in the region of transition between the initial
diffusive and the final logarithmic growth. The latter fact
might be worth investigating experimentally. It would
also be of interest to check the predicted logarithmic
dependence on the effective noise e of the transition time,
in order to verify indirectly that a quasi-one-dimensional
system of the type studied in Ref. 7 can be considered as
starting from an initial unstable configuration.

As a final point we want to mention the fact that all the
observed results remain valid even if we do not start from
a totally unstable configuration, but also if we use an ini-
tial quasiunstable one, i.e., a configuration with a narrow
probability distribution for the initial state on each site.
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