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pump-field fluctuations in resonance fluorescence with two-photon resonant excitation
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The effects of amplitude and phase fluctuations of the pump laser on the resonance fluorescence
under two-photon resonant excitation are studied. The averaging of the stochastic Bloch equations
is carried out within the approximation scheme that has recently been applied to the case of one-
photon resonant excitation. In the case of two-photon resonant excitation the stochastic pump field
gives rise to multiplicative nonlinear Gaussian fluctuation effects. The phase fluctuations are treat-
ed in the phase-diffusion model, and the averaging over the amplitude fluctuations is performed by
means of generating-function methods. Both the intensity and the intensity correlation of the
fluorescent light are studied. When the amplitude fluctuations are weak, the cases of one- and two-
photon resonant excitations are similar. The difference between both cases consists of a modifica-
tion of the Rabi frequency and a faster damping of the Rabi oscillations in the two-photon case.
For sufficiently fast correlation decay of the amplitude fluctuations their effect can simply be
described by a rate. In the general case of n-photon resonant excitation this rate is larger by a factor
of n than that in the case of one-photon resonant excitation. When the amplitude fluctuations are
sufficiently strong, the Rabi oscillations are "washed out. " In the case of one-photon resonant exci-
tation both the intensity and the intensity correlation function of the scattered light develop into step
functions over time. In the two-photon case the dynamics of both quantities is determined by a new
time constant which acts as both the oscillation time and the damping time. Consequently an
overshoot peak occurs in both the intensity and the intensity correlation instead of the tendency to
become step functions.

I. INTRODUCTION

Since 1930, when Weisskopf and Wigner' developed the
first theory of the resonance fluorescence as a typical ex-
ample of resonant interaction between atomic systems and
light fields, much effort has been spent on the investiga-
tion of the properties of the usual resonance fluorescence
with one-photon resonant excitation. In the last years
considerable activity has focused on the influence of dif-
ferent statistical properties of the exciting radiation on the
scattered light.

The model widely used in the theory of the resonance
fluorescence with one-photon resonant excitation is the
two-level atom driven by an external source of light, the
dynamics of the two-level atom under the influence of the
driving field being described by means of the Bloch equa-
tions. When the atom is excited by a fluctuating light
field the Bloch equations become Langevin-type equations
with multiplicative linear complex noise.

This system of stochastic differential equations for the
density-matrix elements of the two-level atom is very dif-
ficult to solve. Instead of pursuing a direct integration a
theorein can be used which states that in the case of Mar-
kovian field fluctuations the averaged density-matrix ele-
ments can be found from the solution of a system of par-
tial differential equations. ' However, it should be noted
that this system of partial differential equations is equally
hard to solve. In general, it leads to an infinite set of cou-
pled differential equations, which can be solved, after
truncation, numerically. In this way exact results for the
intensity, the spectrum, and the intensity correlation func-

tion have been obtained for the cases when the exciting
field fluctuations have been described by the extended
phase-diffusion model with a non-Lorentzian line shape, '

the chaotic field, ' and the real Gaussian field.
On the other hand there have been attempts to solve the

stochastic Bloch equations directly in order to find (ap-
proximative) analytical solutions. Only in the limit of
Gaussian white-noise fluctuations of the external driving
field have general methods of solution been given. In par-
ticular, they have been applied to the case when the excit-
ing field undergoes phase fluctuations, which can be
described by a Wiener-Levy process (phase-diffusion
model). The situation becomes difficult when the exter-
nal driving noise cannot be treated as a standard Gaussian
white noise because its power spectrum has a finite band-
width. Closed solutions have been presented for some
limiting cases. First, calculations have been performed
for the case when the intensity of the pump field is
weak. ' In particular, chaotic fields and single-mode
laser fields with phase and amplitude fluctuations have
been studied. Second, solutions have been given for the
cases of chaotic fields and real Gaussian amplitude fields
when the atomic damping rates are negligibly small.
Third, the problem of resonant interaction between a
two-level atom and a fluctuating single-mode laser field
has been treated by utilizing a high-driving-field approxi-
mation. " Fourth, the situation for a fluctuating single-
mode laser field has been studied for the case when the
relative mean-square deviation of the Rabi frequency is
small compared with the ratio of the characteristic atomic
relaxation time to the correlation time of the amplitude
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fluctuations.
When n photons (n ) 1) of the incident stochastic light

field are needed in order to fulfill the resonance condition
( n-photon resonant excitation) the corresponding Bloch
equations that describe the atomic dynamics become
Langevin-type equations with multiplicative nonlinear
complex noise. If the atom is driven with laser light, the
amplitude of which remains stable while its phase fluctu-
ates according to the phase-diffusion model, the problem
of averaging the Bloch equations simply consists of sub-
stituting I 2+ n I L for the atomic dephasing rate r2, '

2I L being the full width at half maximum of the laser
line. This is the natural generalization of the result well
known for the case of one-photon resonant excitation
(n =1).. With the exception of light fields undergoing
only phase fluctuations the nonlinear noise in the Bloch
equations prevents its treatment as a Gaussian noise and
hence it can be expected to lead to effects of field fluctua-
tions on the scattered light, which are quite different from
those known for the case of one-photoh resonant excita-
tion.

In the present paper we study the simplest example of
multiphoton excitation in resonance fluorescence: the
two-photon case. Assuming the external stochastic light
source is a laser field undergoing phase and amplitude
fluctuations, in addition to the multiplicative linear noise,
a quadratic noise occurs in the Bloch equations. Describ-
ing the phase fluctuations within the usual phase-
diffusion model and applying the method used by us in
the theory of one-photon resonance fluorescence, ' we
present in Sec. II an approximative solution of the Bloch
equations. This enables us to calculate the relevant
quantum-mechanical correlation functions (averaged over
the phase fluctuations of the exciting field), which deter-
mine the intensity, the intensity correlation function, and
the spectrum of the scattered light. In order to perform
the averaging over the amplitude fluctuations we describe
them by an Ornstein-Uhlenbeck process and make use of
the methods of generating functions' ' recently applied
in the theory of photoelectron counting. ' In Sec. III we
present some results for the intensity and the intensity
correlation function of the resonance fluorescence light.
In particular, we show that when the amplitude fluctua-
tions are sufficiently strong the quadratic noise leads, in
comparison to the linear one, to drastically different

features in the temporal evolution of the intensity and the
intensity correlation function of the scattered light.

II. THEQRY

Let us consider a two-level atom, which is excited by a
fluctuating laser field of the following form:

EL(t) =EL+ (t)+EL (t),
EL+'(t) = ,' [EL +—5EL(t)]

(2.1)

Xexp[ i [coL t+—yL (t)]j,
E]—](t) [E(+)(t)]*

(2.2)

(2.3)

dt l
c(t))=M(t)

l
c(t)), (2.4)

where the components of the four-dimensional vector
l

C&(t)) are defined by

(1
l
c(t))=(A»(t)),

(2
l
+(t))= (&„(t)),

(3
l
&(t))=(&]2(t)),

(4
l
+(t))=(&2](t)),

and the 4X4 matrix M(t) is given by

(2.5)

(2.6)

(2.7)

(2.8)

where 5EL(t) and yL(t), respectively, are real Gaussian
random variables for the amplitude and the phase fluctua-
tions. The dynamics of the two-level atom with ground
state

l
1) and excited state

l
2) that are separated by an

energy ~2& and are coupled by a two-photon transition is
described by the Bloch equations. It should be noted that
a two-level atom does not allow for two-photon transi-
tions and the two-level model used in this paper has to be
considered as an effective one. The general multilevel
density-matrix equation needed for studying multiphoton
processes, however, can be reduced to a multiphoton
Bloch equation via the adiabatic elimination of the virtual
levels. Details of the derivation can be found in the report
of Allen and Stroud. ' The two-photon Bloch equations
derived in this way are completely analogous to the ordi-
nary Bloch equations for one-photon transitions in a two-
level system:

0

0

, ]cot](t)—
, used] (t)—,

'
]cot](t)—
,' ]co~(t)—

,' idiot](t) ,' ic—oz (t) i[5'—2y—L, (t)] —&2— (2.9)

2 ]CO]](t) —
~ ]CO]t (t) 0 t [5m 2yL (t)]—I—'2

In Eqs. (2.5)—(2.8) A„~(t) (n, m =1,2) denote atomic flip
operators [A (t)

l
~=o=

l
n)(m

l ] ~]2(t) and ~z](t) "e-
ing the corresponding slowly varying operators

In Eq. (2.9) I, and I 2, respectively, are the rates of energy
and phase relaxation, 6co =co2& —2coL . The stochastic two-
photon Rabi frequency co]](t) is defined as follows:

A ]2(t)=A ]p(t)exp[i 2[o]L t +]]or.(t)]J,
A2](t)=A ]2(t) .

(2.10)

(2.11)

A
2co]](t)=

4&
a]2[EL+5EL(t)] (2.12)
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where a)z denotes the polarizibility. The nonfluctuating
part of the two-photon Rabi frequency is given by

pressed in terms of the time-ordered exponential matrix
S(t, , tz) as well:

Qg —— a]2E I

Using the abbreviation

(2.13) Gzz{t t+'r)={1IS{tt+r) I»(1 IS{ot) I2) .
In the case of a stochastic driving field we have to average
Eqs. (2.19)—(2.21) over the field fluctuations; for example,

&iz[5&L,(t)1'
4A

we can then write Eq. (2.12) as

(2.14) (ozz(t)), (
——((1

~
S(O, t)

~
2))„,

( Gzz(t, t+r))„
(2.22)

~
C(tz))=S(t), tz)

~
@(t))), {2.16)

where S(t i, tz ) is the time-ordered exponential matrix
r

S(ti, tz) = T exp f dr M(r)
1

(2.17)

We now assume that at time t =0 the atom is in the
ground state and hence following from the definitions in
Eqs. (2.5)—(2.8) the initial condition is

~

C'(0))=
~

2) . (2.18)

top(t)=Qg +2( QR)' [5Q~(t)]' +5Qg(t) . {2.15)

Note that [5Q&(t)]'~ is a Gaussian stochastic variable
describing the amplitude fluctuations of the exciting laser
field.

When the vector
~

C&(t)) is known at time ti we find it
at time tz (tz ) ti ) by formal integration of Eq. (2.4). The
result is

=((1 ~S(t, t+r)
~

2)(1 ~S(0,t)
~

2))„. (223)

In what follows we assume the phase of the exciting
laser field is a Wiener-Levy process. The averaging over
the phase fluctuations in Eqs. (2.22) and (2.23) can simply
be performed by substituting —41L, for the 2ij&t, and

2iy—t. in Eq. (2.9) for the M matrix, 2I t being the full
width at half maximum of the laser line. ' Note that this
substitution leads to a modification of the atomic dephas-
ing rate I 2, namely, I 2~I 2+4I I .

The averaging over the amplitude fluctuations is very
difficult since they cannot, in general, be assumed to be
5-correlated and the M matrices at different times do not
commute. In order to find an approximative solution we
follow the procedure that has recently been applied to the
problem of the usual resonance fluorescence in a fluctuat-
ing laser field. ' Briefly, we subdivide the matrix M (t) as
follows (after substituting —4I I for the 2i pt and
—2l+L ):

ozz(t) =(1
~

S(0&t)
~
2) . (2.19)

The (stochastic) excited-state population at time t, which
is proportional to the intensity of resonance fluorescence,
is given by ozz(t)=(Azz(t)) =(1

~

@(t)). Making use of
Eqs. (2.16) and (2.18) we obtain

—Mi 2
5Qz((t) 5Qg (t)+

Qg

5Q~(t) 5Q~(t)
M(t)=Mo 1+2

R R

(2.24)

For a complete description of the resonance fluores-
cence light, knowledge of correlation functions of the field
to aH orders is desired. The spectrum is obtained by
Fourier transformation of the correlation function
(Azi(t)A)z(t+r)), which is proportional to the correla-
tion function of second order in the field strength of the
scattered light. In analogy to the case of one-photon exci-
tation the correlation function (Azi(t)A iz(t +r) ) can be
expressed in terms of the time-ordered exponential matrix
S(ti, tz) as follows

( Azi(t)A iz(t +1 ) )

= exp[ i2cot r i —2@I,(t +—r)+i 2yL, (t)]

&& [ (3
[ S(t, t +r)

[
2)(4

)
S(O, t)

)
2)

+(3
I
S« t+r)

I 3){11S(o t)
I
2)] {22o)

Note that in the limit r—+0 Eq. (2.20) reduces to
Eq. (2.19) for the excited-state population:
lim, o &Azi {t)Aiz{t +r) & =

& Azz{t) &. Another correla-
tion function, which has been a subject of increasing in-
terest, is the intensity correlation function. This correla-
tion function of fourth order in the field strength is pro-
portional to the atomic correlation function
Gzz(t, t+r)=(Azi(t)Azz(t+r)A)z(t)), which can be ex-

where the matrices Mo and Mi are defined by the rela-
tions

M() M(t)
i „„(,)——

Mi =M(t)
~ „(~)=o .

(2.25)

(2.26)

max(1, 4I rz )min(1, 1 t) && 1,

r=max{r„r,+4r ), (2.28)

where ~~ denotes the correlation time of the amplitude

At this point we note that the problem of performing the
averaging over the amplitude fluctuations of the exciting
laser field in Eqs. (2.22) and (2.23) can be simplified drast-
ically when the Mi term in Eq. (2.24) can be omitted.
Confining ourselves to the case when the resonance condi-
tion is exactly fulfilled from Eqs. (2.26) and (2.9) the ina-
trix M~ is easily seen to vanish when the relaxation rates
I

&
and I"2+4I L are negligibly small, strictly speaking,

when the exciting field is strong and in the time scale
under consideration the effect of relaxation is weak. In
the case when the relaxation must be taken into account,
the neglect of the Mi term in Eq. (2.24) requires the fol-
lowing condition to be fulfilled:

(5Q, {t))„
(2.27)
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fluctuations. This condition can be derived following the
scheme for the case of one-photon resonant excitation, '

however, the nonlinearity of the noise must be taken into
account.

Disregarding the M] term in Eq. (2.24) we approximate
S(t],t2) defined by Eq. (2.17) as follows:

S(t],t2)=exp Mo(t2 t])—

M014) =4
I
Xk)

we rewrite Eqs. (2.22) and (2.23) as

(o»(t))„=g CI"e '
(,q»(t))„,

I

(2.30)

(2.31)

Inserting Eq. (2.29) into Eqs. (2.22) and (2.23) and making
use of the Mo representation,

t2 dQR(r)
' 1/2

+M[] J, dr 2
R

5flR (r)
+

Q

~ G22(t~t +r))st y CI Ck
l, k

X &qlk(t, t+r))„,

(2 29) wliel'e

(2.32)

(p~k((t+r))„=(exp J '8[2 lz([ 4S((r )]' +'SAR(jlf+ I dr ftflz [S't(„(r'f]' +Stlg(r )f'
R QR sf.

(2.33)

('Pl(t) )st (elk(t~t) )st .

CI'I = (i
I

A, l )( tf(,I Ij )

are derived to be

I"1(I 2+41 L, )

2 A3A4

(2.35)

In Eqs. (2.31) and (2.32) the coefficients Cl'I defined by
the relation

(2.34)
I

X,= ——,'(r, +I,+41,)+[—„'(r,—r,—41, )2—n', ]]",
X,= ——,'(r, +I,+41, ) —[—,'(r, —r,—4r, )'—n', ]'" .

%'e now assume that the amplitude of the exciting laser
field fluctuates according to an Ornstein-Uhlenbeck pro-
cess. In order to perform the avera'ging in Eq. (2.33) we
apply the method outlined in the Appendix. Making the
identifications

C,"=0,

1 (I ]+A.4)(I, +A, )
C3'

2 A, 3(A4 A3)

(2.36)
[snR(t)]', y r„=r, ',

a ~~I I +R~ b~~k I +R~ c~2(+R )

t'~t+r, g(t, t')~p»(t, t+r)

where

1 (r]+A3)(I ]+A4)
2 A.4( A, 3

—A,4)
and taking into account that Eqs. (AS) and (A9) yield
q =I „(5flR )„we obtain from Eq. (A50) together with
Eqs. (A36), (A37), (A42), and (A44) —(A49) the result

A, i ——0,
A,2

———(I 2+4I I ), (2.37)
I

~ 'P 1k ( I, I +r ) ).t =exP [gl (I) +elk ( I, I +r ) ]

where

(2.3S) .

=1gl(t) I A 2~l
2 W

1 QI
t ——,ln cosh(wit)+ sinh(wl t)

~(~~+
WI

W

u

W —2(wl —ul ) cosh(wit)+1 „sinh(wit)+2(wl —ul )

I g cosh(wit)+ tlls11111(wit)
(2.39)

1 Ig
gtk(t, t+r)= —I „—2AI 1—

2 Wk

ulk(t)r —,
'

ln cosh(wk—r)+ sinh(wkr)

~k~~+
Wk

Wlk(t)

lk(t)1

Wtk(t) —2[wlk(t) ulk(t)] cosh(wkr)+ I ~stnh(wkr)+2[wlk(t) ulk(t)]-
QIJ (t)

I „cosh(wkr)+ulk(t)sinh(wkr)

(2.40)
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(Ml„&„r=r
QR I g

(2.41)

(2.42)

I z wl —ul+ulcosh(wit)+I „sinh(wit)

wl I &cosh(wit)+ulsinh(wit)
Wlk(t) =Wk

2

1—ulk(t) = Ak 2(kl/Q~ )(50~ &„cosh(wit)+(ul —wl )sinh(wit)

I g cosl1( wl t ) + u l slnh( w! t )

(2.43)

(2.44)

Since glk(t, t)=0 from Eqs. (2.34) and (2.38) the average
(,yl(t) &„ is easily found to be

tO gk(r),

('pl(t) & =exp[g!(t)] . (2.45)
lim g,k(t, t+r) =gk(r) .t~ oo

(3.1)

Equations (2.31) and (2.32) then read as follows:

(o»(t) &„=g Cl' e ' exp[gl(t)],

( G»(t, t+r) &„=g Cl' Ck' e '

l, k

(2.46)

Combining Eqs. (3.1), (2.47), and (2.46) we indeed find

( G22(r) &„= lim ( G22(t, t +r) &„t~ oo

= (~»( ~ ) &„(~»(r)&„,
(3.2)

)& exp[gl(t)+glk(t, t +r)] . (2 47) where

Finally, we note that the averaging of Eq. (2.20) can be
performed in an analogous way. Provided that the
linewidth of the exciting laser field can be assumed to be
small, that is, the strength of the phase fluctuations is
small, the result of averaging over the phase fluctuations
consists in substituting into Eq. (2.20) for —i 2@1 ( t
+v)+i2yL(t) . the quantity —4I Lr and in substituting
into the matrix M(t) defined in Eq. (2.9) for both 2iyt
and 2iyL —the quantity —41"L. Performing the averag-
ing over the amplitude fluctuations in the approximation
given by Eq. (2.29) we obtain

«~»(t)~»(t+r) & &.,

k' +4r t, ~ (C4 2C3, 2 C 1 2C3 3) kl~+k

1,k

(lr»(oo) &„= lim (o»(t) &„=CI't~ oo
(3.3)

x, (sn, &„uI-I g 1 —2
QR

u)=r~,

(3.4)

(3.5)

and hence from Eqs. (2.43) and (2.44) we obtain

[note that A, !——0 implies gl(t)=0]. This result is well
known from the case of usual one-photon resonant excita-
tion. '

When the amplitude Auctuations of the exciting laser
field are sufficiently weak [(Mill &„/I"~ &&1] the results
of two-photon resonant excitation and one-photon
resonant excitation are very similar. In this case Eqs.
(2.41) and (2.42) can be simplified as follows:

&&exp[gl(t)+glk(t, t +r)] . (2.48)

The explicit form of the coefficients Cl'l is given (replac-
ing I I ~41 L ), for example, in Ref. 13.

&mg &„r„!
w(ttk) = wkl+2 (1—e "

)
R

ulk(t) uk

(3 6)

(3.7)

III. DISCUSSION

In this section we discuss the effects of the driving-field
fluctuations on the intensity and the intensity correlation
of the scattered light in more detail. From an inspection
of Eqs. (2.46) and (2.47) the amplitude fluctuations of the
exciting laser field are seen to prevent, in general, the fac-
torization of the intensity correlation function
( G22 (t, t +r) &„ into the product of intensities
(o2z(t) &„(o»(r)&„. Only in the steady-state case is such
a decomposition found. This is due to the fact that as the
time t goes to infinity the sum over l in Eq. (2.47) reduces
to the term with 1=1 and the functions g~k(t, t+r) tend

gl(t)= (M~&„t+, g'"(t),
R nR2

glk(t t&+=)g«k)+~l ~k (2)

QR

where

(nn, &„ —I ~tg" '(t) =4 All t + (e " —1)r,

(3.8)

(3.9)

(3.10)

Combining Eqs. (3.4)—(3.7), (2.39), and (2.40) the func-
tions gl(t) and glk(t, t +r) can approximately be expressed
as



K.-E. SUSSE, W. VOGEL, D.-G. WELSCH, AND D. KUHLKE 31

(5Q~ )„Qadi r„t —r„t
g~'~(t, t') =4 '

(e " —1)(e

(3.11)

Inserting Eqs. (3.8) and (3.9) into Eqs. (2.46) and (2.47) we
find the following expressions for the averaged intensity
and the averaged intensity correlation function of the
scattered light:

2
1,2 (5nti )„At

(o22(t))„= QCt ' exp ki 1+ t exp ~ g (t)
l R

(3.12)

(5n, )„(5n,)„
(Gpz(t, t+r))„=+Ct' Ck' exp kt 1+. t+kk 1+

1,k R R

Xexp 2 [Atg'"(t)+Akg'"(r)+Atkkg' '(t, r)]1

R
(3.13)

(5n, )„((5E,)')„n',
E2

(3.14)

Comparing this result with the corresponding one-photon
result' we find, under the. conditions of equal Rabi fre-
quencies QR, equal correlation times ~~ ——I z ', and equal
relative amplitude fluctuations ((5EI ) )„/E I, ,

I (2) —4 (3.15)

where the indices (1) and (2), respectively, denote the cases
of one-photon resonant excitation and two-photon
resonant excitation. In the latter case the amplitude fluc-
tuations lead to a decay of the Rabi oscillations, which is
4 times faster than in the former case. At this point we
note that the generalization of Eq. (3.14) to the case when
n photons of the exciting light field are needed in order to
guarantee resonance can be easily found by cumulant ex-

Indeed, this result is very similar to that derived for the
case when one photon is needed for resonant excitation of
the two-level atom considered. ' It corresponds to a cu-
mulant expansion up to the second order in 5EL (t), which
is exact in the case of one-photon resonant excitation
when the amplitude fluctuations of the exciting laser field

give rise to a 5nz(t) that is linear in 5EL (t). It is obvious
that in this case the amplitude fluctuations do not modify
the Rabi frequency. From Eqs. (3.12) and (3.13) it is seen
that in the case of two-photon resonant excitation the am-
plitude fluctuations change the Rabi frequency. This ef-
fect results from the term proportional to 5nz (t)
-[5EL (t)] in Eq. (2.29), the stochastic expectation value
of which does not vanish.

In both the case of one-photon resonant excitation and,
if the amplitude fluctuations of the exciting laser field are
weak, the case of two-photon resonant excitation the ef-
fect of the amplitude fluctuations on the damping of the
Rabi oscillations can be described by a decay rate I pro-
vided that the bandwidth of the amplitude fluctuations is
sufficiently large. From Eqs. (3.12) and (3.13) together
with Eqs. (3.10) and (3.11) this rate, which results from
the term proportional to [5nz ( t) ]' -5EI ( t) in Eq.
(2.29), is seen to be

I

pansion. We derive

( (5EI.)').t
E2L

and hence the generalization of Eq. (3.15) is

I (n)

I (&)

(3.16)

(3.17)

(oz2(t) )„=—,
' (1——,

' Iexp[A3t+g3(t)]+c. c. j ) (3.18)

(note that A3 i nz ).. ——In order to calculate g3(t) we
remember the condition (5nz)„/I q »1 and expand
Eqs. (2.41) and (2.42). This yields

' (5n, )„w3-1 z 2 (1 i), —
I (3.19)

1

Q3 2 l83 (3.20)

Combining Eqs. (2.39), (3.19), and (3.20) we find that the
third term in Eq. (2.39) can be neglected when the ampli-
tude fluctuations are sufficiently strong. We therefore ob-
tain

We now turn to the study of the case when the ampli-
tude fluctuations of the exciting laser field are strong:
(5Q~ )„/I z &&1. It is clear that the main effect then re-
sults from the quadratic noise 5nti(t)-[5EL(t)] in Eq.
(2.29). Since its correct description requires the summa-
tion of high-order terms in the cumulant expansion we ex-
pect features in the averaged intensity and averaged inten-
sity correlation function of the scattered light which are
quite different from those known for the case of one-
photon resonant excitation. To demonstrate them and to
avoid lengthy formulas let us consider the case when the
relaxation parameters I ~ and I 2+4I L can be disregarded
in the time scale of interest. We confine ourselves to the
study of the intensity and the steady-state intensity corre-
lation function.

Omitting the relaxation rates I
&

and I 2+4I L in Eqs.
(2.36) and (2.37) we rewrite Eq. (2.46) as follows:
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Q3
g3 ( t )= i—Qlt t + ,—1q t +ln sinh( w3 t )+cosh( w 3 t )r„

' —1/2

(3.21)

Inserting Eq. (3.21) into Eq. (3.18) we derive the asymptotic strong-fluctuation behavior of (o22(t) )„to be

where

—COt

[f(1)(r)f(2)( I)]1/2 (I[f' '(t)]'~ +11'~ cos(cot) —I[f' '(t)]' —1]' sin(cot))

= ( —,
' I g ( 5QIt )„)' i

(3.22)

(3.23)

f"'(l)=1+ +e ' '
rA r„ cos(4cot) —sin(4cot )

CO

2

(3.24)

f( )(r)

—e "' 1 — sin(4cot) + cos(4cot)

(3.25)

j + + —4cof

rA
1 — cos(4rot) — sin(4cot)

CO CO

r,

Making use of Eqs. (3.2) and (3.3) the steady-state intensi-

ty correlation function is simply given by (622(r))st
= —, (o22(r) )„with (o22(r) )„from Eq. (3.22).

Comparing Eq. (3.22) with Eq. (3.12) we see that in the
case of two-photon resonant excitation of the two-level
atom the cases of weak and strong amplitude fluctuations
of the driving field lead to qualitatively different features

in the dynamical behavior of the scattered light. Whereas
in the former case the amplitude fluctuations give rise to a
damping of the usual Rabi oscillations in the intensity and
the intensity correlation of the scattered light, the time
scales of oscillation and damping, respectively, being Q~
and I ', in the latter case the Rabi oscillations are com-
pletely suppressed. Instead of them only a single

(GI, (t')),t
(Ga2 (~) &,t

I 'I

I 1
I 1

I
I

I
II

I
I

I
I

I
I 1

1
~ ~

I
1
1 1
l I 1
1 1

1
'~

I
I ra

1 I

I r
r~

~\ r

I

3

FIG. 1. Time development of the normalized stationary intensity correlation function of the fluorescent light for various values of
the Rabi frequency 0&. Radiative damping (I &

——y, I &

—2y) and small laser linewidth (I L
——0.01y) are assumed. The amplitude

correlation decay rate is chosen to be I ~ ——2y. Behavior in the case of a realistic laser with small relative amplitude fluctuations
((5Qs )„/Qs ——0. 1, solid lines) is compared with the behavior in the case without amplitude fluctuations ((50' )„=0, dashed
curves).
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APPENDIX

Let us consider the function

f dz.[cx(r)+x (r)]@(t,t') =exp a

2+b dr[ex (r) +xz(r)], t & t

(Al)

ment t' obeys the dif-d to the time argumenwhich with regar to
ferential etluation

(,t') =b [cx (r')+x (r' r') (t, r'), y t, tdt' (A2)

~ ~

wit e
'

h th initial condition

a r (A3)=ex a d7 [cx (r)+x (7 )]

a differential equation o(t) itself satisfies a i ereThe function q&

the type of Eq. (A2 as we:

y(t) =a [cx (t)+x (t)]qr r
dt

(A4)

where t eini ih 'tial condition reads
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the function @(t,t') we make use of the methods of gen-
erating functions. ' ' ' For this purpose we introduce
the function

—(%(t,z))„= (ac —zy) +a +z q (,%(t,z))„.
Bt ' Bz Bz2

4(t, t', z) =e " 'y(t, t'), (Al 1) (A21)

(y(t, t') )t„=(4(t, t', z) )„~ p . (A12)

Differentiating %(t, t', z) with respect to z we obtain
from Eq. (Al 1) the relations

which gives y(t, t') at the point z =0. Hence, if the sto-
chastic averaging of %(t, t', z) can be performed the sto-
chastic expectation value of y(t, t') is simply found by
choosing z =0 in t, %(t,t', z) )„:

Taking into account that x is a Gaussian stochastic vari-
able and making use of Eqs. (A8) and (A9), we obtain
from Eq. (A18) the initial condition

(+(t,z}&„~, =e ' (A22)

In analogy to the solution of the Schrodinger equation
by normal ordering ' ' we solve Eq. (A19) by means of
the following ansatz:

4(t, t', z) =x(t')0 (t, t', z),
BZ

c}2
P(t, t', z)= x(t')4(t, t', )z.

BZ

(A13)

(A14)

(4(t, t', z))„=exp[G,(t, t')+zG, (t, t')+z'G, (t, t')] .

(A23)

Inserting Eq. (A23) into Eq. (A19) we obtain the system
of coupled differential equations

Differentiating Eq. (All) with respect to t' and using
Eqs. (A6), (A13), and (A14) we find the following stochas-
tic differential equation for +(t, t', z):

T

2

, % (t, t', z) = (bc —zy) +b, +zF (t') % (t, t', z) .Bt' Bz Bz

(A15)

From Eqs. (Al 1) and (A12) the initial condition is derived
to be

, Gp(t, t') =bcG
& (t, t')+2bG2(t, t')+bG ((t t')

dt'

dt , G, (t, t') = yG&(t,—t')+2bcG2(t, t')

+4bG, (t, t')G, (t, t'),

dt', G2(t, t') = 2yG2(t, t'—)+4bG 2(t, t')+q .

The initial conditions

(A24)

(A25)

(A26)

4(t, t', z) ~,. , =%(t,z)=e—'"y(t) . (A16)
G;(t, t') ~, , =G, (t—), i =0, 1,2 (A27)

In an analogous way the function %'(t,z) can be shown to
obey the stochastic differential equation have to be calculated from the solution of Eq. (A21). Ap-

plying the above technique to Eq. (A21) we obtain

+(t,z)= (ac —zy) +a, +zF(t) %(t,z)
Bt Bz Bz

with the initial condition

4(tz) li=o=e "'. (A18)

(%(t,z))„=e p[xG (to)+zG&(t)+z G2(t)],
2

dt
Go(t) =acG&(t)+2aG2(t)+aG&(t),

d
dt

G&(t) = yG&(t)+2acG—2(t)+4aG, (t)G2(t},

(A28)

(A29)

(A30)

Since I' is assumed to be a Gaussian white-noise force we
can exactly average Eq. (A15). The result is

/

2

dt
Gz(t) = 2yGz(t)+4a26—2(t)+q . (A31)

T

(,%'(t, t', z) )t„= (bc —zy) +b
It is easily seen that Eq. (A22) implies the following initial
conditions:

+z'q (4(t, t', )z)„

with the initial condition according to Eq. (A16):

(A19)

Go(t) ~, o ——0,
Gi(t) i, o

——0,
G2(t)

I
i=o= 1 g

2

(A32)

(A33)

(A34)

(4(t, t', z))„~;,=(0'(t,z))„.
Analogously the averaging of Eq. (A17) yields

(A20) The differential equation (A26) is of the Riccati type
and can be solved by standard methods. We obtain the re-
sult

G, (t, t')= 1 [y —u(t)w]cosh[w(t' —t)]+y[u(t) —w]sinh[w(t' —t)]
4b ycosh[w(t' —t)]+ u(t)sinh[w(t' —t))

where

(A35)
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' 1/2

w=y 1 —4b y'.
G2(t)

u(t) = 1 4—b
w y

For the following it is convenient to represent G, (t, t ) in the equivalent form

(A36)

(A37)

(A38)

where

Z(t, t') =e r" "Iycosh[w(t' —t)]+u(t)sinh[lv(t' —t)] I .

Formal integration of Eq. (A25) yields

(A39)

t'
G, (t, t')=Gl(t)exp y(t' t—)+4b —f drGI(t, I) +2bc f drG2(t, r)exp y(t' —~)+—4b f dv'GI(t, r') . (A40)

Making use of Eqs. (A38) and (A39) we can perform the integrations in Eq. (A40) in a simple way. We cast GI(t, t ) in
the form

G, (t, t')= ——1—c ~ v(t) —u(t)+u(t)cosh[w(t' —t)]+y sinh[w(t' —t)]
w y cosh[w(t' —t)]+u(t)sinh[w(t' —t)]

where

GI(t)
v(t) =w 1+2

c

(A41)

(A42)

Finally, we formally integrate Eq. (A24):
I

Gp(t, t')=Gp(t)+b f dw[cGI(t, ~)+G I(t, ~)+2Gz(t, r)] . (A43)

Inserting Eqs. (A38), (A39), and (A41) into Eq. (A43) and calculating the ~ integral we obtain after some mathematical
manipulations

1 bcG, (t, t') = G,(t)+ —y—
2 2

y'
W

(t' t) ——ln —'

cosh[w(t' —t)]+ sinh[w(t' —t)]
1, , u(t)
2 y

lbly v (t)
4 w u(t)y

v (t) —2[v(t) —u(t)] cosh[w(t' —t)]+y sinh[w(t' —t)]+2[v(t) —u(t)]
u(t)

y cosh[w(t' —t]+u(t)sinh[Iv(t' —t)]
(A44)

From a comparison of Eqs. (A24)—(A26) with Eqs. (A29)—(A31) we see that the functions G;(t) (i =0, 1,2) can be de-
rived from the functions G; (t, t') by means of the substitutions t'~t, t +0, and —b +a in Eqs. (A3—5), (A41), and (A44).
Making use of the explicit form of the initial values G;(0) as given in Eqs. (A32)—(A34) we can express the functions
G;(t) as follows:

1 ac
Gp(t) = —y—

2 2
1—

W
t —ln cosh( wt) +—sin—h( wt)

1 u

2 y

2 2

+—ac
4 w' uy

—2(w u) cosh(—wt)+y sinh(wt)+2(w u)—
ycosh(wt)+u sinh(wt)

(A45)

c
1 ~ w —u +u cosh(wt)+y sinh(wt)Glt=' ——1—

y cosh(wt)+u sinh(wt)

1 2ag cosh(wt)+y(u —w) slllll(wt)
4a y cosh(wt)+u sinh(wt)

where

(A46)

(A47)
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u) =y 1 —4a q
y'

1/2

(A48)

(A49)

Remembering Eq. (A12) we find the average of the function @(t,t') by choosing z =0 in Eq. (A23):

(y(t, t') )„=exp[ Go(t, t') j,
where Go(t, t') is given in Eq. (A44).
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