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The effects of amplitude and phase fluctuations of the pump laser on the resonance fluorescence
under two-photon resonant excitation are studied. The averaging of the stochastic Bloch equations
is carried out within the approximation scheme that has recently been applied to the case of one-
photon resonant excitation. In the case of two-photon resonant excitation the stochastic pump field
gives rise to multiplicative nonlinear Gaussian fluctuation effects. The phase fluctuations are treat-
ed in the phase-diffusion model, and the averaging over the amplitude fluctuations is performed by
means of generating-function methods. Both the intensity and the intensity correlation of the
fluorescent light are studied. When the amplitude fluctuations are weak, the cases of one- and two-
photon resonant excitations are similar. The difference between both cases consists of a modifica-
tion of the Rabi frequency and a faster damping of the Rabi oscillations in the two-photon case.
For sufficiently fast correlation decay of the amplitude fluctuations their effect can simply be
described by a rate. In the general case of n-photon resonant excitation this rate is larger by a factor
of n? than that in the case of one-photon resonant excitation. When the amplitude fluctuations are
sufficiently strong, the Rabi oscillations are “washed out.” In the case of one-photon resonant exci-
tation both the intensity and the intensity correlation function of the scattered light develop into step
functions over time. In the two-photon case the dynamics of both quantities is determined by a new
time constant which acts as both the oscillation time and the damping time. Consequently an
overshoot peak occurs in both the intensity and the intensity correlation instead of the tendency to
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become step functions.

I. INTRODUCTION

Since 1930, when Weisskopf and Wigner! developed the
first theory of the resonance fluorescence as a typical ex-
ample of resonant interaction between atomic systems and
light fields, much effort has been spent on the investiga-
tion of the properties of the usual resonance fluorescence
with one-photon resonant excitation. In the last years
considerable activity has focused on the influence of dif-
ferent statistical properties of the exciting radiation on the
scattered light.2—14 '

The model widely used in the theory of the resonance
fluorescence with one-photon resonant excitation is the
two-level atom driven by an external source of light, the
dynamics of the two-level atom under the influence of the
driving field being described by means of the Bloch equa-
tions. When the atom is excited by a fluctuating light
field the Bloch equations become Langevin-type equations
with multiplicative linear complex noise.

This system of stochastic differential equations for the
density-matrix elements of the two-level atom is very dif-
ficult to solve. Instead of pursuing a direct integration a
theorem can be used which states that in the case of Mar-
kovian field fluctuations the averaged density-matrix ele-
ments can be found from the solution of a system of par-
tial differential equations.!> However, it should be noted
that this system of partial differential equations is equally
hard to solve. In general, it leads to an infinite set of cou-
pled differential equations, which can be solved, after
truncation, numerically. In this way exact results for the
intensity, the spectrum, and the intensity correlation func-
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tion have been obtained for the cases when the exciting
field fluctuations have been described by the extended
phase-diffusion model with a non-Lorentzian line shape,'*
the chaotic field,»*'* and the real Gaussian field.’

On the other hand there have been attempts to solve the
stochastic Bloch equations directly in order to find (ap-
proximative) analytical solutions. Only in the limit of
Gaussian white-noise fluctuations of the external driving
field have general methods of solution been given. In par-
ticular, they have been applied to the case when the excit-
ing field undergoes phase fluctuations, which can be
described by a Wiener-Levy process (phase-diffusion
model).?2 The situation becomes difficult when.the exter-
nal driving noise cannot be treated as a standard Gaussian
white noise because its power spectrum has a finite band-
width. Closed solutions have been presented for some
limiting cases. First, calculations have been performed
for the case when the intensity of the pump field is
weak.>’ In particular, chaotic fields’ and single-mode
laser fields with phase and amplitude fluctuations’ have
been studied. Second, solutions have been given for the
cases of chaotic fields and real Gaussian amplitude fields
when ‘the atomic damping rates are negligibly small.?
Third, the problem of resonant interaction between a
two-level atom and a fluctuating single-mode laser field
has been treated by utilizing a high-driving-field approxi-
mation.!! Fourth, the situation for a fluctuating single-
mode laser field has been studied for the case when the
relative mean-square deviation of the Rabi frequency is
small compared with the ratio of the characteristic atomic
relaxation time to the correlation time of the amplitude
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fluctuations.'?

When n photons (7 > 1) of the incident stochastic light
field are needed in order to fulfill the resonance condition
(n-photon resonant excitation) the corresponding Bloch
equations that describe the atomic dynamics become
Langevin-type equations with multiplicative nonlinear
complex noise. If the atom is driven with laser light, the
amplitude of which remains stable while its phase fluctu-
ates according to the phase-diffusion model, the problem
of averaging the Bloch equations simply consists of sub-
stituting T',+n2C; for the atomic dephasing rate I',,'®
2I'; being the full width at half maximum of the laser
line. This is the natural generalization of the result well
known for the case of one-photon resonant excitation
(n=1). With the exception of light fields undergoing
only phase fluctuations the nonlinear noise in the Bloch
equations prevents its treatment as a Gaussian noise and
hence it can be expected to lead to effects of field fluctua-
tions on the scattered light, which are quite different from
those known for the case of one-photon resonant excita-
tion.

In the present paper we study the simplest example of
multiphoton excitation in resonance fluorescence: the
two-photon case. Assuming the external stochastic light
source is a laser field undergoing phase and amplitude
fluctuations, in addition to the multiplicative linear noise,
a quadratic noise occurs in the Bloch equations. Describ-
ing the phase fluctuations within the usual phase-
diffusion model and applying the method used by us in
the theory of one-photon resonance fluorescence,!® we
present in Sec. II an approximative solution of the Bloch
equations. This enables us to calculate the relevant
quantum-mechanical correlation functions (averaged over
the phase fluctuations of the exciting field), which deter-
mine the intensity, the intensity correlation function, and
the spectrum of the scattered light. In order to perform
the averaging over the amplitude fluctuations we describe
them by an Ornstein-Uhlenbeck process and make use of
the methods of generating functions'>!7 recently applied
in the theory of photoelectron counting.!® In Sec. IIT we
present some results for the intensity and the intensity
correlation function of the resonance fluorescence light.
In particular, we show that when the amplitude fluctua-
tions are sufficiently strong the quadratic noise leads, in
comparison to the linear one, to drastically different

]

- 0 —Jiog(t)
r, 0 Tiwg(t)
M(t)= - L. . )
——?ICDR(t) ‘Z‘ICUR(t) —t[Sw—2<pL(t)]—F2
Tiog(t) —Tiwg(t) 0

In Eqgs. (2.5)—(2.8) Ayp(2) (n,m =1,2) denote atomic flip
operators [ Ay, (1) | ,—o=|n){m | ], A1(t) and A;(¢) be-
ing the corresponding slowly varying operators

(2.10)
(2.11)

Z12(1):1‘112(t)eXP{i2[th+€0L(t)]} >
Ay (=410 .
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features in the temporal evolution of the intensity and the
intensity correlation function of the scattered light.

II. THEORY

Let us consider a two-level atom, which is excited by a
fluctuating laser field of the following form:

E ()=E{P(0O+E{ ), @.1)
E{P(t)= J[EL+8EL(1)]

xexp{ —ilort+@L ()]}, 2.2)
EI7 ) =[E{Y (0], 2.3)

where 8E;(t) and ¢r (¢), respectively, are real Gaussian
random variables for the amplitude and the phase fluctua-
tions. The dynamics of the two-level atom with ground
state | 1) and excited state |2) that are separated by an
energy #iw,, and are coupled by a two-photon transition is
described by the Bloch equations. It should be noted that
a two-level atom does not allow for two-photon transi-
tions and the two-level model used in this paper has to be
considered as an effective one. The general multilevel
density-matrix equation needed for studying multiphoton
processes, however, can be reduced to a multiphoton
Bloch equation via the adiabatic elimination of the virtual
levels. Details of the derivation can be found in the report
of Allen and Stroud.!” The two-photon Bloch equations
derived in this way are completely analogous to the ordi-
nary Bloch equations for one-photon transitions in a two-
level system:

% | (1) =M (1) | ®(1)) , (2.4)
where the components of the four-dimensional vector
| ®(2)) are defined by

(1| @(2))=( A1), 2.5
Q2|P0))=(A4,(8)), (2.6)
(3| () =(A4,(8)), 2.7
(4| ®(1)=(A, (1)), 2.8
and the 4 X4 matrix M (t) is given by
—;—ia)R(t)
—Tiwg(t)
o 2.9)
i[6w—2¢, (1)]—T,

In Eq. (2.9) Ty and T, respectively, are the rates of energy
and phase relaxation, 8w =w,; — 2wy . The stochastic two-
photon Rabi frequency wg(?) is defined as follows:

wR(t)=Tlﬁ—a12[f€L +8EL(0T, (2.12)
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where a;, denotes the polarizibility. The nonfluctuating
part of the two-photon Rabi frequency is given by

1 A
Qg =Ea12Ei ) (2.13)
Using the abbreviation
1 a
BQR =4—ﬁ‘a12[8EL(t)]2 (214)
we can then write Eq. (2.12) as
or(D=0g +2(Qp ) [8Qx(1)]'*4+8Qr(£) .  (2.15)

Note that [8Qz(2)]'/? is a Gaussian stochastic variable
describing the amplitude fluctuations of the exciting laser
field.

When the vector | ®(¢)) is known at time 7, we find it
at time ¢, (#, >¢;) by formal integration of Eq. (2.4). The
result is

[ D(£5))=S(t1,8,) | D(£1)),

where S(#,,t,) is the time-ordered exponential matrix

(2.16)

(2.17)

L
S(ty,ty)=T exp fz dTM(T)] .
1
We now assume that at time =0 the atom is in the
ground state and hence following from the definitions in
Egs. (2.5)—(2.8) the initial condition is

| ®(0))=2). (2.18)

The (stochastic) excited-state population at time ¢, which
is proportional to the intensity of resonance fluorescence,
is given by op(f)=(A(#))=(1|®(t)). Making use of
Egs. (2.16) and (2.18) we obtain

on(t)=(1]5(0,8)|2) .

For a complete description of the resonance fluores-
cence light, knowledge of correlation functions of the field
to all orders is desired.- The spectrum is obtained by
Fourier transformation of the correlation function
(A,;(t)A1,(t +7)), which is proportional to the correla-
tion function of second order in the field strength of the
scattered light. In analogy to the case of one-photon exci-
tation the correlation function (A,;(t)A4,(t +7)) can be
expressed in terms of the time-ordered exponential matrix
S(ty,t,) as follows:!?

(2.19)

<A21(t)A 12(t +7))
=expl — 2wy 7—i 2@ (t +7)+i2¢.(2)]
X[ (3|S(t,t+7)|2)4|S(0,¢)]|2)

+(3 |8t +7)|3)1|S(0,1)[2)]. (2.20)
Note ' that in the limit 7—0 Eq. (2.20) reduces to
Eq. (2.19) for the excited-state  population:
lim.,__,o ( A21 (1)A 12(t +T) > = < Azz(t) ) . Another correla-
tion function, which has been a subject of increasing in-
terest, is the intensity correlation function. This correla-
tion function of fourth order in the field strength is pro-
portional to the - atomic correlation function
Go(t,t +7)=( A (1) A (t +7)A15(2)), which can be ex-
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pressed in terms of the time-ordered exponential matrix

S(ty,t,) as well:
Gt +7)=(1|S(t,t +7)|2)(1]S(0,8)|2) . (2.21)

In the case of a stochastic driving field we have to average
Egs. (2.19)—(2.21) over the field fluctuations; for example,

<022(t)>st:<(1 |S(O’t)|2)>st > (222)
<G22(t,t +T)>st
=((1]S(t, +7) [20(1[5(0,8)[2))y .  (2.23)

In what follows we assume the phase of the exciting
laser field is a Wiener-Levy process. The averaging over
the phase fluctuations in Egs. (2.22) and (2.23) can simply
be performed by substituting —4I"; for the 2ig; and
—2igy in Eq. (2.9) for the M matrix, 2I'; being the full
width at half maximum of the laser line.!® Note that this
substitution leads to a modification of the atomic dephas-
ing rate I', namely, I',—T",+4T ;.

The averaging over the amplitude fluctuations is very
difficult since they cannot, in general, be assumed to be
S-correlated and the M matrices at different times do not
commute. In order to find an approximative solution we
follow the procedure that has recently been applied to the
problem of the usual resonance fluorescence in a fluctuat-
ing laser field.!3 Briefly, we subdivide the matrix M (z) as
follows (after substituting —4I'; for the 2i¢; and
_ 21 ¢L ):

02 o |12 [22200 2 8QR(1)
= Mo it Qg Qg
172
5 (1) 85 (2)
—M, [2[ 0x +—?R—], (2.24)

where the matrices My and M, are defined by the rela-
tions

M0=M(t)|mR(:)=QR , (2.25)

M =M()| 4, 0=0 - (2.26)
At this point we note that the problem of performing the
averaging over the amplitude fluctuations of the exciting
laser field in Egs. (2.22) and (2.23) can be simplified drast-
ically when the M; term in Eq. (2.24) can be omitted.
Confining ourselves to the case when the resonance condi-
tion is exactly fulfilled from Egs. (2.26) and (2.9) the ma-
trix M, is easily seen to vanish when the relaxation rates
I') and I';+4T; are negligibly small, strictly speaking,
when the exciting field is strong and in the time scale
under consideration the effect of relaxation is weak. In
the case when the relaxation must be taken into account,
the neglect of the M, term in Eq. (2.24) requires the fol-
lowing condition to be fulfilled:

8Qx(2)
iT"—>—Sinm( 1,407, )min(1,T1) << 1, (2.27)
R
F:max(rl,F2+4FL) s (2.28)

where 74 denotes the correlation time of the amplitude



2438

fluctuations. This condition can be derived following the
scheme for the case of one-photon resonant excitation,'®
however, the nonlinearity of the noise must be taken into
account.

Disregarding the M term in Eq. (2.24) we approximate
S(t,t,) defined by Eq. (2.17) as follows:

S(t1,t)=exp ‘Mo(tz—tl)

172
) dQR(T)
+M, f‘l dr|2 —(T
Qg )

(pu(t,t +f)>st=<exr>

(i) o= Pu(t,1) ) .

In Egs. (2.31) and (2.32) the coefficients C}*/ defined by
the relation

Moot , ,
o [, @7 (2071808 ()] +8Q (1)} +
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Inserting Eq. (2.29) into Egs. (2.22) and (2.23) and making
use of the M representation,

Mo | A)=Ai | Ag) (2.30)
we rewrite Egs. (2.22) and (2.23) as

A

(on())g=3 CM%"@i(1))q (2.31)
1
( Gzz(t,t +T)>st= 2 Cll,zclé,ZeMt +A T
1k
X @u(t,t +7))g (2.32)

where

A pttr 12 , ,

mft dr' {2QK°[8Qx(7)]24-8Qg (7)) >St,
(2.33)
(2.34)

I
Ay=— 3 (D +Ty+40 ) +[ (D —T,—40 2 —Qk 12,

A= —3 (T4 To+40, ) —[ (D —T,—4T 2 — Q312

CH=(i | M)A | J) (2.35) -
. We now assume that the amplitude of the exciting laser
are derived to be field fluctuates according to an Ornstein-Uhlenbeck pro-
I Iy(T,+4T,) cess. In order to perform the averaging in Eq. (2.33) we
Ch?==—|1— |’ - apply the method outlined in the Appendix. Making the
2 304 identifications
Ccy*=0
2 ’ 2.36) x()—[8Qr(0]V% y—>T,=77",
ct2— 1 Tt A)T+45) a—A/Qr, b—h/Qr, c—2(Qx)"2,
} 2 M(Ag—Ay) ' =y
t'—t47, @tt")—>eu(tt+7)
1,2 1 (T14+A3)(T+Ay)
Cy =73 Al —Ag) ’ and taking into account that Eqgs. (A8) and (A9) yield
q=T,4(8Qg ) we obtain from Eq. (A50) together with
where Egs. (A36), (A37), (A42), and (A44)—(A49) the result
A=0, (pr(t,t +7))g=explg(t)+gult,t +7)], (2.38).
Ay=—(T,+4T;), (2.37)  where '
J
1 FE; 1 u
8i(t)= — | 4—2A; |1——5 | |t — 7In |cosh(w;t) + ——sinh(w;?)
2 wy I‘A
w,z
A2 2 u——2(w,—u1) cosh(w;t)+ T 4sinh(w;t) +2(w; —uy)
11y i 1
wP |wly4 " ,cosh(w;t) 4+ u;sinh(w;t) ’ (2.39)
r? up ()
gttt +7)= —;— =24 |1— -——'21~ 7—+In |cosh(wy7)+ Ik sinh(wy 7)
Wy
Wik(E) ot (1) 1] |coshugr)+ ' ysinaog )+ 20— e (1]
—2[w —u cosh(wg 7 sinh(w, w —u
AT wi (1) w(D) Ik Ik k 4 kT Ik Ik
Wi up ()T 4 " scosh(wy 7) + uy (¢)sinh(wy ) ’

(2.40)
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/2
M (8Qx)q |
=T, |[1—4——222| | 2.41
w; A Qx T, ( )
r’ A (8Qg )
u,:é oy M APRR st , (2.42)
wy Qr Ty
T4 w;—u;+ucosh(w;t)+ T 4sinh(w;z)
—apy, — A 2.43
wi (1) =wi wy I" 4cosh(w;?) + u;sinh(w;?) ( )
r} A 201 /QR)(8Qg Ycosh(w;t) + (u; —w; )sinh(w;z)
ug(t)=— |1—— ; (2.44)
. Wy A I" 4cosh(w;t) +u;sinh(w;t)
I
Since gu(t,1)=0 from Egs. (2.34) and (2.38) the average  to gx(7),
(@i(t) ) is easily found to be )
lim g (t,t +7)=gi(7) . (3.1
(@i(t))sy=exp[gi(2)] . (2.45) =
Equations (2.31) and (2.32) then read as follows: Combining Egs. (3.1), (2.47), and (2.46) we indeed find
At
(on(0)g= 3, C"% explg(1)] , (2.46) (Gpn(M)Ye= lim {Gyp(tt +7))y
1 t— oo
) 1,2 At A, 7 (3_2)
(Gultt +7))y= %CII 2Cple Tk =(03(0) )l 02(T) Vs »
xexplgi(t)+gr(t,t +7)] . (2.47)  where
(o 0))g= lim (opn(t))g=C}? (3.3)

Finally, we note that the averaging of Eq. (2.20) can be
performed in an analogous way. Provided that the
linewidth of the exciting laser field can be assumed to be
small, that is, the strength of the phase fluctuations is
small, the result of averaging over the phase fluctuations
consists in substituting into Eq. (2.20) for —i2¢, (¢
+7)+i2¢;(¢t) the quantity —4L ;7 and in substituting
into the matrix M (¢) defined in Eq. (2.9) for both 2i¢;
and —2i¢; the quantity —4T ;. Performing the averag-
ing over the amplitude fluctuations in the approximation
given by Eq. (2.29) we obtain

(A3 (A1 (t+7)) )y
=TT S (CpAC L OO T
Lk

Xexplg(t)+gu(t,t +7)]. (2.48)

The explicit form of the coefficients C}/ is given (replac-
ing T'; —4I"; ), for example, in Ref. 13.

II1. DISCUSSION

In this section we discuss the effects of the driving-field
fluctuations on the intensity and the intensity correlation
of the scattered light in more detail. From an inspection
of Eqgs. (2.46) and (2.47) the amplitude fluctuations of the
exciting laser field are seen to prevent, in general, the fac-
torization of the intensity correlation function
(Gplt,t+7))y into the product of intensities
(025(1)Y{02(T) ) Only in the steady-state case is such
a decomposition found. This is due to the fact that as the
time ¢ goes to infinity the sum over / in Eq. (2.47) reduces
to the term with /=1 and the functions gx(z,t +7) tend

[note that A;=0 implies g;(z)=0]. This result is well
knovgl from the case of usual one-photon resonant excita-
tion.

When the amplitude fluctuations of the exciting laser
field are sufficiently weak [{(8Qp )/T 4 << 1] the results
of two-photon resonant excitation and one-photon
resonant excitation are very similar. In this case Egs.
(2.41) and (2.42) can be simplified as follows:

A (80g),
(g (B%r)y R>",

4
Qr r, 34

wIzFA

u=I,, (3.5)

and hence from Egs. (2.43) and (2.44) we obtain

A (8Q
1+2_I_< R>st

)=~
wy (1) = wy 0 r,

<1—e‘“’>] . (3.6)

up(t)=uy . (3.7)

Combining Egs. (3.4)—(3.7), (2.39), and (2.40) the func-
tions g;(¢) and g (t,t 4+7) can approximately be expressed
as

2

M A (1)
g(t)~ o (8Qg Vot + o g, (3.8)
. M (2)
gu(t,t +7) =g (1) +—5—g' 2 (e7) (3.9)
QR
where
5Q _
RETPEPALLUSZP S M B U (3.10)
r, r,
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D (8Qr)st Qr, —T 4t —T 4t Inserting Eqgs. (3.8) and (3.9) into Eqgs. (2.46) and (2.47) we
g (st )=4“—F' T, (e —1)e —D. find the following expressions for the averaged intensity
4 and the averaged intensity correlation function of the
(3.11)  scattered light:
_
(8Qg) A
(on())g= S C%exp | M 14— 1t lexp —%gm(t) , (3.12)
1 Qg Qr
(80g) (8Qz)
(Gnlt,t +7))g=3 CP2Chexp | M [1+% t+ A 1+——Q"—it T
Lk R R
X exp —le [Afg V() +Akg V() +Mhg P, | (3.13)
R
I
Indeed, this result is very similar to that derived for the pansion. We derive
case when one photon is needed for resonant excitation of PO )
the two-level atom considered.!® It corresponds to a cu- T2 ((8EL))g Qg (3.16)
mulant expansion up to the second order in 8E (¢), which l/«fi r,’ )
is exact in the case of one-photon resonant excitation o ]
when the amplitude fluctuations of the exciting laser field  and hence the generalization of Eq. (3.15) is
give rise to a 8Qg(¢) that is linear in 8E (¢). It is obvious T )
that in this case the amplitude fluctuations do not modify T =n-. (3.17)

the Rabi frequency. From Egs. (3.12) and (3.13) it is seen
that in the case of two-photon resonant excitation the am-
plitude fluctuations change the Rabi frequency. This ef-
fect results from the term proportional to O8Qx(?)
~[é‘»l/£\'L(t)]2 in Eq. (2.29), the stochastic expectation value
of which does not vanish.

In both the case of one-photon resonant excitation and,
if the amplitude fluctuations of the exciting laser field are
weak, the case of two-photon resonant excitation the ef-
fect of the amplitude fluctuations on the damping of the
Rabi oscillations can be described by a decay rate I' pro-
vided that the bandwidth of the amplitude fluctuations is
sufficiently large. From Egs. (3.12) and (3.13) together
with Eqgs. (3.10) and (3.11) this rate, which results from
the term proportional to [8Q(1)]*~8E, (1) in Eq.

(2.29), is seen to be
o 8‘?R'—>St 2 =4 SOEL ) O

@
4 E? ry,

(3.14)

Comparing this result with the corresponding one-photon
result!® we find, under the conditions of equal Rabi fre-
quencies (g, equal correlation times 74 ———FZI, and equal
relative amplitude fluctuations {(8E;)?)y/E %,

@

T
where the indices (1) and (2), respectively, denote the cases
of one-photon resonant excitation and two-photon
resonant excitation. In the latter case the amplitude fluc-
tuations lead to a decay of the Rabi oscillations, which is
4 times faster than in the former case. At this point we
note that the generalization of Eq. (3.14) to the case when

n photons of the exciting light field are needed in order to
guarantee resonance can be easily found by cumulant ex-

4, (3.15)

We now turn to the study of the case when the ampli-
tude fluctuations of the exciting. laser field are strong:
(8Qg )t/T 4 >>1. Itis clear that the main effect then re-
sults from the quadratic noise SQR(t)~[8E'L(t)]2 in Eq.
(2.29). Since its correct description requires the summa-
tion of high-order terms in the cumulant expansion we ex-
pect features in the averaged intensity and averaged inten-
sity correlation function of the scattered light which are
quite different from those known for the case of one-
photon resonant excitation. To demonstrate them and to
avoid lengthy formulas let us consider the case when the
relaxation parameters I'j and I'y+4I"; can be disregarded
in the time scale of interest. We confine ourselves to the
study of the intensity and the steady-state intensity corre-
lation function.

Omitting the relaxation rates I'; and I';+4I; in Egs.
(2.36) and (2.37) we rewrite Eq. (2.46) as follows:

(0p(1))y=~(1— L {exp[Ast +g3(t)]+c.c.}) (3.18)

(note that A3;=iQpg). In order to calculate g;(z) we
remember the condition (8Qp)y/T'4>>1 and expand
Egs. (2.41) and (2.42). This yields

172

8Q
( R>st (1—[),

2
ry

wy~T 4 (3.19)

Uy~ TWws; . (3.20)

Combining Egs. (2.39), (3.19), and (3.20) we find that the
third term in Eq. (2.39) can be neglected when the ampli-
tude fluctuations are sufficiently strong. We therefore ob-
tain
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u —1.2
g3(t)~ —iQpt++T 4¢ +1In Ff—sinh(w3t>+cosh(w3t) (3.21)
4
Inserting Eq. (3.21) into Eq. (3.18) we derive the asymptotic strong-fluctuation behavior. of {,,(¢) ), to be
' 1 e (2)( 1172 172 (2)( 41172 1724
(on()um> —W({U (O] 7%+ 1}/ *cos(ewt) — {[f ()] /*— 1} “sin(w?)) (3.22)
where
o=(3T(8Qr )", (3.23)
FO() =14 -2 oot -7 cos(4ot) — ~2sin(4ot) (3.24)
r, Ty
2
e 4ot l [ sm(4cot)+f—cos(4mt)]
4

fA=1+ , (3.25)

1 @ e [{_ @
B[

Making use of Egs. (3.2) and (3.3) the steady-state intensi-
ty correlation function is simply given by (Gj (7))
=3 {02(7) ) With {0,,(7) ) from Eq. (3.22).

Comparing Eq. (3.22) with Eq. (3.12) we see that in the
case of two-photon resonant excitation of the two-level
atom the cases of weak and strong amplitude fluctuations
of the driving field lead to qualitatively different features

cos(4wt) — 2—sin(4ot) I
r,

in the dynamical behavior of the scattered light. Whereas
in the former case the amplitude fluctuations give rise to a
damping of the usual Rabi oscillations in the intensity and
the intensity correlation of the scattered light, the t1me
scales of oscillation and damping, respectively, being Qg R

and T =1 in the latter case the Rabi oscillations are com-
pletely suppressed. Instead of them only a single
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FIG. 1. Time development of the normalized stationary intensity correlation function of the fluorescent light for various values of

the Rabi frequency Qg.

Radiative damping (I';=v, I'y=2y) and small laser linewidth (I'; =0.01y) are assumed. The amplitude

correlation decay rate is chosen to be I' y=2y. Behavior in the case of a realistic laser with small relative amplitude fluctuations
((8Qg )/Qg =0.1, solid lines) is compared with the behavior in the case without amplitude fluctuations ({8Qg ), =0, dashed

curves).
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overshoot peak at time z < mo ! can be observed because

the new oscillations frequency and the new damping rate,
which are given by Eq. (3.23), are equal.

Let us now consider more general cases. In Fig. 1 the
steady-state intensity correlation function of the fluores-
cent light is shown for certain values of the Rabi frequen-
cy and for relatively slow correlation decay of the ampli-
tude fluctuations of the driving light field. All of the pa-
rameters are chosen in such a way that the condition
(2.27) is fulfilled. In particular, since the value of the rel-
ative amplitude fluctuations is assumed to be small
((8Qg )/Qg =0.1) the curves correspond to the case of
weak amplitude fluctuations rather than to the case of
strong amplitude fluctuations. As in the case of one-
photon resonant excitation the amplitude fluctuations are
seen to be responsible for damping the Rabi oscillations.
Another feature common to both cases is that for a fixed
(small) value of the relative amplitude fluctuations
(8Qg )/Qg this damping effect vanishes with increasing
value of ' 4, that is, when the correlation decay of the
amplitude fluctuations becomes sufficiently fast, as can be
seen from Fig. 2. At this point it is worth noting that
even in the case when the relative amplitude fluctuations
are small, significant effects can occur due to their finite
correlation length, since the strength (8Qg )/T" 4 of the
fluctuations depends on I 4.

As mentioned above, strong amplitude fluctuations of
the driving light field lead to drastically different effects
in the intensity and the intensity correlation of the scat-
tered light in the cases of one- and two-photon resonant
excitations. A detailed comparison between both situa-
tions is given in Figs. 3—5 for the case when the atomic

G2z (T )),t
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FIG. 2. Time development of the normalized stationary in-
tensity correlation function of the fluorescent light for various
values of the amplitude correlation decay rate I'y. Radiative
damping (I';=7y, TI';=2y) and small laser linewidth
(', =0.01y) are assumed, and the Rabi frequency Qr=15y.
Behavior for small relative amplitude fluctuations
({(8Qg )s:/Qx =0.03, solid lines) and for the case without ampli-
tude fluctuations ({8Qx ) =0, dashed curve) are given.

K.-E. SUSSE, W. VOGEL, D.-G. WELSCH, AND D. KUHLKE 31

relaxation is sufficiently slow. For weak amplitude fluc-
tuations ((8Qp )/T 4 << 1) the results of the two cases
are qualitatively identical. The only difference is in the
value of T'. Since in the case of two-photon resonant exci-
tation it is larger than in the case of one-photon resonant
excitation [cf. Eq. (3.15)] the Rabi oscillations are less
pronounced in the former case. With increasing strength
of the amplitude fluctuations in both cases the damping
of the Rabi oscillations becomes stronger, and hence the
time scale of intensity anticorrelations of the scattered
light decreases. In the case of one-photon resonant excita-
tion the consequence of this tendency is that when the
amplitude fluctuations of the exciting field are sufficiently
strong, the Rabi oscillations in the intensity and the inten-
sity correlation of the scattered light are completely
“washed out” and both functions develop into step func-
tions over time. In the case of two-photon resonant exci-
tation however, the situation is quite different. The usual
Rabi oscillations are not simply damped but they disap-
pear in principle. In their place, a new overshoot peak is
seen to appear in the intensity and the intensity correla-
tion of the scattered light, the relevant time scale being
(0.5T 4 {8Qg )s) "2
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FIG. 4. Time development of the normalized stationary in-
tensity correlation function of the fluorescent light for the Rabi
frequency Qz =I"4 and. various values of the relative laser am-
plitude fluctuations ((8E. »?)/E%. Slow atomic relaxation
(', I, I’ —0) is assumed. The case of two-photon resonant
excitation (solid lines) is compared with the case of one-photon
resonant excitation (dashed lines).

ing a Langevin equation with nonlinear multiplicative
noise.

APPENDIX
Let us consider the function

. t
@(t,t')=exp |a fo drlcx()+x41)]

+b [ drfex(n+x2n]]|, >t

(A1)

which with regard to the time argument ¢’ obeys the dif-
ferential equation
d
dt’

with the initial condition

Pt )=b[cx (') +x*t")]@(1,t') (A2)
t
P(4,t") | p—r=@(t)=exp [a fo drlex () +x%m)]|. (A3)

The function @(t) itself satisfies a differential equation of
the type of Eq. (A2) as well:
4 p(=alex (1+x0)lgtn) (a4)

where the initial condition reads
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FIG. 5. Time development of the normalized stationary in-
tensity correlation function of the fluorescent light for the Rabi
frequency Qx=0.3T, and various values of the relative laser
amplitude fluctuations {(8E;)%),/E%. Slow atomic relaxation
(I',I';, ', —0) is assumed. The case of two-photon resonant

excitation (solid lines) is compared with the case of one-photon
resonant excitation (dashed lines).

@) ] po=1. (A5)

We now assume that x (z) is the stochastic variable of an
Ornstein-Uhlenbeck process, which can be described by a
Langevin equation with a Gaussian white-noise driving
term F(1):

4 ()= —yx(D+F (),

i (A6)
(F(DF(t'))=2q8(t —t') . (A7)

The correlation function {x (#)x(¢')), is given by the fol-
lowing expression:

(x(t)x(t')yy=Dye ¥t (A8)

where the constant D is related with the diffusion con-
stant g of the white noise as follows:

p=-=1.
¥

From Eq. (A8) the power spectrum of the correlation
function {x (£)x(¢')) is easily seen to have a Lorentzian
shape with full width at half maximum 2y. In the limit
¥ — oo the Ornstein-Uhlenbeck process obviously tends to
a Gaussian white-noise process provided that g goes to in-
finity as well and g/ remains finite:

(x()x(2"))—2D8(t —1t') .

(A9)

(A10)

In order to calculate the stochastic expectation value of
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the function @(z,t') we make use of the methods of gen-
erating functions.!>!”!® For this purpose we introduce
the function

W(t,t',z)=e>"p(1,1") , (A11)

which gives @(z,¢') at_the point z=0. Hence, if the sto-
chastic averaging of W(t,¢',z) can be performed the sto-
chastic expectation_value of @(z,t’) is simply found by
choosing z =0 in (¥(1,¢,2) )

(@(t,t’))st=<\I/(t,t,,2))st I z=0 -

Differentiating W(t,#',z) with respect to z we obtain
from Eq. (A11) the relations

(A12)

icf/(t,t',z)

5 =x(t"(1,t',z), (A13)
3 - o

B——Z-\P(t,t’,z)=x2(t’)‘1/(t,t’,z) . (A14)
Z

Differentiating Eq. (A11) with respect to ¢’ and using
Eqgs. (A6), (A13), and (A14) we find the following stochas-
tic differential equation for W(t,t',2):

9 W(t,t',z)= |(bc

‘ét—, Z’}/)——}-b*a——i-ZF(l‘) \I/(tt ,Z) .

oz 2
(A15)

From Eqgs. (A11) and (A12) the initial condition is derived
to be

W(L,t',2) | oy =V(t,2) == V(1) . (A16)

In an analogous way the function W(z,z) can be shown to
obey the stochastic differential equation

5] d 32
—&\Il(t,z)= (ac —z‘y)g —l—a—é—2 +zF(t) |W(t,z) (A17)
with the initial condition
W(t,2) |, _o=e*0 . (A18)

Since F is assumed to be a Gaussian white-noise force we
can exactly average Eq. (A15). The result is

-a—<@(t t,z)) = (bc —Z']/)'_‘—f"ba—z
at b st= a 2
+2%q |{W(t,t",2)) (A19)
with the initial condition according to Eq. (A16):
(W(t,6,2) )t | me = (W(5,2)); . (A20)

Analogously the averaging of Eq. (A17) yields
1
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d 3] 92
» (W(1,2)) 4= | (ac —zy) = - +aa S +2%q [{(W(5,2) ) .

(A21)

Taking into account that x is a Gaussian stochastic vari-
able and making use of Egs. (A8) and (A9), we obtain
from Eq. (A18) the initial condition

(W(£,2)) | 1 mo=eT727 . (A22)

In analogy to the solution of the Schrédinger equation
by normal ordering®®?! we solve Eq. (A19) by means of
the following ansatz:

(W(,t',2) ) y=exp[Go(t,t') +2G {(1,t') +2°G,(2,")] .
(A23)

Inserting Eq. (A23) into Eq. (A19) we obtain the system
of coupled differential equations

%60(1‘,#)=bc(~;1(t,t')+2b§2(t,t’)+b6 Ae,t'),  (A24)
d ~ ’ ~ ’ ~ ’
k?Gl(t,t )=—vG(t,t')+2bcG,(t,t')
+4bG ((1,")G,(1,1") , (A25)
dd, G,(t,t")=—2yG,(1,t')+4bG Xt,t') +¢ (A26)
The initial conditions
Gi(t,t") | p_=G;(1), i=0,1,2 (A27)

have to be calculated from the solution of Eq. (A21). Ap-
plying the above technique to Eq. (A21) we obtain

(W(1,2) )4 =exp[ Go(t)+2G, (1) +2°G,(1)] , (A28)
%Go(n=acGl<t)+2aG2<t)+aG%(t> , (A29)
%Gl(t): G (1) +2acG,(1)+4aG(G,(1) ,  (A30)
%Gz(t)z —2yG2(t)+4azG§(z)+q . (A31)

It is easily seen that Eq. (A22) implies the following initial
conditions:

Go(D) | 1—0=0, (A32)
Gl(t)lt=0=07 (A33)
Go(1) | 1mo=~L . (A34)

2y

The differential equation (A26) is of the Riccati type
and can be solved by standard methods. We obtain the re-
sult

Gt )_L [y*—a(t)iw]cosh[w(z' — )]+ y[a(¢) — i ]sinh[ @ (2 —1)]
2 4b yeosh[@ (¢! — )]+ ()sinh[@T(¢' —1)]

where

, (A35)
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172
o=y [1-4b-L | | (A36)
Y
2 G, (1)
a(n="1|1—ab—— | . : (A37)
w Y
For the following it is convenient to represent G,(z,¢’) in the equivalent form
~ 1 d
"V=———In[Z(,t")], A38
G,(t,t') b ar n[Z (¢,t")] (A38)
where
Z(t,t")=e """~ {ycosh[@(t'—1)]+i()sinh[@(t'—1)]} . (A39)
Formal integration of Eq. (A25) yields
~ t ~ t - t ~
Gl(t,t'):Gl(t)exp[—y(t'—t)+4b [ d'er(t,'r)]—}—Zbc I, dTGZ(t,T)exp[—y(t’—T)+4b [ arGm|. (a40

Making use of Egs. (A38) and (A39) we can perform the integrations in Eq. (A40) in a simple way. We cast G,(z,7') in
the form

él(t,t')=——c— 1Y z”)'(t)~z7(t)+17(t)cosh[ﬁ3(t’—-t);|+y sinh[@(¢' —1)] , (A41)
2 w y cosh[@ (¢’ —1)]+ & (t)sinh[ (' —1)]
where
~ - G](t)
v(t)=w |14+2 p . (A42)
Finally, we formally integrate Eq. (A24):
Golt,t)=Go()+b [ drleGy(1,1)+G 11,1 +26,(,7)] . (A43)

Inserting Eqgs. (A38), (A39), and (A41) into Eq. (A43) and calculating the 7 integral we obtain after some mathematical
manipulations

~ 2 2 ~
Go(t,t’)zGo(tH——;— y_ﬁg—— 1——1’—2} (t'—t)——%ln cosh[@(¢' — )]+ 2 sinh[@(¢' —1)]
w
=2
R [‘L(‘t’)’ —2[5()— (0] |cosh[@(t'— )]+ sinh[@ (¢’ — )]+ 2[5(6) — F()]
Ly (20 ¥ : (A44)
ST 7ty y cosh[ (¢’ —t]+ i (¢)sinh[@D (¢’ —1)]

From a comparison of Egs. (A24)—(A26) with Egs. (A29)—(A31) we see that the functions G;(¢) (i =0,1,2) can be de-
rived from the functions G;(¢,¢') by means of the substitutions ¢'—¢, t—0, and b—a in Eqgs. (A35), (A41), and (A44).
Making use of the explicit form of the initial values G;(0) as given in Egs. (A32)—(A34) we can express the functions
G;(1) as follows:

1 ac? J_z_ 1 u .
== |ly— — _— 1)+ —
Gol(t) 173 1 07 t 5 In |cosh(wt)+ ” sinh(wt)
w2
— —2(w —u) |cosh(wt)+ vy sinh(wt) +2(w —u)
+lac2—ﬁ ﬂi_ “ (A45)
477 w3 |uy y cosh(wt) +u sinh(wt) ’
G(t)=—S || Y W—utu cosh(wt)-!—ysinh(wt) ) (A46)
2 w y cosh(wt) +u sinh(wt) '
G2(t)=i 2aq cosh(wt)+ y(u —w) sinh(wt) ) (A47)

4a v cosh(wt) +u sinh(wt)

where
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172
w=y 1—‘4ai2 ’
Y
2 g
u:L 1—2a~7
w Y

(A48)

(A49)

Remembering Eq. (A12) we find the average of the function §(¢,¢') by choosing z =0 in Eq. (A23):

(@(1,2'))y=exp[Go(£,1)] ,
where Go(1,¢') is given in Eq. (A44).
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