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A theoretical study is made of the process in which incident pump photons that interact with a
nonlinear medium (such as a crystal lacking inversion symmetry) are spontaneously split into lower-

frequency signal and idler photons. The down-converted fields are quantized and described by a
continuum of modes, a subset of which interacts with each photodetector. It is shown that when
two ideal photodetectors are appropriately located so that they receive the conjugate signal and idler
photons, then the joint probability of two-photon detection by the two detectors can equal the
single-photon detection probability. The time correlation between the two detected photons is shown
to be limited either by the resolving time of the detectors, or by the bandwidth of the down-

converted light, and to be independent of the coherence time of the pump field or of the length of
the nonlinear medium. These conclusions are compared with the results of recent experiments.

I. INTRODUCTION

The process of parametric amplification and oscillation,
in which two or more modes of the electromagnetic field
are coupled through a nonlinear medium, has already been
the subject of numerous studies in the past. ' ' The focus
in these treatments has ranged over a variety of topics,
such as the creation of nonclassical photon statis-
tics ' ' ' ' and of squeezed quantum states. ' Of par-
ticular interest is the process of parametric frequency
down conversion, in which an incident pump photon ef-
fectively splits up into two lower-frequency (signal and
idler) photons, which constitute a highly correlated pho-
ton pair. ' This phenomenon was first observed in pho-
ton coincidence counting experiments, ' and more recent
time-resolved correlation measurements of the same pro-
cess have been reported.

Except for the less-than-perfect detection efficiencies of
the photoelectric detectors, the joint probability for the
detection of the two down-converted photons by two ap-
propriately located detectors can be as large as the proba-
bility for the detection of one photon by one detector.
This remarkable result readily follows from the
parametric Hamiltonian that couples the pump mode to
the signal and idler modes in the interaction, and can be
obtained with the help of the general approach of Gra-
ham, ' for example. However, the effect is not nearly so
obvious when the field is treated more realistically by a
multimode expansion, and when the geometry of the non-
linear medium and of the detectors is taken into account.
Moreover, treatments based on just a few discrete modes
are unable to determine a meaningful correlation time for
the two-photon correlation function.

This turns out to be a particularly interesting problem
from the experimental point of view. In their pioneering
experiments, Burnham and %'einberg' found that the
measured value of the correlation time T, between the
two down-converted photons was limited by the time reso-
lution of the electronics, but it was of order or less than 4
nsec. They speculated that T, might be related to the

coherence time (2&&10 ' sec) of the incident light beam,
which was, however, far below the instrumental resolution
limit. On the other hand, more recent experiments with a
single-mode laser having a coherence time & 40 nsec indi-
cate that T, can be several orders of magnitude smaller
than the coherence time of the pump light. However, a
theoretical determination of the photon correlation time
T, requires a more realistic treatment of the down-
conversion problem, with a continuum of modes, rather
than the two- and three-mode calculations that have gen-
erally been given. The one exception to this is the previ-
ous treatment by Mollow, who expressed the correlation
function of the down-converted light in terms of the sus-
ceptibilities of the nonlinear medium. However, that
treatment does not start from an explicit Hamiltonian,
and it does not clearly bring out which physical parame-
ters determine the correlation time T, .

In the following we use a simple model Hamiltonian to
describe the coupling of the incident pump field to the
down-converted signal and idler fields over a region that
coincides with the volume of the nonlinear medium. The
down-converted fields are decomposed into an infinite set
of modes, which is eventually treated as a continuum.
The Heisenberg equations of motion for the field opera-
tors are integrated over a short-time interval correspond-
ing to the propagation time through the medium, and cer-
tain expectatio~ values are calculated. We show that
when the directions, the frequencies, and the detection
time intervals are appropriately chosen, the joint probabil-
ity of two photon detections at two ideal detectors equals
the single-photon detection probability. The two-photon
correlation function is examined, and is found to have a
range of the order of the resolving time of the photoelec-
tric detectors, with a lower limit set by the reciprocal
bandwidth of the down-converted photons. This means
that the time interval between the signal and idler photons
could, in principle, be in the subpicosecond range. These
conclusions are then compared with the results of some
recent experiments.
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II. EQUATIONS OF MOTION

It is well known that in a nonlinear dielectric an in-
cident electric field E will create a polarization P having
contributions that are not only linear in 8, but also bilin-
ear, trilinear, etc. ' The lowest order nonlinearity can be
written

I's ~&IJ'kEJEI, ) (1)

where X,jk is the bilinear susceptibility. This makes a
contribution to the energy of the electromagnetic field of
the form

Ht ———, P;(r, t)E;(r, t)d x

where the integration extends over the volume P of the
nonlinear medium. However, in a typical parametric pro-
cess all three fields may oscillate at different frequencies,
and the susceptibility may also depend on these frequen-
cies. We then need to decompose the electric field into its
Fourier components 8'(r, co) and write, in place of Eq.
(2) 21

Ht ——
& f d x f f fdeil dco dco X,&k(1;co,co,co )

&& 8';(r, co) 8'j(r, co') 8'k(r, co") (3)

for the interaction energy.
When the field is quantized, E(r, t) becoines a Hilbert-

space operator E(r, t). This can be decomposed into its
positive-frequency and negative-frequency parts E '+ '( r, t )
and E' '(r, t), and given a mode expansion in plane-wave
modes of the form

1/2

E (r,t)=,qz gi ak, (t)ak, e' '. (4)(+ ) 1 . i)ttu(k)

I. is the quantization volume which is later allowed to
become infinite. ak, is a unit polarization vector depend-
ing on the wave vector k and the polarization index s
(s=1,2), and ak, (t) is the photon annihilation operator for
the mode k,s of frequency co(k). In the following we shall
find it a little more convenient to work not with E'+'(r, t)
but with another positive-frequency field operator

V(r, t) = —gak, (t)ak, etk', (5)
L 3/2

whose square V .V has the dimensions of photon density.
The integral of (V (r, t) V(r, t)) over a volume whose
linear dimensions are large compared with any optical
wavelength provides a measure of the probability for
detecting a photon within that volume. We then write
for the total energy of the field, including the parametric
interaction,

H = g i)tt))(k)nk, + f d x gjl(r)V;t(r, t)Vjt(r, t) Vl(r, t)+H. c.
k, s

where X,jl(r) is another kind of "susceptibility" with different dimensions, or more generally, when the susceptibility is
frequency dependent,

H= gi)itt)(k)nk, + f d x i g g X;jl(r;a)(ko), (t)(k'), co(k"))a k, (t)a k-,-(t)Vl
k,s

i[(ko—k' —k") r —c0(ko)t]X(a'k; );(a*k-,-)je

The wave vectors appearing in this equation are those within the nonlinear medium. In writing H in this way we have
assumed that the incident field is so intense that it can be treated classically as a monochromatic plane wave with wave
vector ko and frequency co(ko). This is an approximation, but one that is usually acceptable for a laser beam, so long as
the beain is only weakly attenuated in passing through the nonlinear medium (or crystal). We have therefore put

v(r, t) =ve "~' '~"'
(&)

for the incident field. If the crystal is spatially uniform and in the form of a rectangular parallelepiped centered at ro
with sides l), lz, l3, the space integration is easily carried out. We then obtain for the energy

y ~(k)nks+ ) y y ~ijl(+( 0) +(k ) +(k ))a k' '(t)a k" "(t)(ek' ")'(ek" ")j Vl
k,s kt sl ] II stl

i[(ko—k' —k") ro —t0(ko)t lXe
sin[ —,

'
(ko—k' —k"

)ttt lttt ]
—,
'

(k()—k' —k")

This Hamiltonian can be used to derive the Heisenberg equations of motion for the annihilation operators ak, (t). It is
a little more convenient to work with slowly varying dynamical variables

that have the highly oscillatory behavior of ak, ( t) canceled out. We then find

(10)
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Ak, (t)= . [ak„H]e' '""+irp(k)Ak, (t)
iA

~'jl(cc)(kp) tc)«') ~(k"))[&kr & k'A~k'-]e'"' "(ak') (&k-.-)J ~iiM

i[(k()—k' —k") r() —co(k())t]Xe
m=1

sin[ —,
'

(kp —k' —k" ) l ]
—,
'

(kp —k' —k")

g~'j!(tp(kp) t'p(k) tc)(k'))A k' '(t)[(akr ) (ak' ')1 +(&k'r')t (akr )J ]vi
LAN k' gt

i(k()—k —k') r() i[co—(k()) co(k—) co(k—)]t'
&(e e

m=1

sin[ —,
'

(kp —k —k')~l ]

—,
'

(k()—k —k')

after making use of the symmetry property with respect to the two down-converted waves
&jt(p)(kp), p)(k'), cp(k) ) =adjt(~p(kp), ~0(k),rp(k')).

We now integrate the equation of motion over the short interaction time b t for which the modes are coupled through
the nonlinear medium. This time l(tt may be taken to be the effective propagation time of the light through the crystal.
In practice ht is typically a fraction of a nanosecond, and the intensities of the down-converted light beams are generally
so low that we may replace, to a good approximation, A k, (t) under the time integral by A k., (0). The integration over
time is then trivial, and we obtain

I

Ak, (&t) =Ak, (0)+—,y xjt(p)(kp), rp(k), cp(k'))A k, (0)[(&k,);(&k, )j+(&k, );(&k, )j]&ig~

i(k() —k —k') r() —(i/2)[co(ko) —co(k) — (k')co]at S1DI 2 [~(kp) ~(k) ~(k )]~tI
—,
'

[(p(kp) —co(k) —p)(k') ]

m=1

sin[ —,'(kp —k —k') l ]
—,
'

(k()—k —k')

After the time b, t when the interaction is over, Ak, (t)
evolves essentially as a free-field mode, with

Ak, (t)=Ak, (b, t) for t&l(t .

We can use this result to construct the configuration
space operator V(r, t) given by Eq. (5). In order to avoid
complications introduced by the boundaries of the non-
linear medium (or crystal), which normally generate re-
fracted and reflected waves, we shall suppose that the
crystal is embedded in a linear medium with exactly the
same refractive index. The wave vector k then has the
same value inside and outside the crystal.

Ultimately we shall be interested in calculating the
response of a photodetector that receives the down-
converted light at some distant point r at some time t.
For this purpose we--need the part of the total field to
which the detector responds. In practice, it is often con-
venient to locate the detector at the focal plane of a lens,
possibly with a filter in front, so that it responds only to
wave vectors of the field within some small range of
directions and within some limited frequency range.

g A k, (0)f(k, s;r), t)I 3/2

A
=Wt„,(r), t)+ g A k, (0)f(k,s;r(, t),I'ec & ~ 3/2 (14)

where Wt„,(r„t) is the field operator in the absence of
any interaction, and

I

However, we prefer to avoid the complications that the
lens would introduce into the calculation, although its ef-
fects appear implicitly below. Let [k], denote the limited
set of wave vectors to which the detector at r~ responds,
where the set [k]) is centered on some wave vector k( and
contains contributions within some range AkI, which is
not necessarily small. We then define the response opera-
tor W(r(, t) to be given by a sum like that in Eq. (5), but
with k limited to the set [k](. From Eqs. (10), (12), and
(13) we then have for t & j(t.t,

iI k.r) —a)(k)t]W(r„t)= g Ak, (0)ak, e
[kj),s
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k k') ~

f(k, s;r), t)=— 3 g X(jt(co(ko),co(k), (o(k'))ek, TJ."(k,s;k', s')I/te
lftL Ik ]

i[k' r) —co(k')(J —(i/2)[co(ko) —co(k) ro(—k') Jat { 2 f~( 0) ~(k) ~(k )]~t ]

—,
' [o)(ko)—(o(k) —co(k') ]

sin[ —,
'

(ko —k —k') l ]
—,
'

(k()—k —k')
(15)

with

TJ(k,s;k', s') =(ek, );(ak, )J+(ak, );(ek, )J .

In expressing W(r, t) in the form of Eq. (14) we have in-
terchanged the variables k,s and k', s'.

III. PRGBABILITY OF PHOTON DETECTION

Once the quantum state of the field has been specified,
we can use Eq. (14) to calculate expectation values of any
function of the field operators. In the special case of

I

parametric frequency down conversion, in which the elec-
tromagnetic field of interest is that generated by the down
conversion of the incident pump light, we take the initial
quantum state to be the vacuum

i
vac). By virtue of the

property

Ak, (0)
i
vac) =0= (vac

i
A k, (0),

Whee(r, t)
i
vac) =0= (vac

i
W fg, (r, t)

it then follows from Eq. (14) that the averaged measured
light intensity at r, t is given by

(W (r, t) W(r, t)) = g g (Ak, (0)A k, (0)) f*(k,s;r, t) f(k', s', r, t) =
3 g i

f(k, s;r, t)
i

k, $ k', $' L 3
(18)

when we apply the commutation rule

[Ak, (0),A k, (0)]=5kk5„. (19)

In practice, the light intensity cannot actually be mea-
sured at a point and at an instant of time, but we have to
integrate Eq. (18) in order to arrive at measurable quanti-
ties. If the detector has a small illuminated surface area
5S normal to the direction of the incident light in the far
field of the source, and if the measurement time is a short
interval 5t, then the detector is effectively counting the
photons in a volume 5F"=5Su5t (but with 5F"))A, ),

t

P((t)= f d'x
3 g i

f(k,s;r, t)
i

k, $

(20)

In the limit L~ oo, the sum over k can be replaced by an
integral in the usual way, and with the help of Eq. (15) we
obtain

l

where u is the velocity of light in the medium. %e shall
therefore take the volume integral over 5F of the average
intensity given by Eq. (18) to be a measure of the proba-
bility P)(t) of photon detection by the detector at time t,
and we write

X y Xjt(o)(ko),co(k), io(k') )X„. ((o(ko), (o(k),~(k"))(ek,"&k-,-)
$,$,$

T (k k, ,
) Ts (k k„„)~ V

([(k"—k') (r) —&P) —~(k")&+~(k')(J —()/2)i[~(k') —~(k")Jgiij» ~ uu ~s& I m e

sin{ —,
'

[(o(ko) —co(k) —~o(k')]Et J sin{ —,
'

fco(ko) —(o(k) —(o(k")]b.t I

—,[~(ko) —(o(k) —(o(k') ] —,[~(ko) —(o(k) —o)(k")]

sin[ —,
'

(ko —k —k')~ l~ ]

2 (ko —k —k')~

sin[ —,
'

(ko —k —k") l~ ]
—,
'

(k()—k —k" )
(21)
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kp —k —k'=O=kp —k —k",
co(ko) —co(k) —co(k ) =0=co(ko) —co(k) —co(k ) . (22b)

It follows that k' and k" are close to each other, and the
difference vector

/It gl Qt lt (23)

is small and of order 1/l even if the pass band hk) of the

It is worth observing that because of the sine factors
[sine denotes (sinx)/x], and because l„l2,l3 and b, t are
typically many thousands of optical wavelengths and opti-
cal periods long, the dominant contribution to the three k
integrals come from those wave vectors that are close to
satisfying the index-matching conditions, or energy- and
momentum-conserving conditions,

detector is wide. The scalar product ak, ak-, - in Fq. (21)
can therefore be well approximated by ak, "ak; =5...-,
and for the same reason Tu„(k,s;k",s") can be replaced
by T»(k, s;k', s'), and p»~(co(ko), co(k),co(k")) by
X»~(co(kp), co(k),co(k')}. In the same spirit we may use a
Taylor expansion to express co(k") in terms of co(k'), by
writing

co(k")=co(k')+k'" Vk co(k')+
=co(k')+k'" u(k'), (24)

where u(k)—:Vkco(k) is the group velocity. These
transformations allow us to simplify Eq. (21), after mak-
ing k'" the new variable of integration in place of k".
The k"' integration is carried out most easily, if we reex-
press all the sine factors as space-time integrals, by put-
ting

1 3 „, i[k '(r& "—rp) —k"'.u(k')t] (i/2)[co(ko) —co(k) —co(k')]Et —(i/2)[co(k ) co(k—) co(k—) —k"'' u(k')]t) t
d k"'e ' e e

(2m)
sinI ,' [co(—k()) co(—k) co(—k')]ltt t I sin I —,

'
[co(k())—co(k) —co(k') —k"' u(k')]Et J

X
—,[co(kp) —co(k) —co(k')] —,[co(kp) —co(k) —co(k') —k"'.u(k')]

x
sin[ —,'(ko —k —k') l 1

m =( —,
'

(kp —k —k') m =

sin[ —,
'

(kp —k —k' —k"')~l ]

—,
'

(k()—k —k' —k"')~

~ "0—"—" +

( 2~)3 —I ) /2 &x' & i
&
/2 —I

&
/2 &x"& i

&
/2 P 0

—12/2 &37' & 12 /2 —12/2 &y" & 12/2
—13/2 (z (13/2 13/2 &z (13/2

i[co(k())—co(k) —co(k')](t' —t") ik [r) —r'(")—r"—u(k')(t t")]-
Xe e

h, t= f i, , d r' f, „, d r"f dt' f dt" 5 (r, —ro —r"—u(k')(t —t"))
—12/2 &y' & 12/2 —12/2 &y & 12/2
—13/2 &z' & 13/2 —13/2 (z"& 13/2

i(kp —k —k') (r'+r") i[co(k())—co(k) —co(k')](t' —t")
Xe e

If dispersive effects are small, we may take the group velocity vector u(k) to be almost independent of the wave number
k, but pointing in the direction of the wave vector k. We shall therefore write u(k) =uK, where K—= k/k. The integra-
tion over r" can now be carried out, and we obtain

3 c ( cc i(ku —k —k')-[r'+rt —ru —tcu(t t )]—"
—1i /2 &x' & l i /2 0 0
—12/2 &y' & 12/2
—13/2 &z' & 13/2

i[co(k())—co(k) —co(k')](t' —t")
Xe U(r) rp Ku(t t")—

~

l„l—2, l, ), —

where the step function U(r
~
l(,12,13) is defined to be unity if r falls within the volume 7, of the crystal and zero other-

wise,

1, if rE'W,

0, otherwise .
(25)

In the following we shall suppose that the detector is located in the far field of the nonlinear medium, and that
~
r) —rp

~

and ut are both large and almost equal. After performing the r' and t' integrations we have

i(kp —k —k'). [r& ru tc'u(t —t—")]—i[co(k())—co(k) —co(k')[()/2)ht t"]-dte ' ' e
0

sin[ —,
'

(kp —k —k') l~ ] sin I —,
'

[co(kp) —co(k) —co(k')]b.t Ix U(r) —ro —K'u(t —t")
I
l) l2 l3) II —(k()—k —k') —[co(kp) —co(k) —co(k')]

(26)

Use of Eq. (26) in Eq. (21) with the foregoing substitutions then leads to the following expression for the photon detec-
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tion probability at time t:

fi s~ (2m ) 1

Xg X'it (co(kp), (o(k),(o(k') )X»~(co(kp), co(k), to(k') )T1(k,s;k', s') T„'„(k,s;k', s') Vi' V
ISIS

x dt e ' ' e
~

~
~i(Q k—k—') [I(.—I()—SS'SS(t —I")] i[SO(Q) Sc(—(k) SI—()S.')l[()/2)tlt I"]-

U(r, rp —KQ—(t t")—
~
l), lz, l3)

m=1

sin[ —,
'

(kp —k —k') l ] sin I —,
'

[to(kp) —to(k) —co(k')]b t I

z (kp —k —k')
z [co(kp) —(o(k) —co(k')]

(27)

In order to evaluate the k integrals one would of course
need to know the form of the susceptibility tensor. We
compare P) (t) with a certain probability for the detection
of two photons below.

IV. TWO-PHOTON DETECTION PROBABILITY

Next we consider the joint probability Pz(t, t+~) of
detecting two photons with two detectors located in the
far field of the crystal, in the neighborhood of points r)
and rz at two different times t within 5t and t+~ within
5t. Vfe therefore need to calculate the expectation of the
normally ordered and time ordered operator product

W~(r, , t) W, (r„t+~)W, (rz, t+~) W~(r, , t),

and to integrate this over the small surfaces of the two
detectors and over the short measurement time intervals
5t. As before, we replace the surface-time integral by an
integral over the equivalent volume M . Let us suppose
that the detector at r& responds to the set of wave vectors
[k]) and the detector at rz to the set [k]z, where [k]) and
[k]z in general differ both in direction and frequency.
[k]) is centered on k, and [k]z on kz. Because of the par-
ticular form of W(r, t) given by Eq. (14), in which all
operators are effectively zero-time operators, ihe time or-
der of the operator product is not significant, but the nor-
mal order is important. We therefore have for the joint
probability of two-photon detection at times t and t+ ~,

Pz(t, t+r)= f,~ d'x) f,~ d'xz(»c
~
IV, (r), t)@',(rz, t+~)@'q(rz, t+~)@'~(r),t)

~

»c)
1 2

= f d x) f d xz vac
3 Q A) (0)fz (k,s;r), t))

1 2

IV q f,(rz, t + r) + 3&z g A)s'I (0)fq (k', s';rz, t +7 )

IVq f«,(rz, t+~)+,~z g A k-I-(0)fq(k", s";r„t+~)I 3/2
kl I II

I

X cvc g A v», » (0)fv((c"',s'";v„t) vcc) .I 3/2
ASSI SSS

(28)

We now use the following commutation rule:

]. g —i[k r2 —co(k)(t+r)] if kE[k]z
[A) (0), W'q f,(rz, t+~)]= L

0 otherwise,
(29)

to rearrange the operator product in Eq. (28) and eventually to put it into normal order. We obtain

1 i f
(k"'—k).r2 —[co(k'")—co(k) ](t+v ) J +,t t I p/Pz(t, t+~)= fs~ d x) s~ d xz 6 g g (a) a), I -)e f'(k, s, r„t) f(k"',s'",r„t).

1 2

1 A A
+ y y y y (A (0)A, (0)A „-,-(0)A - -(0))

$l ktl $II kill $lll

Xfis (k,s;r„t)fq (k', s';rz, t+r)fq(k", s";rz, t+&)f (k"',s"';r„t)

Because the state of the field is the vacuum state, we have from the commutation relations
(30)
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= 3 3( Wk, (O)ak., (O)a k-, (O)g k-,,- (O) & =Skk-g„-gkk-, g, . -.+Sk,,-t' "Skk„S . „

and this allows us to rewrite Eq. (30)

3 3 1 i I(k' —k) r2 —[co(k') —co(k)](t+~) II'2(t, t+».)= fs~ d x) s~ d x2 6 g g [(a~ sk, )e ' f*(k,s;r), t).f(k', s';r), t)
1 [k]2,s [k']&,s'

(31)

+fz (k,s;r„t)f» (k', s', r2, t+r)f»(k, s;rz, t+».)f~(k', s', r), t)

+
~

f(k, s;r), t)
~ ~

f(k', s';rz, t+v)
~ ] . (32)

Our previous assumption that the interaction time At, or the propagation time through the nonlinear medium is short,
and that the down-converted light is of low intensity, makes the last two terms, which are of the fourth order in f, much
smaller than the first term, which is of the second order in f. Accordingly we now discared these smaller terms. After
replacing sums by integrals in the usual manner, and using Eq. (15) to substitute for f(k, s;r, t), we obtain

P2(t, t+»)= f d x) f d x2, f„d k f„d,k' f„„d3k"f„„, d k"'

X g (a~'ak, )(ak-, - ak-, - )Xqi(co(kp), co(k"),co(k))X„„(co(kp),co(k"'),co(k'))
st sit sill

l 1 ~ 1 ««x ~ r1».1»»» x rW r~ i[( k)'( 2 0)+( ) ( 1 0)] i[co(k")—co(k"')—co(k')+co(k)]t —i[co(k') —t)(I(k)]7e

(i/2)[cu(k()) ro(k) —m(k —)]i)t "—(i/2)[cu(ko) —ro(k') —co(k"')]At sinI z [~«p) —~«) —~«")]«I
Xe e

—,
'

[co(kp) —co(k) —co(k" )]

sin[ —,
'

[co(kp) —co(k') —co(k'")]ht I 3 sin[ —,
'

(kp —k —k")~l~] 3 sin[ 2 (kp —k —k ' )~l~]
—,
'

[co(kp) —co(k') —co(k'")] ~ =) —,
'

(kp —k —k")~ ~ =) —,
'

(kp —k' —k'")~
(33)

k+k"=kp=k'+k",
co(k)+co(k")=co(kp) =co(k')+co(k"') .

(34a)

(34b)

Now let us suppose that the two detectors 1 and 2 are so
arranged that the wave vectors k~ and k2 to which they
respond, and on which the sets [k"]),[k'"], and [k]2,[k']z
are centered, are conjugate, in the sense that k& and k2
satisfy the index-matching conditions

k) +kg ——kp,

co(k) )+co(k2) =co(k()) .

(35a)

(35b)

Then k, k' under the integral in Eq. (33) differ from k2

Once again we note that, because of the various sine
factors, the dominant contributions to the four k integrals
come from those wave vectors k, k', k", and k'" that are
close to satisfying the index-matching or energy- and
momentum-conserving conditions

k' —k=—q2,
k«' —k"=—q),

(36a)

(36b)

where q~, q2 are small compared with any optical wave
number, and we write

co(k') =co(k) +qp. u(k),
co(k"') =co(k")+q) u(k"),

(37a)

(37b)

in terms of the group velocities u(k) and u(k"), as before.
After reexpressing the sine factors as space and time in-

tegrals as in Eq. (25) above, we obtain from Eq. (33),

I

only by terms of order of the response band of detector 2,
and k",k"' differ from k) only by terms of the same or-
der. We may therefore replace k' by k and k"' by k" in
those factors in Eq. (33) like af .ak, , X»~, and T„'„, that
vary only slowly with k', k"'. In the remaining factors we
make the substitution

~,(t,t+~)= ' f d'x, f d'x, ' „f„d'k f„d'k" f„d'q, f d'q,

X Q Xi(iic(ok)p, c(ok), c(o' k))X„„~(co(kp),co(k),co(k"))T~i(k,s;k",s")Tg„(k,s;k",s")Vt" V~
$~$

f iq [r& —r0—r"—u(k")(t —t")]X, d3r „d3y«dt dt-e 1 1 0

11 /2 &x' & I ) /2 —I ) /2 & X & I
&
/2 0 0

—I&/2 &y" &12/2
—13/3 &z' & 13/2 13 /2 &s"& 13 /2

iqz'[&2 —&0—&"—&(k)(i+~—i")] i[~(kp) —~(k) —m(k")](t' —t") i(k —k —k") (r'+r")
Xe e e (3&)
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The integrations over q, and q2 would yield 5' '(r& —rp —r"—u(k")(t —t")) and 5 (r2 —rp —r"—u(k)(t+r —t")),
respectively, if the ranges of q~, q2 were infinite. Actually the range of q~ is only of order b,k~ (m = 1,2), because of the
limited ranges of k, k', k", and k'". Nevertheless, the integration may be treated as effectively yielding a 5 function, if,
for almost all values of the arguments,

~
r& —rp —r"—u(k")(t —t")

~
&&1/bk~,

~
r2 rp —r"—u(k)(t+r t")—

( » 1/bk2

and if the remainder of the integrand behaves as a slowly varying test function with respect to r~, rz, r",k",t" when r&, r2,
r", u(k")t", and u(k)t" vary by an amount of order 1/b, k. These conditions will be satisfied if the passband hk is large
enough, as it usually is in practice. We are then justified in writing 5 functions for the q~ and q2 integrals. Also we have
the general 5-function product relation

f „dr"g(r")5' '(r"—a)5' '(r"—b)=5' '(a —b)g(a)U(a~ l&, 12,13), (39)
—12/2 &37 & 12/2
—13/2(z (13/2

where U(a
~

l&, 12,13) is the unit step function defined by Eq. (25). When this is applied to Eq. (38) we obtain

P2(t, t+r)= f, d'x, f, d x2 f„d k f„d„k"

X g X,jt(co(kp), co(k),co(k"))X„, (cp(kp), co(k), co(k") )TJ (k,s;k",s")T„"„(k,s;k",s")V~' V
$,$

X f dt' f dt" f, , d r'5' '(r2 —r) —u(k)(t+r —t")+u(k")(t —t"))
—12/2 (y' & 12/2
—13/2 (z' & 13/2

i[co(ko) —co(k) —m(k")](t' —t") i(ko —k —k") [r& —ro+r' —u(k")(t —t")]
XU(r~ —rp —u(k )(t —t ) ~1],12,13)e ' e (40)

The three-dimensional r' integration and the t' integration
yield a product of four sine functions, which were the
basis for the approximate relations (34) above. Recalling
that u(k) =Ku and u(k") =K"u, let us suppose that the lo-
cations of the two detectors and the time t are so chosen
that r2p —rp ——»2ut, r~p —rp ——K~ut, where k~, k2 satisfy the
index-matching conditions (35), and rtp, r2p are the mid-
points of the volumes 5P ~,5F"2. In other words, the
detectors are placed so as to pick out conjugate photon
pairs from the signal and idler. The integration of the 5
function over r2 will yield unity only if the volume of in-
tegration 5P 2 is large enough to accommodate all possi-
ble values of the vector

r&+ u(k)(t+ r—t")—u(k")(t t") . —
If r& —r~p=5r~, r2 —r2p=—5', the necessary condition can
be written

5r2 —5r~ —(K —»2)ut+ (K"—K, )ut+ (K K')ut" Kur=—O. —
(41)

Now (»—»2 (
& —,

' b,82, (
K"—K&

~

& ,' b, O&, where 58& and—
682 are the angular ranges of the wave vectors to which
detectors 2 and 1 respond, and

~

K —K
~
=8, the angle be-

tween the conjugate k~ and k2 vectors. Hence

I

jugate idler wave vectors k lying within an angle
582-1/k21&. If Eq. (41) is to hold, and if detector 1 has
an aperture of linear dimensions b.Ot ut in the plane con-
taining the vectors k~, k2, then detector 2 needs an aper-
ture of size (68~+582)ut+813 in the same plane.

The geometric significance of this requirement can be
understood by reference to Fig. 1. If a signal wave mak-
ing an angle 8~ with the pump beam is conjugate to an
idler wave making an angle —82 (with 8~-82), then signal
waves within angles 8&+ —,

' (68&+8&13/ut) are conjugate to
idler waves within 82+ —,'(582+b8, +8,13/ut). Because
of the crystal length 13 these waves at distance ut spread
to cover a transverse width

(582+58)+8/13/ut)ut+8213 (b 8~+582)u——t+813, (43)

b8~ut

ector 1

ector 2

i
(K ' —Ki)ut

i
& —,b, O& ut,

~

(K—K2)ut
~

& 2 b,82 ut

~

(» K")ut"
~

&O—u bt =81, .

(42)

b82ut
b8~ut

Because of the finite size of the nonlinear medium, for a
given signal wave vector k" there is a whole range of con-

FIG. 1. The geometry of the two-photon detection experi-
ment.
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where 8=8) + 82. The condition 5x2) (b,8)+582)ut
+813 is therefore necessary to ensure that detector 2
responds to all wave vectors which are conjugate to wave
vectors to which detector 1 responds. In addition, for Eq.
(41) to be satisfied it is necessary that the longitudinal

I

range of 5r2 is no less than 5r) —)ru~, or the resolving
time interval 5t2 of detector 2 is no less than 5t, +'T.
When v.=0 this merely requires 5tz to be no less than 5t&.
If these conditions are satisfied, then we obtain from Eq.
(40) after integration over r', t', and r2, with v=0,

P2(t, t)=
2 f d x) f d k f[ „] d k" QX~)(o)(ko), o)(k),(o(k"))

XX„„((o(ko),co(k),co(k" ) )TJ (k,s;k",s") T„'„(k,s;k",s") Vt* V

i(Q —k —k").[r& —ro —a"u(t t —]("[m(Q)—co(k) —co(k")][()/2)ht —t"]dt" e ef U(r) ro a"u—(t ——t")
~
l), l2, l3)

m=1

sin[T~(ko —k —k ') l ] sinI —,
'

[o)(ko)—o)(k) —o)(k )]bt I

—,
' (k,—k —k" ) —,

' [~(ko) —~(k) —~(k")]
(44)

It is interesting to compare P2(t, t) given above with the
one-photon detection probability P, (t) given by Eq. (27).
Although the k integration in Eq. (27) appears to be unre-
stricted in range, whereas the k integration in Eq. (44) is
limited to the set [k]2, i.e., to a small range b.k about the
vector k2 that characterizes the photodetector 2, the dis-
tinction is really illusory. For, because of the sine factors,
the vectors k, k' in Eq. (27) are connected so that

k=k, —k'+0—1

l
(45a)

o)(k) =to(ko) —co(k')+ O
1

At
(45b)

P, (t, t) =P, (t), (46)

or the two-photon detection probability is exactly equal to
the one-photon probability. In other words, every signal
photon emitted in one direction in the process of down
conversion is accompanied by an idler photon emitted in
the conjugate direction, with the relevant two wave vec-
tors connected by the index-matching conditions (35).
The frequencies of the two conjugate photons are deter-
mined partly by the two directions of propagation, and
they may differ substantially. The effective equahty of
P)(t) and P2(t, t) has been confirmed in photon counting
experiments, ' ' when due allowance is made for the
quantum and collection efficiencies of the detectors.

If the passband b,k is as large as or larger than 1/l, then k
differs from ko —k) by a vector whose length is no greater
than LN, and co(k) differs from o)(ko) —co(k() only by a
term of order b,k/u. The integral over k therefore has an
effective range b,k which is centered on k2 —=ko —k), and
we could have imposed the restriction [k]2 on the k in-
tegral in Eq. (27) With this substitution we have

I

suggests that the two-photon correlation time T, may be
governed by practical considerations involving the photo-
detectors, rather than by fundamental properties of the
pumping light or the nonlinear medium.

For another approach to the variation of P2 ( t, t +r)
with r we return to Eq. (38), and we observe that the ~
dependence is carried entirely by the factor

lq2 U(k)7

under the integral. As we have taken u to be virtually
constant with frequency, the correlation time is governed
by the effective range of q2.+ under the integral. Now

q2 =—k —k', and from Eq. (33) k and k' both belong to the
set [k]2 and therefore differ only by b,k. Hence the range
of P2(t, t+v ), or the two-photon correlation time T„has
a lower limit of order I/ubk=l/bc@, where hco is the
bandwidth of the detector field. So long as the resolving
time 5t of the detectors exceeds I/b, co, T, is governed by
5t. But if 5t falls below I/Ato then I/b, co provides the
range on the time interval within which the signal and
idler photons can be detected. We see that it is really an
instrumental limit, rather than one determined by the na-
ture of the incident pumping light or of the nonlinear
medium.

VI. DISCUSSION

We have shown that when the positions and apertures
of the two photodetectors are properly chosen, so that the
detectors capture the conjugate signal and idler photons,
then the joint two-photon detection probability equals the
one-photon detection probability, provided that the quan-
tum detection efficiencies are both 100%. If the detection
efficiencies a),az are less than 100%, then P) (t) has to be
multiplied by a), and P2(t, t+r) by a)a2, so that

P, (t, t+r) =a,P, (t) . (47)
V. TWO- TIME CORRELATIONS

In connection with the derivation of Eq. (41) and the
subsequent discussion we have already seen that
P2(t, t+~) begins to fall from its maximum value once r
exceeds the resolution limit 5t of detectors 1 and 2. This

This has been confirmed in the original, ' and also in the
more recent, experiments, and is consistent with the idea
that the signal and idler photons are always created to-
gether from a single-pump photon. It suggests the possi-
bility of using the two down-converted photons in order
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to discriminate against background in an optical corn-
munication channel.

The correlation time T, within which the two down-
converted photons show up is obviously an important
quantity. We have seen that T, has nothing to do with
the bandwidth of the incident pump field, which was ac-
tually taken to be zero in our calculation. While the
pump bandwidth determines the time uncertainty of an
incoming (pump) photon, it does not affect the relative
time separation between the signal and idler photons. T,
is ultimately limited by the acceptance bandwidth of the
down-converted light, which is generally governed by
practical considerations, but can be exceedingly short. In
particular, T, can be shorter than the propagation time b, t

through the nonlinear medium. This conclusion is also
consistent with recent measurements, in which T, was
found to be below 150 psec, and limited by the transit
time spread of the photodetector, when the propagation
time At was close to 400 psec. However, there appears
to be no fundamental reason why T, cannot be in the sub-
picosecond range. The process of parametric down con-
version therefore provides us with a highly correlated
photon pair with extremely small time separation.
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