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Phase conjugation in liquid suspensions of microspheres in the diffusive limit
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We examine phase conjugation via degenerate four-wave mixing in liquid suspensions of micro-
spheres in the small-field limit, where saturation effects can be ignored. For these media, electro-
strictive forces modulate the microparticle density in such a way that two orthogonal spatial grat-
ings are created. Coherent scattering of the pump radiation from these two gratings gives rise to the
formation of a conjugate wave, as well as arnplification of the probe wave. We discuss the steady-
state and transient characteristics of the probe and conjugate waves in this regime where the dynam-
ics of the microparticles is governed by diffusion.

I. INTRODUCTION

Phase conjugation has recently attracted considerable
interest in the nonlinear-optics community. ' Numerous
fundamental and applied investigations have underscored
the scientific significance and potential device applica-
tions of this class of phenomena. For example, phase con-
jugation has been observed in a variety. of atomic and
molecular gases, several liquids, and a large number of
solids. Furthermore, various approaches to phase conju-
gation, i.e., degenerate four-wave mixing, three-wave
mixing, and stimulated scattering' have been extensively
examined in steady-state, and for some cases, transient sit-
uations. " Finally, numerous theoretical and experimental
investigations regarding device applications of phase con-
jugation in the fields of aberration compensation, ' photo-
lithography, ' and spatial information processing' have
been undertaken.

One class of media which we find particularly interest-
ing, and which is the subject of this paper„ is artificial
dielectrics; in particular, liquid' and gaseous suspen-
sions' of microparticles. For these media, nonlinear opti-
cal phenomena arise from a variety of electrostrictive
mechanisms' which may alter the density, orientation, '

size or shape of the microparticles. In turn, these altera-
tions give rise to changes in the index of refraction of the
suspension and, hence, to nonlinear optical effects such as
phase conjugation. For example, if a liquid suspension of
nonabsorbing microspheres is irradiated with laser light,
electrostrictive forces will modulate the particulate densi-
ty. So long as the index of refraction of the microparti-
cles differs from that of the host fluid, the refractive in-
dex of the entire suspension will be spatially modulated by
the laser radiation. Furthermore, because the particulates
are nearly macroscopic in size, i.e., on the order of several
hundred to several thousand angstroms, they are extreme-
ly polarizable, and this gives rise to unusually large non-
linear optical coefficients. In addition, such media will be
relatively slow in comparison to typical atomic media,
since nonlinear effects arise from the redistribution of the
particulate density in a viscous medium. Note, too, that
for these media, resonant processes are not usually expect-
ed to play a significant role in the generation of conjugate
waves.

Recently, Smith et al. ' have reported some very in-
teresting experimental work in which they observed de-
generate four-wave mixing in a medium composed of a
liquid suspension of microparticles. In their experiments,
they measured the efficiency and response time for the
production of conjugate waves by an aqueous suspension
of 1000-A latex spheres irradiated by an Ar+ laser emit-
ting on the 0.5145-pm line. This paper has been motivat-
ed, in part, by these developments. Thus, our interest is to
give a theoretical formulation of phase conjugation via de-
generate four-wave mixing in a liquid suspension of mi-
crospheres whose size is small compared to the radiation
wavelength. We discuss the steady-state and transient
characteristics of both the conjugate and probe waves in
the nondepleted pump approximation. We assume that
the electrostrictive forces are sufficiently weak that only a
small fraction of the microparticles are involved in four-
wave mixing, so that there are no saturation effects. This
implies that if U denotes the electrostrictive potential and
T the temperature, then we consider only effects of order
UlkT in the microparticle density. Note that we are not
necessarily limited to the small-signal regime with regard
to the conjugate wave, since within the same approxima-
tion, it is still possible to have

where tc is the four-wave-mixing coefficient and I. is the
interaction length.

In Sec. II we develop the fundamental equations which
describe degenerate four-wave mixing in liquid suspen-
sions of microspheres. Section III is devoted to the'
steady-state case where we.discuss the polarization and ef-
ficiency of both the conjugate and probe waves. Time-
dependent situations are discussed in Sec. IV. In particu-
lar, we examine the transient behavior of the medium as it
is driven from one state to another by electromagnetic ra-
diation. More precisely, we study the evolution to a
steady state from the initial thermal equilibrium state of a
uniform microparticle density. Finally, in Sec. V we sum-
marize our results and discuss our conclusions.

II. FORMULATION

For convenience, we consider a liquid suspension of
identical, nonabsorbing microspheres of radius a, which
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are irradiated by three external laser beams of frequency
co: two counterpropagating pump waves and a probe
wave, as depicted in Fig. 1. If E(r, t) denotes the total ra-
diation field, the microparticles will each feel an electros-
trictive force F(r, t) given by' '

ical content of Eq. (2.4). The first two terms on the
right-hand side of the Chandrasekhar equation are identi-
cal to the corresponding terms that appear in the
Boltzmann equation. However, in place of the collision
term that appears in the Boltzmann equation

F(r, t)= ,'a(a)—)VE (r, t), (2.1)
(2.6)

where the overbar implies a time average over many opti-
cal periods and the radiation wavelength A, g&a. In Eq.
(2.1), the quantity a(co) is the polarizability at the laser
frequency which is given by

e„(co)—1
a(~) =e„(co) " a'. (2.2)

G„CO +2

Here, ep, (co) is the frequency-dependent dielectric constant
of the host liquid and e„(co) is the ratio of the dielectric
constant of the microparticle to el, (co). Since V
XF(r, t)=0, it follows that the microparticles are im-
mersed in an electrostrictive potential U(r, t) given by

U(r, t)= ——,a(co)E (r, t), (2.3)

=u V„f+ F V„f+p V„(fu)+ V„fQ Q I
(2.4)

where r(u) denotes the microparticle position (velocity)
and V„(V„)is the corresponding vector derivative opera-
tor. The coefficient p is defined by

p= 6nva /m, (2.5)

where v is the viscosity of the liquid, m the mass of the
microparticles, and T the temperature.

Before proceeding, it is worth commenting on the phys-

and consequently will tend to move to regions where
U(r, t) is smallest. If e„~ 1, this corresponds to regions
where the field intensity is greatest; whereas if e, & 1, this
corresponds to regions where the field intensity is at a
minimum. Thus, the microparticle density n(r, t) will be
modulated by electrostrictive forces, and we now consider
techniques for calculating n (r, t)

Since the microparticles are suspended in a liquid, dif-
fusion assumes an important role in their dynamics. Ac-
cordingly, we begin with the Chandrasekhar equation'
for the distribution function f(r, u; t)

where fo is the equilibrium distribution and ~, the col-
lisional relaxation time, the Chandrasekhar equation has
the terms

P[V„.(uf)+(kT/m)V„f] =0 . (2.7)

The solution of Eq. (2.7) is the well-known Maxwell-
Boltzmann distribution function,

' 3/2

f(u)= exp
mu
2kT

(2.8)

For our purposes, we do not require detailed informa-
tion regarding the microparticle velocity distribution. In
particular, the polarization of the medium is determined
by the microparticle density

n(r, t)= f d3u f(r,u;t) . (2.9)

Consequently, we should like to extract a dynamic equa-
tion for the microparticle density from the Chandrasekhar
equation. To do so, it is necessary to make some assump-
tion regarding the behavior of the microparticle velocity
distribution. On physical grounds, we anticipate that the
velocity of the microparticles should approach equilibri-
um with the surrounding host fluid regardless of the state
of the microparticle density. This arises because the velo-
city distribution of the microparticles is governed by col-
lisions with the fluid molecules and therefore should relax
rapidly to thermodynamic equilibrium. To estimate the
space and time scales over which this happens, we note
that from the coefficients p and kT/m, one can construct
the following temporal and spatial scales:

P[V„(fu)+(kT/m)V„f]
which represent relaxation of the velocity distribution due
to diffusion processes. Note that in thermodynamic
equilibrium with F=O, f=f(u) only and Eq. (2.4) be-
comes

E WAVE

m

6nva
1/2

(2.10a)

(2.10b)

PUMP
WAVE

LIQUID SUSPENSION OF IVIICROSPHERES

PUMP
WAVE

FIG. 1. Basic geometry of phase conjugation via degenerate
four-wave mixing.

where u is the thermal velocity. These scales should
govern the basic times and lengths over which the micro-
particle velocity distribution will relax. If F(r, t) varies
slowly over these scales and for times long compared to ~,
we can assume that the microparticle velocity distribution
is near thermodynamic equilibrium with the surrounding
fluid (which is maintained at a temperature T). Thus, we
take the distribution to be slowly perturbed only in the
space and time coordinates and write
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f(, ; )=
3/2

e
—mu2/2kTn (r t) (2.11)

Bn F(r, t)=DV Vn(r, t) —' n(r, t)
Bt

(2.12)

where D is the diffusion coefficient for microspheres in a
liquid, i.e.,

Inserting Eq. (2.11) into the Chandrasekhar equation, we
obtain

P(r, t) =a(co)n (r)E(r, t) . (3.1)

In Eq. (3.1), n (r) is the steady-state solution of Eq. (2.12)
which is

(3.2)
e —U(, r)/kT

3 —U(r)/kT1' e

where X is the total number of microparticles and U(r) is
given by Eq. (2.3). In the weak-field limit, where the elec-
trostrictive potential is small compared to kT, one can ex-
pand in powers of UlkT, and Eq. (3.4) reduces to

kT
6mva

(2.13) n(r)=no 1— U(r)
kT

(3.3)

Equation (2.12) is the Planck-Nernst equation for the mi-
croparticle density and the quantity in the large
parentheses times the diffusion coefficient is the micro-
particle flux J(r, t).

Finally, we evaluate the magnitude of ~ and l and there-
by obtain an estimate of the space and time scales over
which the Planck-Nernst equation is valid. As a specific
case in point, we consider 1000-A latex microspheres
suspended in water at room temperature. For this system,
the microparticle mass density is on the order of 1 g/cm
and

~=2y10-' s,
l =6X 10 ' cm .

For our purposes, we shaH be concerned with time scales
no shorter than microseconds and length scales which are
greater than a few tenths of a micrometer, so that Eq.
(2.12) should be suitable.

III. STEADY-STATE CHARACTERISTICS

In this section we examine the steady-state characteris-
tics of the conjugate wave generated via electrostrictive
forces acting on a liquid suspension of nonabsorbing mi-
crospheres. Consequently, we require the nonlinear polar-
ization P NL(r, t) that is associated with phase conjugation.
We can calculate this quantity by first noting that the to-
tal polarization vector for a suspension of identical micro-
particles in an electromagnetic field E(r, t) is

Q COP NL(r, t) =no [E (r, t) (E (r, t) —) ]E(r, t) .
2kT

(3.4)

To make further progress, we must specify E(r, t). If
we neglect the contribution due to Rayleigh scattering,

E(r, t) = g ej(r)eje ' ' +c.c. ,
j=1,2,p, c

(3.5)

where j = 1,2 refers to the counterpropagating pump
beams, j =p the probe wave, and j=c the conjugate
wave. The quantities ej(r) are the complex field ampli-
tudes, eJ the normalized polarization vectors, coj the laser
frequencies, and kJ the corresponding wave vectors. In
the fully degenerate case,

coj ——co for j=1,2,p, c,
k1 ———k2—=K,
kp= —k. =Q .

(3.6a)

(3.6b)

(3.6c)

Now, the probe and conjugate waves vary as e' '+—~",
and it follows that only those terms in Eq. (3.4) with the
same phasors will contribute to the production of a conju-
gate wave. Collecting these terms, we find for the com-
ponent of a third-order polarization of interest, PNL(r, t),

where the angular brackets imply a spatial average over
the volume containing the microparticles and no is the
microparticle density in the absence of electrostrictive
forces. Inserting Eq. (3.3) into Eq. (3.1), using Eq. (2.3),
and extracting the third-order polarization, we have

P NL(r, t) =
2

E2E~ [( ~ e)) +( ~. 2)e)]e'"'+ "+c.
2

no E)E2E,[(e*, e) )e2+(e,*.ez)e)]e'"' )"+c.c.

2

no E,[E)(e ) e, )e)+E2(e 2 e, )e2]e' ' &"+c.c.

2

no E~[E)(e ) e~)e)+Ez(e z.e, )e2]e' '+ "+c.c. (3.7)

where we have ignored the phase of the pump waves. The
last two terms in Eq. (3.7) affect only the phases of the
conjugate and probe waves as they propagate through the

I

nonlinear medium. Accordingly, interest focuses on the
first and second terms which can be written in the follow-
ing form:
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2—no [(E~.E,*)Ez+(Ez'E;)E)]
2kT

a co—no
k

[(E) E~ )Ez+(Ez E )Ez]2kT

where the overbars imply a time average over several opti-
cal periods. Note that no terms of the form

a con—o [(E(.Ez)E,*+(E~ Ez)E*,)2kT

have been included. At first glance, this might appear
somewhat unusual as terms of this form, without the time
average, generally appear as two-photon resonances in
atomic, molecular, or solid-state media in which conjugate
waves are generated via virtual transitions to various
quantum states. To see why, we note that

E& Ez ——2E&Ez Re[(e& ez)e ' '+(e~.ez)e '"'] . (3.8)

If we now construct (E& Ez)E,*, we find that only the
second term in Eq. (3.8) gives rise to a conjugate wave.
However, the microparticles cannot respond to this force
as it oscillates at an optical frequency and therefore will
vanish upon time averaging. Consequently, no term of
the form (E~ Ez)E, appears in the nonlinear polarization
for a medium composed of a suspension of microparticles.

To obtain a more detailed understanding of the physical
content of Eq. (3.7), we construct the perturbed micropar-
ticle distribution, 5n(r) that generates conjugate waves.
In particular, the microparticle distribution is perturbed
by electrostrictive forces in such a way that two different
spatial gratings, with periods A+ =2m. /

~

K+Q ~, are
formed. Since K =Q, these two spatial gratings are
orthogonal to each other and we can write the perturbed
microparticle distribution as

5n(x y)= no — Re[ E~E (e, e*)exp(2ni x/A )+EzE&(ez ez) exp( 2miy/—A+)P P

+E~E,'(e~.e*, ) exp(2niy/A+)+EzE, (eze, ) exp( 2nix—/A )] . (3.9)

Here, x and y are coordinates along the directions defined
by K—Q and K+Q, and

A+(8) =— (3.10a)
2 cos(8/2)

2 sin(8/2)
(3.10b)

(3.11)

with 8 the angle between K and Q.
Next, we construct the equation for the propagation of

probe and conjugate waves in steady-state situations. We
begin with the Maxwell equations and following the usual
procedure, we have

where the polarization P(r, t) contains a linear as well as a
nonlinear piece. The linear term describes Rayleigh
scattering due to the presence of the microparticles, as
well as the fact that the speed of light in the medium is U.

If we approximate the scattering contribution as a simple
loss, we have

T

1 8
v2 c)t2

(3.12)

where X"= ,'L, ' and L, '=8m—/3azno(2ma/A)4 is the
extinction coefficient. ' Note that this approach does not
treat multiple scattering and therefore is valid only for di-
lute media. Next, we insert Eqs. (3.5)—(3.7) into Eq.
(3.12) and we obtain

n co E]E2
(2iQ V+iaQ)e, (r, t)e, = noa(co—)Q [(ez e~)ez+(e. z.ez)e&]ez(r, t)

2kT

a(co)E)Ez z E) „Ez
noa(co) — Q (e ]. )ee]+ (e z e, )ez e, (r t),

2kT E2
' E(

z a(co)E~Ez
( 2i Q V+—iaQ).e (r, t)e = —noa(co)QP ' P 2kT [(e ', e $ )ez+ (e ', .ez )e $ ]e*,(r, t)

I

a(co )E) Ez
noa(co)—

2kT Q [(E~/Ez)(e ~ ez)e&+(Ez/E, )(e z e~)ez]e~(r, t) .

(3.13a)

(3.13b)

Equations (3.13) are first-order coupled vector differential
equations for the polarization vectors and complex ampli-
tudes of the probe and conjugate waves. To obtain a
greater appreciation of the physical content of these equa-
tions, we first consider the case in which there are no
scattering losses and the pump amplitudes, which we
denote by E, are equal. Then,

iz e, (z)e, =is—[(ez.e~)ez+(ez e )e&z] z(ze),
ck

is e~(z)e—z is f (e ', e& )ez+ ——(e, .ez )e .
& ]e,(z),dz

(3.14a)

(3.14b)
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where

a(co)EK= —,
' noa(co)Q (3.15)

e, (z) =e, (z)e

ez (z) =ez (z)e'"',
(3.16a)

(3.16b)

and will confine ourselves to e, (z) and e' (z). To solve
Eqs. (3.14), it is convenient to introduce two orthonormal
vectors, a& and a2, defined by

The second term on the left-hand side of Eqs. (3.14) alters
the phase, but not-the amplitudes of the probe and conju-
gate waves. Accordingly, we set

ri =tan (KL) (3.22)

of the conjugate wave can exceed Eo. Physically, one can
understand this as follows. Via electrostrictive forces, a
pump wave and the probe wave drive the microparticles
into a spatial grating which scatters the other pump wave
in such a manner as to form a conjugate wave. Similarly,
the conjugate wave and one of the pump beams create a
spatial grating which scatters the other pump wave into
the probe wave. Thus, in particulate suspensions, the con-
jugate wave is generated and the probe wave is amplified
by coherent scattering of laser radiation by electrostric-
tively generated spatial gratings.

The efficiency for generating conjugate waves is

- (ei +e2)
&2

aq= (e& —e2) .~2
Then

(e~.a&)a& —(e~ az)az

I

2+ *.
I

2)1/2

and Eqs. (3.13) reduce to the standard form

d &c= — &c ~

dz

where

(3.17a)

(3.17b)

(3.18)

(3.19a)

(3.19b)

K=0.1I/T cm (3.23)

where I is the laser intensity in W/cm and the tempera-
ture is in kelvin. Thus, for an interaction length of 1 cm
KL =1 for a laser power of 0.8 kW/cm2 at 80 K. This
corresponds to an efficiency of 245%. Note that if the
suspension is placed in a Fabry-Perot cavity with a cavity
Q =L, /L =100 for the present case, pump powers on the
order of 1 W/cm will yield values of KL=1. The probe
amplification f is given by

which can easily exceed unity. As a specific example, we
consider a suspension of 1000-A ZnSe spheres maintained
in liquid N2 at 80 K, irradiated by COz laser radiation. If
there are 1.6&10' microspheres per cm, the extinction
length due to Rayleigh scattering exceeds 60 crn and since
neither ZnSe nor liquid N2 absorb at 10.6 pm, there are no
significant losses. If the polarization vectors of all the
waves are parallel,

(3.20)

It is worth noting that despite the fact that we have treat-
ed the electrostrictive interactions only to first order in
calculating the nonlinear polarization, it is necessary to
solve Eqs. (3.19) self-consistently to all orders in K since it
is quite possible for KL —1 even if U/kT ~&1, as men-
tioned previously.

The polarization characteristics of the conjugate wave
are quite interesting, especially if the pump-wave polariza-
tion vectors are orthogonal. For example, suppose the
pump waves are linearly polarized in the x and y direc-
tions and the probe beam is right-circularly polarized.
Then the conjugate wave will be left-circularly polarized.
If the probe wave is linearly polarized at an angle 0 with
respect to one of the pump beams, the conjugate wave will
be linearly polarized at an angle 0 with respect to the oth-
er pump wave.

. To completely determine the magnitude of the conju-
gate and probe waves at any point in the medium, we
must specify the values of these fields at the end points,
i.e., z =0 and L. The standard situation is Ez(0)=EO
and E,(L)=0. For these conditions

g= [cos(KL)] =1+g . (3.24)

( ( )
cos[K(z L)]-

cos(KL)

E ( )
.E,(0) sin[K(L —z)]

cos(KL )

(3.21a)

(3.2 lb)

Note that the probe wave is amplified and the magnitude

If the polarization vectors of the pump waves are orthogo-
nal and the probe wave is parallel to one beam, then, as
noted above, the conjugate wave's polarization will be
parallel to the second pump wave and KL=0.071(I/T)

2.4—

2.0—

1.6—

1.2—

0.8—

0.4—

00 ~ ~~ l I I I I I

0 1 2 3 4 5 6 7 8 9 10
I/T

FIG. 2. Efficiency for the generation of conjugate waves in
liquid suspensions of microspheres as a function of I/T for the
cases in which the pump waves have parallel (solid) and orthog-
onal (dashed) polarizations. For the situation depicted, a density
of 1.6 && 10' cm 1000-A microparticles are irradiated by
CO2-laser radiation at 10.6 pm.
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[&2e s
( 1/2L )2]1/2 (3.26)

which reduces to Eq. (3.22) in the limit that L,~oo.
Furthermore, the ratio of the probe intensity at the exit
point to the initial intensity, i.e., g', is

(2x'L, )

[2a'L, cos(x'L )+sin(a'L )]
(3.27)

which reduces to Eq. (3.24) in the limit L,~ ao. Figure 3
depicts the efficiency and probe amplification as a func-
tion of I!Tfor 1000-A microspheres irradiated by a DF
laser emitting on the 3.8-pm line. For the case depicted,
the interaction length L = —,L, with L, =2.91 cm.

Finally, we consider the possibility of achieving oscilla-
tion in liquid suspensions of microspheres. In the limit
that L,~ oo, this occurs whenever

aL =(n + —, )m, n =0, +1,+2, . . . (3.28)

i.e., both g and g~ ao as «L~(n + , )nT—yp.i.cal operat-
ing conditions for which one might hope to achieve gain
for the medium described by Eq. (3.22) are (IL /T) =5m.
For an interaction length of 1 cm with T =80 K, oscilla-
tion should occur for pump powers on the order of 1.256
kW/cm . This should be contrasted with atomic and
molecular gases, e.g., CS2, which typically requires hun-

2.0

for the same parameters as Eq. (3.23). The phase conju-
gate efficiency for these two cases are depicted in Fig. 2 as
a function of I/T.

Next, we consider the influence of scattering losses on
phase conjugation in liquid suspensions of microspheres.
In Appendix A, it is shown that the efficiency for generat-
ing conjugate waves is

4a L, e 'tan (a'L)
'9=

~ 2
(3.25)

[2~'L, +tan(a'L )]
where

dreds of MW/cm to achieve oscillation. Thus electro-
strictive modulation of microparticles seems potentially to
be far more efficient in generating conjugate waves than
approaches based on virtual quantum transitions in atom-
ic or molecular media.

IV. NON-STEADY-STATE CHARACTERISTICS

In this section we examine four-wave mixing in liquid
suspensions of rnicrospheres for certain non-steady-state
conditions in the weak-field limit. Specifically, in (4.1),
we examine the evolution to steady-state from the initial
thermal equilibrium state of a uniform microparticle den-
sity for the case xL «1. In (4.2), we study the situation
in which aL —1. For this case, the conjugate and probe
fields interact with each other through the microparticles,
and one must formulate the problem self-consistently.

Pl =no

to the final state

(4.1a)

U(r)n(r)=no 1—
kT (4.1b)

and how this change is reflected in the nonlinear electro-
dynamics of the suspension.

The Nernst-Planck equation is

=DV' n — V (Fn) .
Bt

In the small-signal regime, we may set

n (r, t)=no[1+p(r, t)],

(4.2)

(4.3)

where p(r, t) is of the order U/kT« l. Thus, in this
limit

A. Evolution to steady state in the small-signal regime

We are concerned with the transient behavior of the mi-
croparticle density in the small-signal regime as it evolves
from the initial state

1.8—

1.6—

Bp 2 D(x
Bt 2kT

=DV p+ V E (r, t) . (4.4)

1.4—

1.0—

0.8—

0.2—

0.0 I ~~ 1 I ) I

1 2 3 4 5 6 7
I/T

8 9 10

FIG. 3. Efficiency for the generation of conjugate waves
(dashed) and amplification of the probe wave (solid) in liquid
suspensions of microspheres as a function of I/T for the cases
in which the pump waves have parallel polarizations. For the
situation depicted, a density of 0.55 & 10' cm 1000-A micro-
particles are irradiated by DF radiation at 3.8 pm.

Next, we note that the components of the electrostrictive
force that are of interest to us depend upon the magni-
tudes of both the probe and conjugate waves. Now, in the
small-signal regime where

scL &&1,

we can neglect intensity changes in the probe wave and ig-
nore the presence of the conjugate wave. In that case, the
source term on the right-hand side of Eq. (4.4) is indepen-
dent of time and can readily be integrated. However, if
aL —1, there will be a significant i.ncrease of energy in the
probe and conjugate waves and as a result, the electro-
strictive force will vary in time. For this case, one must
supplement Eq (4A) wit.h equations which govern the
time evolution of the probe and conjugate waves, i.e., the
time-dependent analog of Eqs. (3.14). This shall be done
in Sec. IVB.
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As noted above, in the small-signal regime, we may ig-
nore the conjugate wave and treat the pump and probe
fields in the nondepleted wave approximation. To further
simplify matters, we shall assume that L, &&L, so that we
may ignore the effects of scattering losses. Next, we note
that to first order in U/k r we may treat additively the
various electrostrictive forces which give rise to a modula-
tion of the microparticle density. Thus

p(r, t)=p, (x, t)+p, (y, t), (4.5)

a+I)Ip
p, (x,t) = 2~

ckT

where, as before, x and y are the coordinates along the
(K—Q) and (K+Q) axes. Inserting Eq. (4.S) into Eq.
(4.4), solving for p&( xt) and pz(y, t), subject to the boun-
dary condition n (r, t =0)=no, we obtain

~+ ——v =0.2 s,
0

whereas for 200-A microspheres irradiated with Nd: YAG
(yttrium aluminum garnet) light at 1.06)Ltm in pressurized
liquid N2 at 100 K with v 10 P

with shorter times possible at higher pressures. Note that
the grating arises from diffusion of the microparticles into
particular spatial locations. This should be contrasted
with the strong-field limit, to be discussed elsewhere,
where the microparticles are driven into their positions by
laser radiation.

There is another way to interpret Eqs. (4.6). Specifical-
ly, each spatial grating p)(x, t) and pz(y, t) can be inter-
preted as arising from two separate gratings which are out
of phase with one another,

-t/~ 2'X(1—e ) cos x +p(

a&Izi~
pz(y, t) = 2~

~
ez e pckT

p)(x, t)=pI"(x) —pI '(x, t),
(4.6a) where

(, )
a(I)Is, )'

p) (x):—2m
~
e) ez ~

cos(2@x/A +P&),ckT

(4.9a)

(4.9b)

—~/r+ 2~X(1—e +) cos y+Pz (4.6b)
a(I,I )'~z

p',"(x,t) =—2~
ckT

where

4K
(4.7)

(4.8a)

Here, r+ (w ) is the diffusion time for microparticles to
move a grating spacing in the x (y) directions:

1 4m D 2m. kT
2 2

A+ 3 va A+

X
~

e&.e p e '~'cos(2mx/A +(II)&) . (4.9c)

Thus, the grating p p'(x, t) is exactly out of phase with the
first; however, as time proceeds, it gradually diffuses
away, leaving only the first grating.

Next, we examine the transient behavior of the conju-
gate wave. The equation of motion for the conjugate
wave

4m D 2m

A

kT
vaA

(4.8b)

e, (z, t)
a 1a

Bz U Bt

= iK+( 1 —e + )ez +i v ( 1 —e )ep (4.10a)

Equations (4.6) describe the time evolution of the two spa-
tial gratings from the initial condition of a unifortn mi-
croparticle distribution. Note that the different polariza-
tion dependence, i.e.,

~

e&.ez
~

and
~

ez.ez ~, enables one
to examine the transient behavior of these two spatial
gratings independently, especially if the polarization of
the two pump beams are chosen to be orthogonal to each
other. Typical values for ~+ vary from tens of seconds
down to hundreds of microseconds, depending upon the
microparticle size, host viscosity, grating spacing, and
temperature.

' For example, for 1000-A microspheres
maintained in liquid Ar and irradiated by CO2-laser light
with probe and pump beams at 90', we have

e~(z, t)
1 8

Bz u Bt

where

=i I(:+(1—e + )e,*+iv (1—e )e*, , (4.10b)

a(co)E(Ez
~+ =npa((o)Q

~
e, e ~ ~

(4.11a)

a(co)E)Ez
=noa(co)Q

~
ez eP .

2kT
(4.11b)

In the small-signal regime, e& is treated as a constant and
Eq. (4.10b) is ignored. The solution to Eq. (4.10a) is then

e, (z, t) = iE&I(:+ur+—L —z L —z—t/r+ —(L —z) /v r+—e (1—e +) iEpa u~— —t /v —(L —g) /vs'—e (1—e
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iE&—~ (L —z)(1—e ) . (4.13)

By neglecting higher-order terms in Eq. (4.12), we are ig-
noring effects arising from the finite travel time of elec-
tromagnetic waves through the conjugating medium.
Since ~+ &&1./v, it is clear that the nonlinear medium will
respond to the presence of the probe field only long after
the incident radiation has traversed the medium. This
lag, which characterizes all artificial dielectrics, arises
from the fact that it takes the microparticles much longer
to traverse a spatial grating distance than for light to
propagate through the entire medium. This should be
contrasted with conjugation processes based on virtual
quantum transitions, which may occur instantaneously on
a time scale set by L /U.

The time evolution of the efficiency g(t) is given by

+) +(a L) (1—e ) (4.14)g(t)=(x+L) (1—e

which for 8=m. /2 reduces to

q( t) =(aL) [1—e ' '] (4.15a)

where r+ ——r —=~. Furthermore, the growth of the probe
wave is

In general, L —z « vs+ because U -3 && 10' cm/s,
~+ —10 —10 s and I —z —1—10 cm «U~+. Thus, we
may expand Eq. (4.12) in powers of (L z)—/Ur+ to obtain

e, (z, t) = iE&K+(L —z)(1—e +)

0.8

0.4

V
W 4

QIr
b
0r

0.0

—0.4

—0.8

B. Evolution to steady state in the large-signal regime

In this section, we examine the transient behavior of the
microspheres, as well as the probe and conjugate waves in
the large-signal regime, where &el. —1. In this regime,
there is a significant exchange of energy between the vari-
ous electromagnetic waves so that the entire system, mi-
croparticles, conjugate and probe radiation, must be treat-
ed self-consistently. However, since

—1.2 I I I I I I I I I

0.0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1.0
x/A

FIG. 5. Time evolution of the normalized spatial dependence
of the microparticle distribution 6n(x, t)/(noaEE~/2kT) over a
grating spacing for the case depicted in Fig. 4.

g(t)=1+(aL) (1—e ' ') (4.15b) UlkT « 1,
Note that Eqs. (4.14) and (4.15) are valid only for times
t &&1./U.

Figure 4 depicts the efficiency versus t/r for the gen-
eration of conjugate waves for aL =0.1. An examination
of this figure reveals that for t/r «1, q(t)-(t/r) in ac-
cord with Eq. (4.16). The efficiency approaches its
steady-state value of 1% when t-5r. Finally, Fig. 5 de-
picts the spacetime dependence of 5n(x, t). Specifically,
the spatial variation of 5n is plotted over a grating spac-
ing, i.e., 0 &x & A for the times t/r=0, 0.1, 0.5, 1.0, 5.0,
and 10. An examination of this figure reveals that micro-
particles reach steady state in a time 5~.

the electrostrictive forces are still sufficiently weak that
only a small fraction of the microspheres are involved in
phase conjugation and no saturation effects should appear
in the microparticle density.

We first note that, due to the long time lag of the mi-
croparticle response to electromagnetic waves, the non-
linear polarization PNL(r, t) is nonlocal in time. In partic-
ular, if n(r, t)=nop(r, t), then p(r, t) obeys

.010

.008

=D g e~(r, t)ez(r, t)(e;".e~)(k; —k/) e2' T
f+J

(4.16)

.008

.002

0.000 .
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

t/~

The prime in Eq. (4.16) implies that no terms involving
only the pump wives enter into the sum. Since the time
dependence of both the conjugate and probe waves is un-
known, one can only formally integrate Eq. (4.16), result-
ing in a nonlocal expression for the nonlinear polarization.

We can readily avoid these difficulties by using Laplace
transform techniques, similar to the approach taken by
Rigrod et al. " Thus, writing

p(r, t)=[f+(r, t)e +f (r, t)e ' ~"]+c.c.

FIG. 4. Efficiency for the generation of conjugate waves as a
function of t/w for the case aL =0.1 and 0=m/2. we have, for pump waves of equal magnitude

(4.17)
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+ f+(r, t) = [e,(r, t)+op(r, t)] .a(to)E
(4.18)

linear polarization are significant. Hence, we may neglect
the term (s/u)ez or by extension (1/u)(d/dt)el in the
Maxwell equations, since

In Eq. (4.18) we have ignored the effect of the spatial
dependence of the field amplitudes on the diffusion pro-
cess. As this is of order xA~ &&1, this approximation
should give rise to negligible errors.

If we allow for the time dependence of the complex am-
plitudes, the equations for e, (r, t) and ep(r, t) become

s 1
EJ(z,s) k—ej(z,s) » ej(z—,s)— ei(z, s) .

We can further simplify matters by restricting ourselves
to the case of equal grating spacing, i.e., O=n. /2. If the
probe wave is switched on at t =0, then we show in Ap-
pendix 8 that

+ t (z, t")= in pE [f+ (z, t ) +f (z, t )], (4.19a)
a 1a

Bz u dt

ep (z, t) = in p—E [f+(z, t) +f (z, t) ] .a
Bz u dt

(4.19b)

e, (z, t) =

Kz
)& exp —s

1 +S'T
(4.24a)

iEp r+'~ ds t sin[~(L —1)/(1+sr)]
2vri r —& s cos[vL /(1+sr)]

r

Equations (4.18) and (4.19) describe the transient behavior
of the conjugate and probe waves in the nondepleted
pump approximation for situations in which

r+ - ds „cos[a(L —z)/(1+sr)]
ep(z t) = . e"

2mi r —
& ~ s cos[~L /(1+sr)]

a
EJ «kCJ (J =p&C) &

Bz
(4.20a)

/cz
Q exp —i 1+sr (4.24b)

a
ez «coeJ (j =p, c) .j ' (4.20b) An examination of Eqs. (4.24) reveals that there are poles

at

Taking the Laplace transform of Eq. (4.18), we have s=0, (4.25a)

f+(z,s) = tt(CO)E/2kT
[ ( ) &&&( )]s'7++ 1

(4.21)
1

s 1+n 1(n+-, )~
n =0, +1,+2, . . . . (4.25b)

s (1/w+ -, (4.22)

where A(z, s) denotes the Laplace transform of A(z, t).
An examination of Eq. (4.21) reveals that only low-
frequency components of f+ (z,s), i.e., those which satisfy

The pole at s =0 arises from suddenly switching on the
probe field, whereas the ones at s =s„arise from the
dynamics of phase conjugation. The dynamic poles
asymptotically approach —1/w and appear at discrete
points along the interval

will contribute significantly to the formation of a spatial
grating. Inserting Eq. (4.21) into the Laplace transform
of Eq. (4.19) yields

vl1+ (s„~(— 1—
n/2 (4.26)

e, (z,s)3 s
Bz U

LK+ lK
+1+s~+ 1+s~

1——e, (z,O),

[e,(z,s)+e'(z, s)]

(4.23a)

Note that so long as aL &m/2, all of the singularities lie
to the left of s =0+. If KL &m/2, then at least one of
these poles lies to the right of s =0+ and the system is

8 s e (z,s)
az u

8= ——1 + 8= ——1

lK+ lK
+1+$7+ 1+$% [e,(z,s)pep(z, s)]

8 T 8=0

——ep(Z, O) . (4.23b)

Next, we simplify Eqs. (4.23) by recalling that due to the
diffusive character of the transient response of the micro-
spheres, only the low-frequency components of the non- FICx. 6. Bromwich contour in the complex s plane.
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unstable in the sense that the wave grows exponentially in
time (at least in the nondepleted pump approximation).
Closing the Bromwich contour in the left-hand-side s
plane, as depicted in Fig. 6, and noting that the residues
A„of [cos(«/1+s„r)] ' are w'e have

( —1)"vL

[(n + ,' )—m]r.
(4.27)

s;„[~(L z)], P[« /r)/( + —, )~—i (n + ,' )~z—/L]
e, (z, t) =i' e '"' «e- cos[(n + —,

' )n.z/ L]cos(«) „~ [(~+ 2 ~]2[1

(4.28a)

cos[L (L z)) . xP[«(t/r)/(n + ,
' )m—i-(—n + ,

' )re/—L]
eq(z, t) =Eq sin[(n + ,' )mz/L]—.

[(n + —,
' m. ] [1 «/(n —+ —,

'
)m]

Finally, the efficiency for generating conjugate waves is

(4.28b)

expI [«/(n + 2 )m](tlat) I
ri( t) = tan(kL) —e '~' g, «

„[(n+ —,
'

)n ] «(n —+ —,
' m.]

E. /

(4.29a)

whereas the amplification of the pump wave is

g( r) =1+g'(t) . (4.29b)

An examination of Eqs. (4.29) reveals that they reduce to
their corresponding values in small-signal regime when
xI. &&1. Furthermore, if t ~~&

2

so that the larger the nonlinear mixing parameter, the
longer it takes for the medium to achieve steady state
(provided electrostrictive forces are still sufficiently weak
that U « kT). Furthermore, as sL ~rr/2 from below,

2

g(r)~ 1

(n. /2)(1 2« lrr)—

g(t)~1+ xI t
4

q(r)~ (rlr)xI. (4.30a)

(4.30b)

~I.
X l+ exp — 1—

m/2

2

m/2

(4.33a)

as is demonstrated in Appendix B. Next, we consider the
behavior of the probe and conjugate waves in the limit
r »r. Thenif «, & m/2, the leading terms are

ri(r)~ tan(«)+ xI
(n./2) (1 2«/m)—

g(r) 1+ 1

(~/2)(1 —2«/m )

Xexp

2

n/2
(4.31a)

]&I. mr t
X . 1+ — exp — 1—

m/2 m/2

(4.33b)

xIg'(r)~1+ tan(«)+
(m/2)

X exp[ —(1 2« /m)t /r]— .
(1 2~L/~)—

(1 2« ln )— (4.32)

(4.31b)

Equations (4.31) assert that the probe and conjugate waves
achieve their steady-state values on a time scale set by

so that the probe and conjugate waves become very in-

tense and the time to achieve steady state ~~ ~~~. Note
that these equations are unstable in the sense that they do
not achieve steady state in the limit that «exceeds m/2.
Instead, the probe and conjugate waves grow exponential-

ly without bound. This difficulty arises from and reflects
the fact that we have neglected saturation effects in our
treatment of phase conjugation for these media. Specifi-
cally, we have restricted ourselves to the nondepleted

pump approximation and, in addition, have included only
terms of order (U/k'r) in determining the influence of
electrostrictive forces on the microparticle density.
Hence, our results are valid only if 5n «no. However, if
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FIG. 7. Time evolution of the efficiency for the case ~L =
2 . FIG. 8. Time evolution of the efficiency for the case ~L =1.

the conjugate and probe waves grow too large, this will be
no longer be the case, and Eqs. (4.29) are no longer valid.

Figure 7 depicts the time evolution of the efficiency for
the case ~L = —,'. Here, the response time ~z ——1.47~ and

q achieves a steady-state value of 29.8%. An examination
of this figure reveals that the efficiency varies as (t/r)
for t «r and approaches its steady-state value exponen-
tially for t »r, in accord with Eqs. (4.30) and (4.31).

Figure 8 depicts the time evolution of the efficiency for

aL =1. Here, the response time ~~ ——2.75~ so that steady
state is not achieved until a time ~-8~. The overall
behavior of the efficiency for this case is similar to that
depicted in Fig. 7, except that it takes longer to achieve
steady state and the efficiency is generally larger at any
given time.

Next, we focus our attention on the behavior of the mi-
croparticle distribution. Thus, combining Eqs. (4.17),
(4.21), and (4.24), we have

a(co)EE~
5n(x, t)= noRe exp2kT

2@ix ~+' ~ ds exp(st) . al.
I —

& tan
A ~—I ~ 2mi s~ 1+s~ 1+s~ (4.34)

The first term in the intergrand of Eq. (4.34) is just the
small-signal result and represents the response of the mi-
croparticle density to the initial probe wave. The second
term arises from the presence of the conjugate wave.
Note that this term is 3m/2 out of phase with respect to
the first term. This implies that the spatial grating pat-
tern impressed on the microparticles will not be in phase
with the probe wave due to the presence of the conjugate
wave. Furthermore, since the conjugate wave is growing
in time, the spatial distribution itself will shift in the sense

l

that the position of the zeros and nodes of 5n(x, t) will
change in time.

In Appendix C we evaluate the integral in Eq. (4.34)
and find

aEEp
5n (x, t) = —,

'
no

X I (1—e '~') cos(2mx /A)

+ ['g (t)+A(t)] sin(2'/A) I, (4.35)
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FICx. 9. Time evolution of the normalized spatial dependence
of the microparticle dlstllbutlon 58(x s) j(PlocxEE&/2kT) over a
grating spacing for the case ~L =

2 .

FIG. 10. Time evolution of the normalized spatial depen-
dence of the microparticle distribution 5n (x, t)/(noaEE~/2kT)
over a grating spacing for the case ~L = 1.
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where A,(t) is a well-behaved function which is specified in
Appendix C. The first term in Eq. (4.35) is the linear
response of the microparticle to the probe wave, ' whereas
the second represents further adjustments of the micro-
particle distribution due to the presence of the conjugate
wave, as well as amplification of the probe wave. Note
that if xL «1, Eq. (4.35) reduces to the small-signal re-
gime, i.e., Eqs. (4.9). Furthermore, for t «r

uEEp
5n (x,t)~ ,' no ——cos(2mx/A),

kT
(4.36)

i.e., the microparticles are initially in phase with the probe
field since the conjugate wave has not had sufficient time
to influence matters. For t »r,

EE~(L)
5n (x,t)~ 'no — cos(2~x/A ~L),

kT
(4.37)

where Ez(L) is the amplitude of the probe wave as it exits
the medium.

Figure 9 depicts the behavior of 5n (x, t) over one spa-
tial grating distance for the case aL = —,

' . Note the change
in positions of the zeros and nodes at different times.
Note too that steady state is reached on the same time
scale as the probe and conjugate waves, as expected, since
they will adiabatically follow the microparticle distribu-
tion. Finally, Fig. 10 depicts 5n (x, t) for the case ~L = 1.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have examined degenerate four-wave
mixing in liquid suspensions of microspheres which are
operating in the diffusive limit. For these media, electro-
strictive forces modulate the microparticle density in such
a way that two spatial gratings, which are orthogonal to
each other, are created. Phase conjugate waves are gen-
erated via coherent scattering of pump radiation off of
these two gratings. For these media, the four-wave-
mixing coefficient tends to be fairly large with a broad,
nonresonant bandwidth, provided the radiation does not
lie within an absorption band of the suspension. In addi-
tion, the response times for these media are relatively
slow. These properties, in turn, arise from and reflect the
manner in which the microparticle gratings are set up, as
well as their interaction with electromagnetic radiation.
To underscore the physical content of this research, we
contrast degenerate four-wave mixing in electrostrictive
media to media in which such processes are achieved via
virtual quantum transitions, e.g., typical atomic or molec-
ular gases.

We first recall degenerate four-wave mixing in typical
gases, e.g., CS2 or Na vapor. In such media, the phase of
the transition electric dipole moment of the atom or mole-
cule is controlled by the incident laser radiation via virtual
quantum processes, as discussed in Ref. 2. The time scale
for this process to be achieved is on the order of the Rabi
flopping time, which is typically on the order of
nanoseconds down to picoseconds, depending upon laser
power and system. The spatial gratings which give rise to
the generation of conjugate waves consist of an ordered
collection of phased dipoles, the particular ordering being
determined by the incident radiation. The time scale for

this to occur is just the sum of the transit time of light
plus the Rabi flopping time. If the interaction length is I
cm, the transit time for a typical gas will be 33 ps. Thus,
typical response times for generating conjugate waves in
atomic or molecular gases will vary from tens of pi-
coseconds to nanoseconds. Note that the formation of
these gratings does not involve the motion of the individu-
al atoms or molecules, but rather occurs via a particular
ordering of the phases of the atomic wave functions. This
should be contrasted to liquid suspensions of microspheres
in which the spatial gratings are set up by electrostrictive
modulation of the microparticle density. As discussed ex-
tensively in Sec. IV, the temporal response for these sys-
tems is dominated by the dynamics of the particulate
motion which in the limit treated here is diffusive. Since
the time it takes to reorder the phase of an atomic wave
function is much less than the time required for a micro-
particle to diffuse a grating spacing, it immediately fol-
lows that the response time for processes based on virtual
quantum transitions is much shorter than those involving
motion based on electrostrictive forces.

The frequency dependence of the four-wave-mixing
coefficient also sharply delineates the fundamental differ-
ences between suspensions and gases. In suspensions, elec-
trostrictive forces, as well as the nonlinear polarizability,
arise from coherent scattering processes which set up the
spatial grating, generate the conjugate wave and amplify
the probe wave. For such processes, the radiation fre-
quency enters into the problem via the microparticle's po-
larizability. In particular, if the radiation wavelength is
large compared to the microparticle dimensions, the fre-
quency will enter into the four-wave-mixing coefficient
only through the dielectric constants of the constituents.
Thus, so long as we are in the Rayleigh regime and not
too close to an absorption band of these constituents, the
nonlinear mixing coefficients for suspensions should de-
pend only weakly on frequency. In contrast, media which
generate conjugate waves via virtual quantum transitions
will exhibit a sharp frequency dependence. This feature
arises from the fact that virtual processes give rise to ener-
gy denominators in nonlinear optical susceptibilities
which are strongly dependent on frequency. Furthermore,
atomic media may exhibit two-photon resonances which
greatly enhance the size of the nonlinear susceptibility for
degenerate four-wave mixing. However, such processes
do not occur in electrostrictive media and, in fact, as not-
ed in Sec. III, make no contribution to sc.

Next we contrast the size of the nonlinear susceptibili-
ties associated with degenerate four-wave mixing for elec-
trostrictive and atomic processes. For electrostrictive pro-
cesses,

+(3) A Q
2 6

micro

whereas for an atom
4

&(3) p
(fiQ)

where p is the transition electric dipole moment and Q the
difference in the laser and transition frequency. Typical-
ly, p-eao and for nonresonant situations AQ-e /ao,



31 PHASE CONJUGATION IN LIQUID SUSPENSIONS OF MICROSPHERES. . . 2387

where ao is the Bohr radius and e the electric charge.
Hence,

6
Qp

atom
e i'ap

Since a »ao and kT«e /ao, it is easy to see why
. Table I summarizes the above discussion.

Next we comment on the range of parameters for the
suspension to remain in the diffusive regime. As noted in
Sec. IV, the grating formation time is the time required
for a microparticle to diffuse a grating spacing, i.e.,

The physical content of Eq. (5.4) is the following: The
probe wave initially sets up a grating which coherently
scatters the pump radiation to generate a conjugate wave.
However, since sL is fairly large, the resultant conjugate
wave will be of the same order of magnitude as the probe
field. Consequently, it will, in turn, interact with the mi-
croparticles to modify the spatial grating. Since the con-
jugate wave is 3n./2 out of phase with the probe wave,
there will be some readjustment of the microparticle dis-
tribution which will increase the time it takes to attain
steady state.

2m. kT
@aA

(5.1)
APPENDIX A: INFLUENCE

OF RAYLEIGH SCATTERING
ON PHASE CONJUGATION

4aEEp
TF

3a vA
(5.2}

If, instead, the microparticle's dynamics are governed en-
tirely by the electromagnetic forces, then Smith et al.
have shown'

In this appendix we examine the infiuence of Rayleigh
scattering on phase conjugation and derive Eqs. (3.25) and
(3.27). We begin by noting that due to Rayleigh scatter-
ing, the pump amplitudes are functions of position, and
following Yariv and Pepper, we have

Clearly, the suspension will be in the diffusive regime if
'PD g+7F, or

E&(z) =a~(0) exp( —az/2),

E2(z) =@2(L)exp[ —a(L —z)/2]

(Ala)

(A lb)
+EEL

(&l (5 3)

'r

1 2aL /m— (5.4)

In turn, Eq. (5.3) implies that only a small fraction of the
microparticles be involved in phase conjugation, i.e.,
5n «no and, therefore, that there are no saturation ef-
fects. We note that the observations of Smith et al. '5

were in the regime where U&kT, so that no direct com-
parisons appear possible.

Another interesting feature of liquid suspensions in the
diffusive regime is that the time to achieve steady state in-
creases with aL, as discussed in Sec. IV. In particular, if
aL & n./2, the diffusion time ~ is replaced by

so that E~(z)Ez(z) is independent of z. The relevant
equations are

8+a,"'(z)=iaaf' ' (z)+ia[o+(z)et "(z)+o (z)e,' '(z)],

(A2a)

6+@,' '(z}= ia'ez ' (z}+i—a[cr (z)e,"'(z)+sr+(z)e,' '(z)],

(A2b)

e&"(z)=use', '*(z)+is[a+(z)ez '(z)+o (z)ez '(z)],
(A2c)

e~ '(z) = i~e,' '*(z)+—is[or (z)e~"(z)+cr+(z)e~ '(z)],

(A2d)

TABLE I. Comparison of degenerate four-wave mixing in liquid suspensions to an atomic vapor.

Property

Mechanism for the
generation of
conjugate waves

Suspension of microspheres

Electrostrictive
modulation of the
microparticle density

Atomic gas

Electromagnetic ordering
of the phases of the
atomic wave functions

Response time

Nonlinear suscepti-

bility (per particle)

Diffusive A2/D

kT

Rabi flopping time A/pe

6
Qo

(nonresonant)
e /ao

Resonance behavior

Frequency dependence
of rc

None

Broadband, provided no
significant absorption
occurs

Strong

Narrow
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where the superscripts refer to the components of the con-
jugate and probe waves along the a& and az directions.
Furthermore, the quantities W+ and o.+ are defined by

cos[~(L —z)/(1+sr)];„,~~ ~+„~ „0Gp(Z, S)=
cos[~L /(1+sr) ]

(84b)

&+=+ +
dz aL,

Ef (z)+E2(z)
e, (0)e2(L )

(A3a)

(A3b)

which satisfies the appropriate boundary conditions at
z =0 and L. To make further progress, it is necessary to
carry out the inverse Laplace transform of Eqs. (84). In
particular

The terms involving o+(z) can be treated in a fashion
similar to the approach used in Eqs. (3.24) with ~ replaced
by

z
a~le I dz'cr+(z')

in the phase factors. Although the o. (z) terms give rise
to a coupling between the two different polarizations, it
does not affect the properties of the conjugate wave, ex-
cept for a phase term:

l r+I oo

e, (z, t) = — ds e"e,(z,s),
2m

r+l oo

e~{z,t) = — ds e "e~(z,s),r —l co

where y lies to the right of the poles of e, (z,s) and
ep(z, s).

Next, we derive Eqs. (4.30) by noting that for tlr « 1,
the efficiency can be written as

2IrL, cos[a'(L —z) ]+sin[~'(L —z) ]
Ep(z) =Eo

2~'L, cos(~'L ) +sin(lr'L )

2aL, sin[v'(L —z)]E,(z) = iEoe-
2a''L cos(a'L ) +sin(~'L )

(A5a)

(A5b)

ri( t) = tan(aL)

[(n+ —,
'

)m] [1 ~L/(n +——, )m]
2

APPENDIX B: PROPERTIES OF THE PROBE
AND CONJUGATE WAVES

IN THE STRONG-SIGNAL REGIME

The relevant equations are

8 iK
e, (z,s) = [e,(z,s)+@~(z,s)],

Bz ' ' 1+s~

e~(z,s)= [e, (z,s)+ez(z, s)] .
()z ~ 1+s~

(8 la)

(8 lb)

Now,

KX
tan

4

00 X

~ (2n —1) (x/2)
(87a)

(87b)

Defining G, (z,s) and G~ {z,s) by
T

e~(z,s) =G, (z,s) exp — z
1 +S'T

(82a)

Inserting Eqs. (87) into Eq. (86) yields Eq. (4.30).

APPENDIX C: TIME EVOLUTION
OF THE MICROPARTICLE DISTRIBUTIONS

ez(z, s)=G&(z,s) exp — z
1+s~

we have

G, (z,s) = G~ (z,s),
Bz 1+$%

(82b)

(83a)

In this appendix, we derive Eq. (4.35). Rewriting the
integral in Eq. (4.34) as

&+' ds exp(st)
r —I ~ 2~i s~ 1+s~

G&(z,s) = G, (z,s) .
Bz 1+st (83b) X 1 —i tan

xL
1+st' (Cl)

Solving Eqs. (4.26) for G, (z,s) and Gz(z, s), using Eq.
(83) yields

. sin[z(L —z) /(

1+sr�)

];„,~~ ~+, ~ „
cos[I~L /(1+sr)]

(84a)

I(t) =(i —e '~') i [ri'~ (t)+A(t—)],
where

(C2)

we have poles at s =0, —1/r, and —(1/r')[1+~L /
( n + —, )~]. Carrying out the integral yields

A,(t)= lim tan
y —+f

00 ~L exp{[aL /(n + —, )m.](t/r) ] -t/~
„[{n+ —,

'
)rr] {1 [~L/(r r')]/(n +——,

' )~I— (C3)

The function A(t) vanishes in the limits t~0 and t~10 and is convergent everywhere. Inserting Eq. (C2) into Eq. (4.34)
yields Eq. (4.35).
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