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Reflection limitation by driven stimulated Brillouin rescattering
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Driven stimulated Brillouin rescattering, obtained by a multiline laser light, each satellite line

downshifted by twice the acoustic frequency, is an efficient way to reduce stimulated Brillouin re-
flection [C. Mantes, Phys. Rev. Lett. SO, 1129 (1983)]. An explicit reflection formula for two input
lines depleting in a finite, homogeneous plasma slab —in the heavy ion-damping limit —is obtained
which generalizes Tang s formula for one single input line. F nite spectral interaction of narrow in-

put lines with broad backscattered spectra are considered by solving numerically the nonlinear
integro-differential ion-Compton equations. The results are compared to those obtained by a single
wide-bandwidth input spectrum.

I. INTRODUCTION

In laser-plasma interaction experiments on inertial
fusion devices, where a long-scale-length plasma sur-
rounds the target, ' or in the propagation of laser signals
through a long optical fiber, stimulated Brillouin back-
scattering (SBS) may be an important problem, since it is
capable of reflecting a large fraction of the laser energy.
Among several already proposed mechanisms for limiting
SBS, the author has recently suggested to use suitable
multiline input spectra where the separation between the
lines resonantly forces or drives stimulated Brillouin re-
scattering. Indeed, if the plasma or the nonlinear optical
medium is stationary, the parametric instability between
the incident laser wave I& of frequency co& and wave vec-
tor' k& and the forward-traveling ion-acoustic wave I,+ of
frequency co, + ——k, +c, and wave vector k, =2k„drives a
backscattered downshifted wave I2 of frequency
co2 ——~& —co, + and wave vector k2 ——k& —k, +. An addi-
tional input satellite line I3(co2——co~ —2co, ), twice co,
downshifted with respect to I„may interact with the
once co, downshifted backscattered light I2(co2 ——co& —co, )

by the symmetric three-wave parametric interaction with
the backward-traveling acoustic wave I, (co3 ——co2

cl) k3 —k2 k, ). This rescattering process enhances
I3 due to the repeated reflection of I

&
. In a finite medi-

um of length L, small values of the satellite on the main
input intensity rate I3/I~, I are enough for the repeated re-
flection of a large fraction of the light intensity and there-
fore a strong reduction of reflection loss. The separation
between the lines could be greater if the same mechanism
is applied to an inhomogeneous and supersonic flowing
plasma. Natural rescattering of the single-pump pulse
has already been investigated, but it is not an effective
process for small noise levels because the rescattered wave
must grow from a small amplitude noise as it propagates
in the direction of decreasing backscattered intensity.

This mechanism, due to specific spectral separation be-
tween the lines is different from the classical multiline in-

put spectrum effect, ' ' where the difference between
the frequencies must be simply greater than the Brillouin
backscatter growth rate y in order to interact each line in-
dependently of the other. Here, assuming strong damping
of the ion-acoustic waves, we shall consider a four EM
mode model for the evolution of the pump intensities I]
and I3 and of the backward stimulated intensities I2 and
I4. The steady state is analytically solved and an explicit
formula for the reflection coefficient R is exhibited which
generalizes Tang's formula" for only one pump intensity.
The coherent model may be directly derived from the
complete set of coherent equations for the electric fields
E; herein called the "weak coupling case" [y &(c, /c)co,
where c, is the ion-acoustic velocity]. In the opposite sit-
uation, [y ~~(c, /c)co, ] which we call the "strong cou-
pling case,"we conclude that the derivation of the intensi-
ty equations is only justified within the random-phase ap-
proximation for the fields, even if very recent numerical
results of the dynamical evolution of the complete
coherent set of equations seem to show similar stationary
regimes (cf. comments in Appendix B). In the heavy ion-
damping limit we shall consider here" (y, )co„'
ZT, —T; ), the SBS parametric instability is convective'
and merges to stimulated ion-Compton scattering. ' '
The backscattered radiation which was downshifted by
the acoustic frequency

~s =kss

=k, [(2k/ T, +3kgTg )Im;(1+k,'&D)]' '
becomes now downshifted by the ion-Doppler width

AcoD 2(k~T;/m;c )' c——oL,

where coL 2rrc/elis the——pump f, requency and the back-
scatter growth rate is given by ' '
y=10 n, i,l P;[IL I(1 W/cm )]/[T;/(1 eV)],
where
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being the electron and ion susceptibilities. Finite
spectral interaction of narrow input lines with broad back-
scattered spectra are considered in the frame of nonlinear
ion-Compton scattering. The limitation of reflection is
somewhat decreased but the. qualitative effect still
remains. Finally, these driven stimulated Brillouin rescat-
tering results are compared to those obtained by the input
of a broad spectrum of the same intensity. Finite
spectral-bandwidth (5co) interaction increases the gain
length and has been proposed as an efficient mechanism
for limiting SBS in long-scale-subcritical plas-
mas. ' ' ' ' Thomson' has considered a broad-
bandwidth effect (5co »y) as an important stabilizing ef-
fect for both absolute and convective instabilities. Start-
ing from the coherent equations and within the linear
parametric approximation for backscattering, he has
modeled the bandwidth by a Kubo-Anderson process and
exhibits thresholds and growth rates in order to stabilize
SRS (stimulated Raman scattering) and SBS in laser-
fusion experiments. His model is only valid for 5co»y,
where y is the growth rate and cannot describe situations
of moderate spectral bandwidth 5to (y, which are those
considered here. His conclusion is that a relative band-
width 5'/coL of few percent is necessary in order to stabi-
lize stimulated reflection. Here, I solve numerically the
stimulated ion-Compton integro-differential equations
governing nonlocal spectral interaction and nonlinear
pump depletion —regardless of the specific spreading
mechanism —and I show that moderate spectral band-
widths are enough to significantly lower stimulated reflec-
tion, the limitation being important for Lo-y, -hmD,
where hcoD is the ion-Doppler width.

II. INTENSITY MODEL EQUATIONS

We consider a finite, one-dimensional, homogeneous
plasma slab of length L. A forward high-frequency elec-
tromagnetic pump wave E ~ (k ~, co ~ ) decays parametri-
cally into a forward-traveling ion-acoustic wave
E,+ ~(k, + ~,co, + ~) and a backscattered electromagnetic
wave E2(k2 ———(k& —k, +&),coz ——co& —co, +&) and exhibits
pump depletion. In the case of damped acoustic waves,
this well-known three-wave interaction has already been
considered"' and the equations analytically integrated in
the heavy ion-damping limit. ' Now, we allow further de-

cay. The backscattered wave Eq may interact with the
driven electromagnetic pump wave E3(k3 — (k2
—k, ),co3 —co2 co ) and a backward-traveling ion-
acoustic wave E, (k, ,co, ) by the symmetric three-
wave process. Finally, since the intensity of the satellite
pump wave E3 may be high enough to overcome thresh-
old, it can also be depleted into a backscattered elec-
tromagnetic wave E4(k4. ———(k3 k +2) co4 —co3 cog+2)
and a forward-traveling ion-acoustic wave
E, +2(k, +2,co, +2). The three-wave equations are readily
generalized to cover the present six-wave interaction' '
(8, +CO„+y))E) —— KE2—E,+,
(B,+C,B„+y,)E, +

(2)

K [E]E2 +E3E4exp[i bco(t —x/c, )]j, (3)

(8, —CB~+y2)E2 K"(E——(E,*+ E3E, —),
(8, —C, B~+y, )E, =KE2E3,
(3, +CO„+y3)E3

=K [E2E,* EqE, +ex—p[ i b co(t —x lc2—)]j,
(8, —cB„+y4)Eq K*E3E,*——+ exp[i b co(t x lc, )—],

(4)

(5)

(6)

co ] cop = (k )
—k 2 )c =cog + ]=kg + y cg

k, +(——k)+k2=2k((1 —c, /c),
k i —k2 ——2k

& (c, /c)(1 —c, /c),
co2 —co3——(k2 —k3 )c =co, =kg cg

k, =kz+k3-2k'(1 —3c, /c),
k2 k3 —2k ~ (c, /c)( 1 —3c, /c)

co3
—

co4
——(k3 k4)c =co, +q ——k, +2c»

k, +2
——k3+ kg —2k ( (1—5c, /c ),

k3 —'k4 ——2k&(c, /c)(1 —Sc, /c) .

(8)

(9)

(10)

(12)

(13)

(14)

(15)

(16)

The forward-traveling ion-acoustic wave is driven by the
ponderomotive potential resulting from the beat between
E& and E2 and between E3 and E4,

where K is the coupling constant' ' and h~ is the fre-
quency mismatch obtained from the resonant relations be-
tween the electric fields E; ~ exp[i(kjx cojt)], —
j=s +1,s —,s +2, 1,2, 3,4:

E, + E,+ ~exp[i (k——,+ ~x —co, + &t)]+E,+2exp[i(k, +qx ~, +2t)]

=exp[2ik&(1 c, lc)(x c,t)] tE—,+&+E,—+&exp[i bee(t —x lc, )]j

where b.co is obtained from relations (8), (9), (14), and (15)

hco=cog+) —co, +2
——8k)c, IC=4(cg/c)co, , (18)

co, being the mean ion-acoustic frequency.
In the heavy ion-damping limit (y, )

~
8, +C,B„~ -y)

and nondamped EM waves (y; =O,i =1,4) Eq. (3) yields

E,+ (K*/y, )[E&E2 +E3E4exp——(ig)],

where P = b,co( t —x /c, ). The characteristic evolution
time for the field amplitudes E; is given by
y= ~KE~

~ ~ y, . In the weak coupling case (.b,co&y) the
forward-traveling ion-acoustic wave E,+ can be shared
into two well-separated waves E, +& and E,+2, respective-
ly driven by (E&,E2) and (E3,E4), since the acoustic fre-
quencies co, +~ and co, +2 are distinct. Instead of Eq. (3)
for E,+ we can write two equations for E,+& and E,+2,
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E,+ i
——(K*/y, )E i Ep,

E,+2 (K—*/y, )E3E&exp(iP),

(20)

(21)

and an equation for the backward-traveling acoustic field

E, = (K/y, )E2E3 . (22)

(8, —cB„)I2——I2(I) I3), —

(a, +ca„)I,=I,(I, I,), —

(a, ca„)I„=I—,I, .

(24)

(25)

(26)

In the strong coupling case (Aco «y), as we shall see,
Eqs. (23)—(26) are only justified by additional assump-
tions on fast phase variation of the fields. Note that if E4
is negligible, small Eqs. (2)—(7) in the heavy ion-damping
limit directly lead to the Volterra system of equations for

I

Substituting Eqs. (20) and (22) into Eqs. (2) and (4) and
Eqs. (21) and (22) into Eqs. (6) and (7), and multiplying by
the respective complex conjugate amplitudes, we obtain
four coupling Volterra equations for the intensities
I; =(2/y, )

~

KE; ~, namely,

(a, +ca„)I,= I,'I, , — (23)

dI ) /dx = I,I2-,
dI2/dx =I2(I3 I( ),—
dI3/dx =I3(I2 I4),
dI4/dx = —I3I4,

have invariants

I, (x)—I2(x)+I3(x)—I4(x) =D,
I) (x)I3(x)+I2(x)Ig(x) I, (x)I4—(x)= (D/2) —Cp,

(27)

(28)

(29)

(30)

(31)

(32)

and can be analytically integrated yielding the solutions

I&, I2, and I3 without restrictions. Numerical computa-
tion of the evolution equations (23)—(26) for two pumps
I& and I3 depleting into a homogeneous plasma slab of
length L, with transparent boundaries, shows that the sta-
tionary regime is rapidly attained after a short time-
dependent transiency of a few damped oscillations of
period r=2L/c (photon transit time). For partially re-
flective boundaries a feedback mechanism may produce
strongly oscillatory regimes leading even to optical
chaos. 20 The steady-state equations (putting c =1):

[(D/2) —C2]exp(Dx/2)sinh[C2(x +C~ )]Ii(x) =
C3 +exp(Dx /2 ) I (D /2)sinh[C2(x +C, ) ]—Czcosh[C2 (x +C& ) ] I

I2(x) =I& (x)—D/2 —C2coth[Cz(x + C~ )],
I3(x)= C2/II2(x)sinh [C2(x +C, )] I

I4(x) =II (x) —I2(x)+I3(x) D, —

(33)

(34)

(35)

(36)

I2 (0)+I4 (0)R(L)=
I)(0)+I2(L)+I3(0)+I4(L) (37)

will be a function of the input intensities I~(0) and I3(0)
for given noise I2(L) and I4(L) and a given depth L, gen-
eralizing Tang's formula"

where D, C&, C2, and C3 are four integration constants
which can be expressed as functions of the four boundary
conditions: I, (0), Iq(L), I3(0), and I4(L). The solutions
(33)—(36) are plotted in Fig. 1 for a given length L and a
given rate of the satellite intensity over main input inten-
sity a =I3(0)/I~(0) =0.2. The main input line intensity
I~(x) exhibits pump depletion during its forward propa-
gation through the plasma slab, as follows from Eq. (27).
The depleted intensity enhances the backscattered line
I2(x) which grows in the backward direction starting with
the noise intensity I2(L)=I& at x =L. However, the for-
ward propagating satellite I3(x) shows convective ampli-
fication as follows from Eq. (29). Part of the backscat-
tered intensity I2 is reflected again by this driven rescat-
tering process. I3(x) stimulates also some backscattered
intensity I4(x) starting from I4(L) =I&. The result is an
increase of the transmissivity with respect to the single-
backscattering process. The reflection coefficient defined
by

exp[(1 —R )LI, (0)]R (L)=
[I((0)/I2(L)](1—R)+1 (38)

IN / l)(0) = 5~10; L/x =25

~ ~~ ~

I4 ""'-""..

0

~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ + ~ ~ ~ ~ ~ ~ 0 ~ Oe 0 ~

X

FIG. 1. Stationary solutions of the four EM mode model for
the intensities. Spatial distribution in the plasma slab of length
L of the incident pump intensity I~ depleted into the stimulated
backscattered intensity I2. The driven rescattered pump intensi-
ty I3 exhibits convective amplification during its forward propa-
gation and stimulated again the backscattered intensity I4.

for single stimulated backscattering (I3 ——I4 ——0). From
definitions,



31 REFLECTION LIMITATION BY DRIVEN STIMULATED. . . 2369

X=cp,
Y=Cz(x+C)) .

Equation (37) may be written

R(L)=1- D +I2(L)+I4(L)
It (0)+I2(L ) +Is (0)+I4(L )

(39)

(40)

(41)

1.0
I„/I, = S.1O-4

Q=30

[in the following we shall put I&=I~(0), Iz—=I2(L),
I3=I3( 0), and I4 =I4(L ) which are the boundary known
parameters], where

20

D/2=I ) —X[Y+ (X/Is )( Y —1)] (42)

and where Y= Y(X,L) is one analytic solution (see Ap-
pendix A) of the fourth-order algebraic equation

4

g a„Y"=0,
n=0

with coefficients

(43)

ap ——1,
a

& 2d+Is—/—X,
az ——(1+Is/I2)(d —1)+Is[3d —(It +I4)/X]/X,
a 3 —(Ig /X) [ 1 +2d 2d (I) +Ie ) /—X]—2d

a& ——(Is/X)[ X(1 d)/I2-
+d d(I ) +I4—)/X] —d

where d =cothXI. , and where X is determined by the
equation

I)I2IpI4 X (Y —1)
(d2 1)1/2

exp(DL /2) = g b„X", (44)Y+d

10

I

0.2
I I I I

0 OA 0.6
a - l,(0)/l, (0)

FIG. 2. ReAection coefficient R =(I2+I4)/(I&, +Iq) versus
the satellite on main input intensity rate a=I&(0)/I](0) for
three values of the quality factor Q (or depth L). The dashed
curve is the locus of the reflectivity minima. The main EM in-

put intensity I&(0)=IL, is kept constant over noise intensity
I&——I2(L)=I4(L), namely I&/IL, ——5 X 10

I„/I =5%10 4

the refiectivity R presents a minimum value which is con-
siderably lower than the single-scattering value (a =0).
These minima are represented by the dashed curve. In
Fig. 3, we plot the reflectivity R versus the quality factor
Q [or the depth L for a given input intensity I~(0) =IL ].
We show comparatively the steady state of the following:

with

bo =(Is —Ii )(Ii+I&),
b) ——2(I)+Iz)Y+(I) Is)(Y 1)/(—Y—+d),
b2 ——(2I)+I2 Is)( Y —1)/I—3

—2Y( Y —1)/( Y+d),
bs ——[(Y —1)/Is][( Y —1)/( Y+d)+2Y],

10
I

20
I

30
I

40

a. —

which is easily solved by Newton's method. The results
are plotted in Figs. 2 and 3. In Fig. 2 the reflection coef-
ficien R is plotted versus the two-line input ratio
a Is(0)/It(0) for three values of the "quality factor"
Q =LI~(0) which stands for the number of linear growth
lengths for SBS in a homogeneous plasma of length L,
namely, '

2
' —1

n. L tte &Ni ros 3Ti1+2i, n, n, k&T, y, ZT, n,

Here I~(0)=IL is the incident intensity at x=0 and
I2(L) =I4(L)=I~ is the intensity of the noise in the back-
scattered waves at x =L,. We have taken
Itt/IL, =SX10 . As we can see for a given ratio a &1,

10 20 30 40 50

FKs. 3. Reflectivity R versus the quality factor Q (or the
depth L) for constant main input intensity I&(0)=IL over noise
IN. Steady-state reflectivity of the following: (a) two-mode
single-scattering [Tang (Ref. 11) Eq. (38)] (solid curve); (b)
three-mode natural rescattering [Speziale et al. (Ref. 7)] (dot-
dashed curve); (c) four-mode driven rescattering, Eq. (30)
(dashed curve) for a relative sate11ite intensity
a =I&(0)/I&(0) =0.2; (d) six-mode driven rescattering, Eqs. (45)
and (46) (dotted curve) with two input satellites Iz(0) and I5(0)
satisfying I&(0)/I~(0) =I5(0)/I&(0) =0.2.
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(a) the two-mode single scattering" given by formula
(38) (solid curve);

(b) the three-mode natural rescattering where the res-
cattered light grows from the noise level I3(0)=Iiv (dot-
dashed curve), which does not differ significantly from
the single-scattering case;

(c) the four-mode driven rescattering given by formula
(41) (dashed curve) where a satellite of relative intensity
a =0.2 has been added, leading to a net reduction of the
reflectivity; and,

(d) the six-mode driven rescattering (dotted curve)
where a second satellite I&(0) has been added to first
I3(0), twice co, downshifted with respect to it, in order to
further reduce the reflectivity. Relative intensities

I3(0)/I)(0) =I5(0)/I3(0) =0.2

are sufficient to obtain this further diminution of R.
Such a three-line input spectrum has been numerically

treated by the following set of six equations

(c), +cB„)Izi i(x, t)=IzJ i(x, t)[Izj z(x, t) —Izj(x, t)],

(a, —ca„)I„(x,t) =I„(x,t)[I„,(x,t) —I„+,(x,t)],

where 2j =1=1,3,5 stands for the forward input lines and
2j=2,4,6 stands for the backscattered lines, and where
Xo ——I7 ——0 closes the system.

In the strong coupling case (b,co«y) we can put
Aco=0 in Eqs. (2)—(7), and substituting E,+ from Eq.
(19), for / =0, Eqs. (3), (4), (6), and (7) yield

(c),+cd„)E,=( fK f ly, )( E, fE
f

—EE E—'),
(~ —c~ )Ez=( I& I'/y. )[Ez( IEi I' —IE3 I')+E ElE.],
(c),+cB„)E =(

f
E

f ly, )[E3(
f
Ez

f

—
f
E4

f
) E,EzE4],—

(c) —cc) )E4=(
f
&

f
'/y, )(E&

f
E3

f
+EJEzE3)

(47)

(48)

(49)

(50)

%'e can multiply each equation by the respective corn-
plex conjugate field but the last right-hand-side terms
prevent one from obtaining the Volterra intensity, equa-
tions (23)—(26), since they couple together the amplitudes
a; and the phases pi of the fields Ei =ajexp(i'� ). In or-
der to neglect these terms we must moreover assume a ra-
pid random variation of the phases pi. Thus we rejoin the
random-phase approximation where the Volterra intensity
equations are naturally derived from the integro-
differential equations, as we shall see in Sec. III. Other-
wise, we obtain six couple equations for the amplitudes
a &, a2, a3, and a4 and for two phase functions

'P&+'P4 ('Pz+'P3) and 0 'P&+'Pz ('P3+'P4) (see +p
pendix B).

III. FINITE-BANDWIDTH
SPECTRAL INTERACTION

In the heavy ion-damping case (y, -co, ) we deal with
here, the backscattered spectra are broad (5co-y, ) and
their spectral interaction with the input narrow lines
(5co «co, ) can reduce the driven stimulated rescattering
process. In order to evaluate this effect and to compare
these multiline results to those due to a broad (5co-co, )
input spectrum, we solve the kinetic equations governing
nonlinear ion-Compton scattering. ' ' ' The couple of
integro-differential equations governing the one-
dimensional, nonlocal and nonlinear counterpropagation
of the incident photon spectrum N+(co, x, t) and the
stimulated backscattered photon spectrum N (co,x, t) are
given by'

(a, —ca„)N (~,x, t)

(co,x, t) fdco' W(co, co')N+ (co',x,t),
where

N+(co, x, t) =[+/(2%co )]B„coe'(co, t)
f
E+(k,x, t)

f

(52)

(53)

&& exp[ [(a co')/acoD lzt, — —(54)

the transition probability 8'0 being proportional to the
Thomson scattering cross section crz (8m/3)(e ——/mec )
and function of the electron and ion susceptibilities

coi'e, i 3 k —dfe, i /dvX„(co,k )= z" fd'v ", (55)
co —k 'v

by means of

3n Rcozf 'X

(2m. )3k' Ti
f
1+X,+Xi

f

(56)

where n, is the electron density, T; is the ion temperature,
and b,co& is the ion-Doppler width associated with back-
scattering

Ecole 2(2k' T; /m;c )
'~ co——. (57)

e(co,k) being the dielectric function entering the trans-
verse dispersion relation k c =co e'(co, k) and where the
interaction kernel is given by

W(co, co') = Wo[(co' co)/bcoD]—

(c), +cc)„)N (co,x, t)

=N+(co, x, t)fdco' W(co, co')N (co',x, t), (51)
Equations (51) and (52) do not take into account the ion

dynamics which has the effect of increasing the ion tem-
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ea t f e n Volterra equations

h o o d

n

N+(co) ~ +5(co—co .

j=1
CO —

CONJ i ),

10

L= 5 10; L jA= 25 (Q=20)
I I I I I l I

I2+ I4 N, &~~

I„+I, x=0

N (co) cc +5(co—conj),
j=l

(59)
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streaming spectral wings reduces the backscatter instabili-
ty growth rate. Even if in this heavy ion-damped case the
resonance width has a less precise meaning, we can physi-
cally understand the decrease of efficiency by looking at
Fig. 6. The intensity of the pump N+(co) is dispersed
over a frequency range 6co, while only that around the
maximum of N+(co) ("resonant region") is situated at the
"resonant distance b,coD/v 2" and can effectively drive

1.0 I I I I I I I I I

0 w}

-2 -1 0 1
led-4)~}/5~

FIG. 6. Vide-bandwidth spectral interaction for the single-
scattering case. Steady-state spectra for three values of the rela-
tive width p=5co/AcoD, keeping constant the Doppler width

LED which ensures the same ion temperature T; and the same
transition probability 8'0. Reflectivity values shown on each
graph.

250 50 75
L/z

FIG. 8. Reflectivity versus plasma depth L /A, or quality fac-
tor Q: single-scattering interaction (solid curves) for different
relative bandwidth p=5co/hcoD. Also plotted are the driven re-
scattering results of the two narrow (p=0. 1) line input spectrum
of Fig. 4 or the middle graph of Fig. 5 (dashed curve) and of the
three-line input spectrum of lower graph of Fig. 5 (dotted
curve).

the backscatter instability. As we can read in Fig. 6, a
small increase of the relative width p=5co/BED appreci-
ably reduces the reflectivity R. The diminution over the
range 0&p&2 is plotted in Fig. 7 for three depths L or
quality factors Q. In Fig. 8, the reflection coefficient
R =I (0)/I+(0) is plotted versus plasma depth L/A, or
quality factor Q for typical laser-plasma parameters.
From (1) the characteristic growth length of the convec-
tive instability is x, =5k, /4 for a CO2 laser-plasma in-
teraction of IL ——10' W/cm, n, = 10' cm, and
T, =T; = 1 keV. The single-scattering interaction is
represented by the solid curves for different values of
p=5colhcoD. We also plot in Fig. 8 the driven rescatter-
ing results of the two narrow (p=0. 1) line input spectrum
of Fig. 4 or the middle graph of Fig. 5 (dashed curve) and
those due to the three-line input spectrum of the lower
graph of Fig. 5 (dotted curve). As we can infer, for p && 1,
we rejoin Thomson's result. '

IV. CONCLUSION

0
I

1
5~/Qmo

FIG. 7. Finite-bandwidth spectral interaction: reflectivity R
versus relative bandwidth p=&o/AcoD for the single-scattering
case.

Both, driven stimulated rescattering and finite-
bandwidth spectral interaction are candidate mechanisms
for limiting reflection due to convective stimulated Bril-
louin backscattering from long-scale-length plasmas' or
from long nonlinear optical media in the heavy-ion
damping case. However, the second spectral shape seems
more efficient inasmuch as moderate spectral bandwidths
lead to the same result as an additional 20% intensity on a
twice co, downshifted satellite line. It will depend on the
physical situation that one mechanism is preferable to the
other. In laser-fusion experiments, it seems more feasible
to input a wide-bandwidth spectrum even if the flowing of
inhomogeneous plasma renders the separation between the
lines of the multicomponent spectrum less stringent and
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therefore the multiline input spectrum more attractive.
When the goal is to transmit narrow signals by means of
optical fibers or another optical material, driven stimulat-
ed rescattering by the addition of satellite lines seems an
interesting mechanism. to increase the transmissivity.
Spreading of the input spectrum into two or many peaks
may be obtained by self-phase modulation of the single in-
put spectrum through an optical material with an
intensity-dependent refractive index. The frequency
shift depends on the input intensity and on the pulse dura-
tion.

a=g+g+g', b=g(g —g),
and c =gg yield

a+g ——1 2 b

2

a+ /'+—
2

and where u =P is the solution of the cubic equation

u +2au +(a —4c)u b=—0 (A4)
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APPENDIX A

The fourth-order algebraic equation (43) may be
transformed into the following equation without cubic
term

which may be solved by standard methods after putting

p =2a

q =a —4c,
= —b

A = —,'(3q —p ),
B=—,', (2p —9pq+27r) .

We look for the real root

Z +aZ +bZ+c=0

where the coefficients are given by

(A 1)

(A2)

u = )u+ pu——=g
3

where
' 1/2 1/3

B B
2 4 27

(A5)

3 2a=a2 —8a1,
1 1 3b =a3 ——,a1a2+ —,a1,

8
Q2=

2

1/2 1/3
B
4 27

I 1 2 3 2
C =a4 —

4 a1a3+ —,6 a2a1 —», a1 .

Now, Eq. (Al) may be factorized into a product of two
quadratic equations

Z'+ aZ'+ bZ+ c =(Z'+ gZ+ q)(Z' gZ+ g)—

Substituting g, g, and g into (A3) we obtain four solutions
for Z, but the physical one is given by

(A6)

and from (A2)

where

=0, (A3)
F=Z—

APPENDIX B

By defining

(
~
IC

~
i~y, )EJ =ajexp(ig~), (81)

(82)

(83)

(84)

where aj are the real amplitudes and Ipj are the phases, the system of equations (47)—(50) for the complex fields E~ yield

(8, +cB„)a~exp(iIp~) =—aqa~exp(iIp~) a2a3a4ex—p[i(q&2+qr3 Ip4)],

(8, —cB„)a2exp(iIp2) = (a ~
—a 3 )a2exp(iIp~)+a ~ a3a4exp[~ (Ip~+Ip4 —q 3)]

(I), +cB„)a3exp(iIp3)= (a 2
—a 4)a3exp(iIp3) —a ~ a2a4exp[i(y~+Ip4 Ip2)], —

(8, —cB„)a4exp(iIp4) =a3a4exp(iIp4)+a ~aqa3exp[i(Ip2+Ip3 —Ip~)] . (85)

The system of four complex equations (82)—(85) yield eight equations for the amplitudes a& and the phase Ipi. By defin-
ing
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0' =0'~ +0'~ (—0'~+ 0'3)

0=V i+a 2 (q—3+q~),

(B6)

(B7)

and combining the equations for the phase evolutions we obtain six evolution equations which couple the amplitudes and
the phases y and g, namely,

(8, +cB„)a(
———a 2a (

—apa3a4cosq&,2

(8, —cB„)a2——(a )
—

a 3 )a2+.a )a3a4cosy,2 2

(8,+cB„)a3——(a 2
—a 4 )a3 —a t a2a4cosq),2 2

(B8)

(B10)

d, tp+cB, /=sing&

(8, —cB„)a4——a3aq+a&a2a3cosp,2

Q IQpQ4 Q2Q3Q4+
Q3 Q& Q4 Q2

Q )Q2Q3 Q )Q3Q4

(B1 1)

(B12)

B,/+cd„y =sing
Q &Q3Q4 Q ~Q2Q4 Q2Q3Q4 Q IQ2Q3+ + +

Q2 Q3 Q) Q4
(B13)

An additional assumption on fast variation of tp is needed in order to neglect the last terms of the right-hand side of Eqs.
(B8)—(Bl 1) and thus to obtain the intensity Volterra equations (23)—(26). This could be the case if the phases yj exhibit
rapid random-phase approximation (RPA) variations. In the general case the complete set of Eqs. (B8)—(B13) must be
solved. Very recent numerical results of the dynamical evolution of Eqs. (B8)—(B13) show stationary regimes similar to
that shown in Fig. 1 for an interaction length L &L«, and nonstationary regimes similar to those of Ref. 15 (1981) and
of Ref. 20 for L & L,„,
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