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It is shown that Prony's method of exponential interpolation provides a simple technique for the
construction of effective oscillator-strength distributions from a set of moments of the actual distri-

bution. These effective oscillator-strength distributions may then be inserted into second-order per-

turbation expressions to yield upper and lower bounds pn properties of atoms and molecules. Exten-

sive calculations have been performed on the ground state of atomic hydrogen and bounds on the

logarithmic mean excitation energies and the van der Waals coefficient are obtained.

I. INTRODUCTION

Many properties of atoms and molecules arise from
second-order perturbation theory due to some kind of
electric dipole interaction. In these cases the property can
be written as a perturbation expression involving a sum
over the dipole oscillator strengths between states and the
associated energy differences. Examples of these dipole
interaction expressions include the static and dynamic po-
larizability, the Verdet constant, the coefficient of the
1/R term in the van der Waals interaction energy, and
also the logarithmic mean excitation energies required for
calculations of the Lamb shift and collisions of fast
charged particles with atoms and molecules.

The difficulty in a straightforward evaluation of the
perturbation expression, of course, arises from the fact
that all oscillator strengths (i.e., all states of symmetry al-
lowed by selection rules) must be known. This is possible
to do explicitly only with the hydrogen atom. Accurate
variational calculations for atomic and molecular states
are possible only for low-lying bound states, which by
themselves are not sufficient to allow evaluation of the
perturbation expressions. Variational approaches to the
evaluation of the perturbation expressions may be formu-
lated which do not require knowledge of the individual
states. These variational techniques provide one powerful
approach for evaluating the perturbation expressions;
however, this paper will instead follow the approach
which relies upon the theory of moments.

The problem of the requirement of complete knowledge
of all states can be overcome to some extent by the use of
dipole oscillator-strength sums. Dipole oscillator-strength
sums S(k) are moments of the dipole oscillator-strength
distribution. For k =2, I,O, —1 these sums are calculable
as ground-state expectation values and for
k = —2, —4, —6 they can be deduced from experiment. It
has been shown earlier' that these sums can be used to
construct an effective distribution of states (which con-
sists of a collection of effective dipole oscillator strengths
and associated energies). The perturbation expressions
may be evaluated with this effective distribution to yield
upper and lower bounds on various physical properties.

The construction of the effective distribution has been

described elsewhere, ' but here a simplified solution is
presented, based on Prony's method of exponential inter-
polation. An immediate consequence is a closed-form
solution for an upper bound to the static polarizability in
terms of S(—1), S(0), S(1), and to&, the energy differ-
ence between the ground state and the lowest excited state
having nonvanishing oscillator strength with the ground
state. Various bounding properties are discussed and il-
lustrated with extensive calculations which have been car-
ried out on the hydrogen atom.

II. PERTURBATION THEORY AND DIPOLE
OSCILLATOR-STRENGTH DISTRIBUTIONS

The properties of primary interest here are the dynamic
polarizability, the Verdet constant, the coefficient of the
1/R term in the van der Waals interaction energy, and
the logarithmic mean excitation energies. The perturba-
tion expressions corresponding to these properties have
different functional dependences upon the oscillator-
strength distribution, yet the effective distributions to be
constructed will yield bounds on all of these expressions.
The pertinent physical quantities shall be briefly described
below. For more details the reader is referred to the
comprehensive review articles by Fano and Cooper and
Hirschfelder, Byers-Brown, and Epstein.

The dipole oscillator strength between state
~

n ) and
state

~

b ) is defined by

I» g„»)b+(» grab)»

+ n Z& 6 Q)nb

where ~„b——Eb —E„and the summation over p ranges
over all electrons of the atom or molecule. Atomic units
are used throughout this work. Many second-order prop-
erties of the ground state

~

0) of an atom or molecule
may be evaluated once fpt, and cop& are known for all
states

~

b). The oscillator strength between the ground
state and the excited states may be plotted as a function of
copy consisting of 5 function spikes for transitions with the
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bound states (beneath the first ionization threshold) and
an actual function for transitions with the, scattering
states (above the first ionization threshold). This "func-
tion" of coo~ shall be termed the dipole oscillator-strength
distribution.

The dipole osrillator-strength distribution may be
characterized by its moments with respect to the energy.
The dipole oscillator-strength sum of order k is defined
by

S«)=+fob(~ob)"
b

(2)

and is simply the kth moment of the oscillator-strength
distribution with respect to the energy difference with the
ground state. These moments are of interest because for
k=2, 1,0, —1 they can be calculated from ground-state
expectation values and for k= —2, —4, —6 they can be
deduced from experiment.

The orientation-averaged dynamic polarizability a(co)
(in response to a driving frequency co) is given by the ex-
pression

a(co) =g
~oh —~ (3)

The polarizability a(co) may be used to evaluate the Ray-
leigh scattering cross section and the frequency-dependent
index of refraction. For low driving frequencies co, a sim-
ple expansion allows (3) to be rewritten in the Cauchy ex-
pansion form

a(co)= g S(—2 —2k)co "
k=o

(4)

fo (y)fo„(&)
[~o (y)+~o (&)l~o (y)~o (&)

(6)

Note that the summations range over the oscillator-
strength distributions of both atom y and atom 6.

The logarithmic mean excitation energies are defined
by

L (k)=g fpb(copb )"in(boob ) .
b

These are required for the following computations.

(7)

(1) Small-angle scattering of fast charged particles with
atoms and molecules.

which converges for ~ less than the lowest transition fre-
quency. The Verdet constant, which characterizes the
Faraday effect, is another frequency-dependent property
which can be written in terms of oscillator strengths. The
Verdet constant is proportional to f3(co), where

p(~) =g (5)
b (~ob ~')'—

A Cauchy expansion for P(co) can be easily obtained.
The coefficient Crs of the 1/R term in the van der

Waals interaction energy between two spherically sym-
metric ground-state atoms y and 5 is due to a dipole-
dipole interaction. Using second-order perturbation
theory it is found that

(a) L ( —1), for total inelastic scattering cross
sections —Inokuti et al. , 1967.
(b)L(0), for stopping power (mean energy loss)—
Bethe, 1930.
(c) L (1), for straggling (mean fluctuation of ener-
gy loss)—Fano, 1963.

(2) L (2), for the Lamb shift —Bethe, 1947.

Note that L(2) is also of interest for excited states. In
this ease the definition of L (2) requires that the absolute
value of the argument of the logarithm be taken, but ex-
cited states will not be considered here. It is easily seen
from Eqs. (2) and (7) that L(k) is merely the slope of
S(k), i.e.,

L (k) = S(x)
dx x=k

III. EVALUATION OF DIPOLE
OSCILLATOR-STRENGTH SUMS

S(2)= gZ () g ()(r) ) ()),
a j=1

(9)

N
S(1)=—

tp g pj
j=1

S(0)=X,
N

S(—1)=—f g rj3 j=1

(10)

(12)

where rj is the position operator, pj is the momentum
operator, the index j ranges over the % electrons, and a
ranges over the nuclei with atomic number Z . Sum
rules for S(3), S(4), S(5), . . . may also be derived, "but
are not useful for atomic and molecular ground states be-
cause S(k) diverges at k =2.5 for these wave functions.
This is easily shown for atoms by the following argument.
The value of S(2) for a ground state must be greater than
zero if it has a nonvanishing oscillator-strength spectrum.
This is because for a ground state all fo„and cop„must be
positive, which, of course, implies that S(2)=g„fp„cop„
must also be positive. The divergence at k =2.5 follows
from the behavior of the oscillator strength in the contin-
uum at high energies. The oscillator-strength density be-
tween the ground state and the continuum Nates of energy

In this section the techniques used to obtain the set of
S(k) required to construct the effective distribution shall
be reviewed. If a good wave function is available it is pos-
sible to compute accurate values of S(k) for
k=2, 1,0, —1 using the so-called "sum rules. " Measure-
ments of the refractive index and the Verdet constant over
a range of frequencies allows the determination of S(k)
for k= —2, —4, —6 and k= —4, —6, respectively.

The well known sum rules ' express S(2), S(1),S(0),
and S(—1) in terms of expectation values of the wave
function. Given an accurate wave function, these sums
may be readily computed. For a state

~ g) S(k) can be
written as
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e, denoted by df Ide, has, for atoms, the asymptotic form
given by'

S(2)e —2Z S(2)e
dE

(13)

Clearly if S(2)&0 then the continuum integration contri-
bution to S(k),

IV. CONSTRUCTION QF THE EFFECTIVE
OSCILLATOR-STRENGTH DISTRIBUTION

Once an accurate set of S(k) has been obtained, the ef-
fective distribution may be constructed. The effective dis-
tribution consists of a finite number of discrete "states, "
each having an associated oscillator strength and energy
difference with the wave function of interest (usually the
ground state). The construction of N effective states re-
quires the specification of 2N parameters, the N effective
oscillator strengths and the associated N effective energy
differences. There are many conceivable ways of con-
structing the effective set of states, but only two of these
prove to be useful for the purpose of bounding perturba-
tion expressions. The effective states are constructed by
demanding that the effective distribution satisfies the set
of known S(k). This results in a system of 2N algebraic
equations which must be solved to obtain the N effective
oscillator strengths f„'b and the associated N energy
differences co„'b with the state of interest

~

n ) (note
b = 1,2, . . . , N). An effective state

~

b ) ' is completely
specified by knowledge of f„'band co„'b.

Before describing the two methods of construction it
should be emphasized that the effective distribution will
provide bounds only if the actual distribution from which
the S(k) are being obtained has no negative energy differ-
ences (and therefore no negative oscillator strengths).
Clearly if the state of interest

~
n) is the ground state

there is no problem. However, for excited states it is pos-
sible to have nonvanishing dipole matrix elements with
lower energy states

~

a ), which results in oscillator
strengths in the distribution associated with negative co~.

e—Ep
dE'

will cause S(k) to diverge at k =2.5. A similar argument
may be used to show that S(k) diverges at k=2. 5 for
molecular ground states.

Alternative methods are needed to obtain S(k) for k
other than —1,0, 1,2. The static polarizability [which is
just S ( —2) ] can be accurately obtained using variational
perturbation methods. This is sometimes considered a
sum rule because it can be calculated without explicit
reference to physical oscillator strengths. The static po-
larizability can also be accurately measured. Variational
calculations may be used to compute S ( —3), S ( —4),
S(—5), etc., however it is difficult to assess the accuracy
of these calculations. ' From experimental refractive in-
dex and Faraday-effect measurements it is possible to ex-
tract S(—2), S( —4), and S(—6). This is accomplished
by performing a polynomial least-squares fit to the data to
obtain the coefficients in the Cauchy expansions for a(co)
and P(co). '

The problem can be eliminated by applying the method
described here to only the "modified oscillator-strength
distribution" which consists of only those states

j
a ) such

that E, &E„.In order to carry the procedure through,
the actual oscillator strengths and energy differences for
the states

~
a) with E, &E„must be known. To con-

struct the "effective modified oscillator-strength distribu-
tion" one must use "modified" S (k) which are obtained
from the usual S(k) by subtracting the contributions of
the physical states

~

a ) which satisfy E, &E„,i.e.,

S (k)=S(k)—g f„,co„",. (14)
a

E &E„

Using a set of S~(k) allows the construction of an effec-
tive modified oscillator-strength distribution in the same
way that S(k) allows the construction of an effective
oscil'lator-strength distribution. However, upon evaluat-
ing the perturbation expressions for which bounds are
desired one must include not only the effective modified
oscillator-strength distribution, but also explicitly include
the oscillator-strength distribution for states

~
a) with

E, &E„. In other words, a set of physical oscillator
strengths and energy differences must be explicitly includ-
ed and then the technique described in this work is used to
provide bounds on the "remainder term. " In fact even if
negative oscillator strengths are not a problem (e.g., the
ground state) and oscillator strengths and energy differ-
ences for some low-lying states are known, the above pro-
cedure should be followed to improve accuracy. The
more physical states which are included, the less signifi-
cant will be the remainder term one must bound. For
simplicity the following discussion shall assume

~
n) is

the ground state and physical oscillator strengths are not
known. If this is not the case, the above technique may be
used to modify the treatment. In the following, fDq and
co0b shall be denoted by fb and cob, respectively.

The two methods of constructing effective oscillator-
strength distributions using a set of S (k; ) are the follow-
ing.

(1) Construction from a set of S(k;), i =1,2, . . . , 2Nt
The effective distribution fb, cob, b =1,2, . . . , N, is deter-
mined by the system of equations

(15)

(2) Construction from a set of S (k; ),
i = 1,2, . . . , 2N 1 and also know—ledge of E&, the energy
of the lowest excited state with which the ground state has
a nonvanishing oscillator strength. The effective distribu-
tion fq, cob, b = 1,2, . . . , N is determined by the system of
equations

S(k;)= g fb(cob) ', i =1,2, . . . , 2N —1 (16)
b=1

and co'l ——El —Ep.

The bounding behavior is a consequence of the fact that
the effective distribution has been given the minimum
number of degrees of freedom needed to satisfy the equa-
tions. In case (1) the effective distribution has 2N param-
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eters (ft'„~b) which are specified by the 2N S(k;). In
case (2) the effective distribution has 2N —1 free parame-
ters (f&, b =1,2, . . . , N and coI„b=2,3, . . . , N) which
are specified once 2N —1 S(k;) are known. The bound-
ing behavior of these distributions wi11 be described later,
but the immediate interest is the solution of these equa-
tions.

For the general case of S(k; ) known for an arbitrary set
of k;, iterative numerical procedures must be applied in
order to solve the system of equations (15) or (16). How-
ever, a more systematic solution is possible for the fre-
quently occurring case of regularly spaced k;, e.g., in-
tegrally spaced k; (k; =ko+i) or double integrally spaced
k; (k; =ko+2i). Cxordon' managed to turn the problem
into one of diagonalizing a tridiagonal matrix with entries
constructed from the S(k; ) by using recursion relations
obtained from the theory of continued fractions. Another
description of this technique is found in Wheeler and Gor-
don. ' Luyckx et al. ' formulate case (1) in terms of an
eigenvalue problem without the need for continued-
fraction theory. Shimamura and Inokuti solve case (1)
essentially the same as Luyckx, et al. , but also are able to
solve case (2) in a similar fashion as an eigenvalue prob-
lem. Here a further simplification over these previous
solutions is presented.

The following solution is based on Prony's method of
exponential interpolation. This approach allows the im-
mediate construction of an Xth-degree polynomial with
coefficients in the form of determinants with the S(k) as
entries. The zeros of the polynomial will be the effective
energy differences coI, . Gnce the cot, are known, the prob-
lem is easily reduced to a linear system of equations which
can be solved to obtain the effective oscillator strengths
ft', . This technique is directly applicable to case (1) and
with minor modification can be used for case (2).

Following Whittaker and Robinson, ' Prony's method
of exponential interpolation shall be explained in terms of
case (1). Recall that the system of equations which must
be solved is

b=1

S(k2)= g fj, (F01, ) ',
b=1

N

S(k2N)= g ft'(coI, )
'

b=1

An effective dipole oscillator-strength sum S'(k), a con-
tinuous function of k, may clearly be defined by

b=1
(17)

which satisfies the equations

S'(k;)=S(k;), i ='1,2, . . . , 2N . (18)

For convenience the following derivation shall assume
that the k; for which S(k;) is known are integrally
spaced, i.e., k;=ko+i, where i=1,2, . . . , 2N. S'(@+i)
can be written as

hence

F~(k)= g c;bGb(k),
b=l

(17')

where

F;(k) =S'(k +i),
Gg(k) = (cot, )

Cgy =fb (Q)b )

Note that the Gq(k) for b = 1,2, . . . , N are linearly inde-
pendent functions of k if the cob are nondegenerate. Also
note that the effective energy differences cot, are nonde-
generate (or equivalently, at least one effective oscillator
strength is zero) only if the original oscillator-strength
distribution consists of less than % discrete states. Since
this never happens physically, the N Gt, (k) for the prob-
lem under consideration will be linearly independent as
functions of k ( one must also assume that coI,&0, but this
is never a problem). Coven the above restrictions fh&0,
cot, &0, and cot, nondegenerate for b =1,2, . . . , N, it shall
be shown that the F~(k) for i =1,2, . . . , N, comprise N
linearly independent functions of k. This is easily proven
by checking that the square matrix c;b defined in Eq. (17')
is indeed nonsingular, i.e., the determinant is nonzero:

det(c.b) =

fi~i
2fi~i

fi~i

f2~2
2f~~2

f2~2

fN~N

fN~N

fN~N

=fif2 fN~ i~2

N —1 N —1
QP1 QP2

CON

N —1
6)N
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=f1f2 fNO11~2 O1N(~N ~N —l)(O1N —O3N —2) +

+ (O1N —1 O1N —2)(O1N —1 O1N —3)+ + (O1N —1 ~1)+ + (~2 ~1)

where the last step has been performed by the difference-
product expansion of the alternant determinant. ' %rit-
ten in this form, the determinant is obviously nonzero for
fb and o'pb satisfying the previous restrictions, hence the
F;(k) for i =1,2, . . . , N are linearly independent func-
tions of k. Now consider the function Fo(k) =S'(k)
=g&fb (cob )". &s functions of k the set Fo(k),
F1(k), . . . , FN(k) must clearly be linearly dependent.
Therefore there exist unique (up to an overall scale) aj.
such that

apFp(k)+a1F1(k)+ ' ' +aNFN(k) =0
or equivalently

apS'(k)+a1S'(k+1)+ . . +aNS'(k +N) =0 . (19)

The aj. can be determined using the known S ( k; ),
i =1,2, . . . , 2X, as will be described. Once the uj are
known, the above equation can be rewritten

+ ' ' ' +~N Q fb(orb) + =0 (20)
b=1

or

(20')

Since the (co'b)" are linearly independent functions of k,
the above equation can be satisfied only if each coefficient
is identically zero, which means all of the N cob must
satisfy the polynomial equation

(21)

Therefore once the a~ have been found all that remains is
to determine the roots of Eq. (21) in order to obtain the N
effective energy differences cob. The aj may be deter-
mined using Eq. (19) in conjunction with the known S(k; )
where k;=kp+i, i =1,2, . . . , 2N [recall that it was as-
sumed that the S (k; ) were known for integrally spaced
k;]. Utilizing Eq. (19), N simultaneous equations are
constructed by replacing k with kp+ 1 ko+ 2, . . . ,
ko+X. Doing this yields the system

apS'(kp+ 1) +a1S'(kp+2) + ' ' + aNS'(kp+N+ 1) = 0,

apS'(kp+ 2)

apS'(kp+ 2)

+a,S'(kp+ 3)

+a,S'(kp+3)

+. . . + aNS'(kp+N+2) = 0,

0

aNS'(kp+N+2) = 0.

(22)

From Eq. (18) it follows that for the arguments of S(k) in the above equations S'(k) =S(k) and so Eq. (22) may be
rewritten as

1zpS(kp+ 1) +121S(kp+2) + ' ' + 11'NS(kp+N + 1) = 0

apS(ko+2) +a1S(kp+3)

apS(ko+N) +a1S(k +N+ 1)

aNS(kp~N+2) = 0,

aNS(ko+2N) = 0

(23)

which is the familiar case of X homogeneous equations in %+1 unknowns and the aj are determined up to an overall
scale factor. S(k) is known for all values of k appearing in the above equations and so a solution can be easily obtained
for the system which is unique up to an overall scale..Using Cramer's rule, ' one way of writing the solution is the fol-
lowing:

S(kp+ 1) S(kp+2) . . S(kp+N)
S(ko+2) S(ko+3) . . S(ko+N+1)

S(ko+N) S(ko+N+1) . . . S(ko+2N —1)

(24)
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S(kp+ 1) S(kp+2)
S(kpi 2) S(kpi 3)

S(kp+N —2) S(kp+N —1)

S(kp+N —1) S(kp+N)
S(kp+N+1) S(kp+N+2)

S(koiN)
S(kpiN+1)

S(koi2N —3)

S(kp+ 2N —2)

S(ko+2N)

(25)

etc. The array inside the determinant for aj is obtained by deleting the jth row from the following array (here the rows
are numbered from zero to N).

zeroth row:

first row:

Xth row:

S(ko+ 1) ' S(kp+2)
S(ko+2) S(ko+3)

second row: S(kp+3) S(kp+4)
4

S(k, iN il) S(k, iN i2)

S(kp iN)
S(k, iN i 1)

S(k, iNi2)

S(koi2N) .

(26)

Also note that the sign preceding the determinant for a~ is given by ( —1) J. Following this procedure has reduced the
original problem of solving a system of nonlinear equations into finding the roots of an Nth-degree polynomial with
coefficients cxj J:0,1,2, . . . , X. The roots can be found numerically to give the cob, b =1,2, . . . , N. Once the cob are
known, the problem is that of solving a system of linear equations to obtain the fb. Note that the equation for co' can be
written more compactly as a determinant:

1 S(kp+ 1) S(kp+2)
co' S(kp i2) S(kp i 3)

co' S(koi3) S(koi4)

co'" S(kpiN il) S(kpiNi2)

S(kp+N)
S(ko+N +1)
S(k, iNi2) =0.

S(ko i 2N)

(27)

As an example, assume that S( —3), S( —2), S( —1), S(0), S(1), and S(2) are known. One constructs an array ac-
cording to Eq. (26):

S(—3) S( —2) S( —1)

s( —2) s( —1) s(0)
S( —1) S(0) S(1)
S(0) S(l) S(2)

Using the above procedure the effective energies are obtained by solving

S( —3) S(—2) S( —1) S( —3) S(—2) S(—1) S(—3) S( —2) S(—1) S(—2) S(—1) S(())
S(—2) S( —1) S(0) co' —S(—2) S(—1) S(0) co' + S( —1) S(0) S(1) co' —S(—1) S(0) S(1) =0
S(—1) S(0) S(1) S(0) S(1) S(2) S(0) S(1) S(2) S(0) S(l) S(2)

to give co'I, co&,co3. Then the oscillator strengths fI,fz,f3
are obtained from

1 1 1

I I
C02 C03

&2 ~2 ' I2
CO I C02 C03

S(0)
s(1)
s(2) ]

The matrix that must be inverted is known as an alternant
matrix and closed-form inversion is especially simple. '

Case (2) shall be treated by an example. The general
treatment follows by analogy. Assume S( —1), S(0),

I

I

S(l), and co& are known, where co~ EI Ep is the a——ctual-
physical energy difference associated with the lowest
physical state having nonvanishing oscillator strength
with the ground state. The objective is to construct two
effective states such that one of them has col as its effec-
tive energy difference, and in addition the fI, fq, co~

( =col), and co& must satisfy $( —1), S(0), and S(1). The
prooedure here is similar to that of case (1), but one must
first determine the "effective" S'( —2) which allows co~ to
satisfy the polynomial equation constructed from S'( —2),
S(—1), S(0), and S(1) in the usual way for case (1). In
order for this to happen S'( —2) must satisfy the equation

S'( —2) S(—1) S'( —2) S( —1) S(—1) S(0)
S(—1) S(0) ' S(0) S(1) ' S(0) S(1)
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Solving for S'( —2) one finds

S( —1)[coiS(—1)—S(1)]—S(0)[coiS(—1)—S(0)]S'( —2)=
co i [coiS (0)—S(1)]

(28)

Once S ( —2) is known in terms of S(—1), S(0), S(1), and coi the calculation is performed identically as in case (1),
which for this example means one solves for the roots of

S'( —2) S(—1), S'( —2) S(—1) S(—1) S(0)
S(—1) S(0) S(0) S(1) S(0) S(1)

to obtain co'i and co2. From the construction of S'( —2) it is known that coi must be one of the two roots. Then the oscil-
lator strengths f i and f2 can be obtained as usual.

V. UPPER BOUND ON STATIC POLARIZABILITY
IN TERMS OF S ( —1), 8 (0), S( 1 ), AND coi

Before treating the bounding properties of effective dis-
tributions, the importance of Eq. (28) shall be discussed.
This equation for S'( —2) is more important than merely
an intermediate result in the construction of the effective
oscillator-strength distribution. Equation (28) is in fact an
upper bound on S( —2), the static polarizability, given a
knowledge of S(—1), S(0), S(1), and coi.

As mentioned before, an actual sum rule does not exist
for S(—2). However, sum rules do exist for S(—1),
S(0), and S(1) and note that Ei Eo can be a—ccurately
obtained from ab initio calculations or experiment. Con-'
sequently Eq. (28) provides a useful bound on the static
polarizability.

I

(1) Lower bounds:

(a)S'i( )( —2)= [S(—1)]
S(0)

S (0)+S (2)S ( —1)—2S ( —1)S(0)S(1)
S(0)S(2)—S (1)

Th«eason for the bounding behavior of Eq. (28) will
be deferred until Sec. VI, but first what has been previ-
ously known of bounds on the static polarizability, given
S( —1), S(0), S(1), S(2), and co), will be described. The
fact that the S( —1), S(0), $(1), and coi "constraints"
impose the bound has been shown numerically by Futrelle
and McQuarrie, however this closed-form expression ap-
pears to be a new result. Futrelle and McQuarrie's linear
programming technique is more general in the sense that
it can be used to incorporate error estimates of the initial
data into the final result. The equation presented here,
though, is more convenient.

The following list contains four useful bounds S'( —2)
on the static polarizability S(—2) in terms of S( —1),
S(0), S(1),S(2), and coi.

(2) Upper bounds:

(a)S2(,) ( —2)= S( —1)
67)

S(—1)[coiS(—1)—S(1)]—S(0)[coiS(—1)—S(0)]
(b)S2(b) ( —2)=

coi[coiS(0)—S(1)]

1(a) and 1(b) yield the same bounds as the case-(1) effec-
tive distributions with known S ( —1), S(0) and S ( —1),
S(0), S(1), S(2), respectively. 2(a) and 2(b) yield the
same bounds as the case-(2) effective distributions with
known S(—1), coi and S( —1), S(0), S(1),coi, respective-
ly. Expression 1(a) was first used by Kirkwood ' and Vin-
ti in 1932. Bound 1(b) was shown by Weinhold in
1968. Bound 2(a) is rather trivial and bound 2(b) is the re-
sult presented here.

As an application, bounds on the helium atom polariza-
bility shall be obtained. Pekeris has calculated

S(2)=30.334,

S(1)=4.084,

S(0)=2.000,

S(—1)=1.505,

and ~& is known to be 0.7797 a.u. Performing the calcu-
lations using the preceding equations one finds

Si(,)(.—2) =1.133,
S i(b) ( —2)= 1.185

S2( ) ( —2)= 1.930,

S2(b)( —2)=1.583,

as compared with the actual value of S(—2)=1.383.
The Si(b) ( —2) and S2(b) ( —2) yield tighter bounds than
S'i(, )( —2) and S2(,)( —2), as will always be the case.

The calculation may also be performed by including
known oscillator strengths explicitly and using modified
oscillator-strength sums. Schiff and Pekeris have calculat-
ed
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f, i I
——0 2762,

f, , i ——0.0734,

and from Moore's tables one finds (in a.u. )

co, i i
——0.7797,

co, i i ——0.8484,„)——0.8725 .

Subtracting the contributions of the first two oscillator
strengths, one obtains the modified oscillator-strength
sums:

S~ (2) =30.113,
S (1)=3.806,

S~(0)=1.650,

S ( —1)=1.064 .

Computing the four bounds on S(—2) one finds [replac-
ing S(k) by S (k) and using n), i, for co)]:

S~ i(,)( —2)=0.686,
S' i(b)( —2) =0.716,

S~ 2(, ) ( —2)= 1.219,

S~ 2(b) ( —2)=0.967

Adding the contribution of the first two oscillator
strengths to S(—2) yields

Si(,)( —2) =1.242,

Si(b)( —2) = 1.272,

S2( ) ( —2) = 1.775

S2(b)( —2) =1.523,

again, compared with the actual value of S(—2) =1.383.

VI. BOUNDING BEHAVIOR OF EFFECTIVE
OSCILLATOR-STRENGTH DISTRIBUTIONS

'(k)

-2.0 -1.0 0.0 1.0
k

2.0 2.5

FIG. 1. Schematic of bounding behavior of S'(k) [associated
with the effective distribution constructed using S(2), S(1),
S(0), and S(—1)]. The figure is meant only to represent the
qualitative behavior of S'(k); the only relevant information con-
tained in the figure is the relative position of S(k) and S'(k)
[i.e., whether S'(k) lies above or below S(k)].

The general bounding behavior is indicated in Figs. 1
and 2. In Fig. 1 is shown a typical example of an effec-
tive S'(k) constructed from a case-(1) distribution. The
effective S'(k) crosses the actual S(k) curve at only those
k; for which S(k;) was used in the construction of the ef-
fective distribution. In Fig. 1 the S (k) is that which has
been obtained from an effective distribution constructed
from S(2), S(1), S(0), and S(—1). Another important
aspect to note is that to the right of the largest k; (in this
case 2.0) and to the left of the smallest k; (here —1.0) the
effective S'(k) bounds the actual S(k) from below. For
the case of regularly spaced k;, this behavior follows from
the discussion of Wheeler and Gordon' and Langhoff
and Yates. For up to four k;, Barnsley has shown that
this behavior holds even if the k; are arbitrarily (i.e., not
regularly) spaced. The generalization of this behavior for
an arbitrarily large number of nonregularly spaced k;
seems likely, although it apparently has not been proven
mathematically. In Fig. 2 is shown a typical example of
an effective S"(k) constructed from a case-(2) distribution
[here constructed froin S(2), S(1), S(0), S(—1), S( —2),
and co)]. Again, the effective S"(k) crosses the actual
S(k) curve only at those k; for which S(k;) was used in
the construction of the effective distribution. In this case,

In this section the bounding properties of effective
oscillator-strength distributions shall be reviewed. Given
an effective distribution it is possible to construct bounds
on unknown oscillator-strength sums, logarithmic sums,
the coefficient of the I/R term in the van der Waals in-
teraction energy, the dynamic polarizability, and the Ver-
det constant. All of the above bounding properties, with
the exception of that of the van der Waals coefficient, are
a consequence of the fact that the S'(k) constructed from
the effective distribution bounds the actual S(k) in a
well-specified manner. The discussion shall begin with a
description of this bounding behavior, saving the treat-
ment of the subtler case of the van der Waals coefficient
for last. As described previously, the following state-
ments are valid when the original oscillator-strength dis-
tribution contains only states for which the energy differ-
ences co„b——Eb.—E„aregreater than zero.

' (k)

-2 ~ 0 -1.0 0 ~ 0 1.0
k

2.0 2.5

FICy. 2. Schematic of bounding behavior of S"(k) [associated
with the effective distribution constructed using S(2), S(1),
S(0), S(—1), S(—2), and co(].
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L(k;)= S(k)= d
k =k.

Similarly, it is easily seen that the effective logarithmic
sum L'(k), where L'(k) =g&,f&(coI, ) 1n(ro&), is the

slope of the effective sum S'(k). Clearly, at those k; for
which S'(k) changes from a, lower bound on S(k) on the
left of k; to an upper bound on the right will mean that
L'(k; ) is an upper bound to L (k;). At those k; for which
S'(k) changes from an upper bound on S(k) on the left of
k; to a lower bound on the right will imply that L'(k; ) is

a lower bound to L (k;). From Fig. 2 one sees that L "(k)
constructed from this effective distribution will provide
an upper bound to L ( —1) and L (1) and a lower bound to
L ( —2), L (0), and L (2). From Fig. 3 one finds that the
L"'(k) constructed from this effective distribution will

k)

-2.0 -1' 0 0.0 1.0
I I

k
2, 0 2.5

FIG. 3. Schematic of bounding behavior of S'"(k) [associat-

ed with the effective distribution constructed using S(1), S(0),
S( —1), and S(—2)].

however, the S"(k) bounds S(k) from above to the left of
the smallest k; [because case-(2) distributions are con-
structed with an odd number of S(k;)]. For the case of
regularly spaced k;, this behavior follows, as before, from
the discussion of Wheeler and Cxordon' and Langhoff
and Yates. Again the generalization for an arbitrarily
large number of nonregularly spaced k; seems likely, but
apparently has not been proven.

As an additional example consider a case-(1) distribu-
tion constructed from S(1), S(0), S( —1), and S(—2).
The behavior of the effective sum S"'(k) constructed
from this distribution is illustrated in Fig. 3. Once both
S"(k) (in Fig. 2) and S"'(k) (in Fig. 3) are known, both
upper and lower bounds have been established on the en-

tire S(k) curve to the left of k=2.0. To the left of
k =2.0, S"(k) and S"'(k) complement one another,
S"",k) yielding upper bounds where S"'(k) yields lower
bounds and vice versa. To the right of k =2.0 both S,"(k)
and S"'(k) yield only lower bounds on S(k). The useful-
ness of effective sums from case-(1) and case-(2) distribu-
tions has already been illustrated by the bounds derived on
the static polarizability in Sec. V.

Knowledge of the bounding behavior of effective sums
derived from case-(1) and case-(2) distributions on S(k)
allows one to easily determine bounds on the logarithmic
sums L (k;) at those k; for which S(k;) was used to con-
struct the effective distribution. First recall that L (k;) is
merely the slope of S (k) at k =k;, i.e.,

provide an upper bound to L ( —2) and L (0) and a lower
bound to L ( —1) and L (1). Again the distributions com-
plement each other and both upper and lower bounds can
be found for all L (k;) of interest except L (2). For L (2)
only lower bounds can be found if no finite S(k;) are
known for k; & 2.0 (which will usually be the case).

Bounds on the dynamic polarizability may also be con-
structed using effective oscillator-strength distributions.
The bounding property of the effective polarizability of
the effective polarizability a'(ro), where

N
ba'(ro)= g

COb —6P

is valid from co=0 to the first resonance frequency, the
frequency range for which the Cauchy expansion is valid.
To understand why bounds hold here, compare the
Cauchy expansion of a'(co),

a'(ro) =S'( —2)+S'( —4)ro'+S'( —6)ro +
with that of a(ro),

a(ro)=S( —2)+S(—4)ro +S(—6)ro + .

Note that a case-(1) effective distribution which satisfies
S'(k;)(S(k;) for k;= —2, —4, —6, . . . will generate an
effective dynamic polarizability which bounds the actual
dynamic polarizability from below. If the case-(1) effec-
tive distribution has been constructed from a set which in-
cludes certain of the S(—2), S(—4), S(—6), . . . then
those corresponding terms of the Cauchy expansion for
a'(co) and a(ro) will be identical. The reason that case-(1)
effective distributions must be used for lower bounds is of
course that they generate effective S'(k) which bound
S(k) from below to the left of the smallest k; for which
S(k;) has been used in the construction of the distribu-
tion. In other words, case-(1) distributions tend to bound
the terms which have not been put in explicitly from
below, if a reasonable choice of k; for the construction of
the distribution has been made. As an example note that
the effective distribution of Fig. 3 satisfies S(—2) "expli-
citly" and bounds S(—4),S( —6), . . . from below and
and therefore generates an effective dynamic polarizabili-

ty which bounds the actual dynamic polarizability from
below. A similar argument justifies the statement that,
with a reasonable choice of S(k; ) for the construction of a
case-(2) distribution the corresponding effective dynamic
polarizability will provide an upper bound to the actual
dynamic polarizability. The distribution of Fig. 2 satisfies
S( —2) explicitly and bounds S(—4),S(—6), . . . from
above, so the effective dynamic polarizability correspond-
ing to this distribution is seen to bound the actual dynam-
ic polarizability from above. Identical arguments can be
made to determine effective Verdet constants which
bound the actual Verdet constants from above and below.

An important point is that these effective polarizabili-
ties and Verdet constants provide a finite representation
which bounds an expression which contains an infinite
number of terms plus an integration over the continuum.
Even though not exact, this representation seems to be an
extremely useful way of writing these expressions. In-
cluding enough of the S(—2), S(—4), S( —6), . . . allows
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one to approach the exact function arbitrarily closely, not
only by equaling the Cauchy series term by term for those
S(—2), S( —4), S( —6), . . . included explicitly, but by
bounding those which are not included. Note that al-
though this representation is valid only up to the first res-
onance, the frequency range may be extended by putting
in actual physical states explicitly and using the method
of effective modified oscillator-strength distributions.
This functional form for the dynamic polarizability may
prove to be a better finite representation to use for extract-
ing S (k) from experiment but this remains to be seen.

This discussion of bounds shall conclude with the sub-
ject of the C6 coefficient in the van der Waals interaction.
The reason for these bounds is subtler than the bounds
described previously in this paper. For proofs the reader
is referred to Langhoff and Karplus, Langhoff, Gordon,
and Karplus, ' and Luyckx et al; These bounds all re-
quire that the distributions be constructed from S(k;)
with regularly spaced k;. Here the sets of sums from
which both upper and lower bounds on C6 may be ob-
tained will merely be listed. Lower bounds on C6 may be
obtained from

(S(2),S(1),S(0),S( —1), ),
(S(0),S(—1),S(—2),S(—3), ),
(S(—2) —,S(—3),S( —4),S(—5), . . .),
(S(—3),S( —4),S(—5),S( —6), . . .),
(S(—4),S( —5),S(—6),S(—7), . . .),

etc. , and

(S(2),S(0),S(—2),S(—4), . . .),
(S(—2),S( —4),S( —6),S( —8), ) .

Upper bounds on C6 may be obtained from

(S(1),S(0),S( —1),S(—2), . . .),

(S(—1),S( —2),S(—3),S(—4), . . .),
(S(0),S(—2),S(—4),S( —6), . . . ) .

As usual, the C6 is constructed by replacing the actual
distributions in Eq. (6) by the effective distribution.

VII. CALCULATIONS FOR THE HYDROGEN ATOM

Fairly extensive calculations have been performed on
the hydrogen atom because of the ready availability of ex-
act values of S(k;) for k;=2, 1,0, —1, —2, —3, . . . .
These S(k) have been shown to be calculable in rational
fraction form by Dalgarno and Kingston who list
S(2),S(1), . . . , S( —6). Gavrila has computed
S(—7), . . . , S( —10). Gavrila's value of S(—10) con-
tains a typographical error in the numerator which is list-
ed correctly here. In addition S(—11), . . . , S(—15) have
been calculated in the present work in rational fraction
form. All of these moments may be obtained by using re-
cursion relations. The following list contains the previ-
ously calculated values of S(k) along with the values of
S(—11), . . . , S(—15) calculated here:

S(2)= —,

S(1)= —,',
S(0)=1,
S(—1)=2,
S(—2) = —', ,

S(—3)= —,'

S(—4)=
„

9673

291 541S(—6)= i72s

9 243 157S(—7)= loess

TABLE I. Partial listing of the polynomials used for the construction of effective oscillator-strength
distributions for the ground state of atomic hydrogen. The roots of the polynomials give the energy
differences between the ground state and the states of the effective oscillator-strength distribution (in
a.u. ).

S(2):
S(2)—S(1):
S(2)—S(0):
S(2)—S( —1):
S(2)—S(—2):
S(2)—S(—3):
S(2)—S( —4):
S(2)—S( —5):
S(1):
S(1)—S(0):
S(1)—S(—1):
S(1)—S(—2):
S(1)—S(—3):
S(1)—S(—4):
S(1)—S(—5):
S(1)—S(—6):

9 (8' —3)

3 (co —2)
[4/(27 x 13 ) ]{8co —3 )(7co—26)

9 (3' —18')+8)

[1/{2X 9 X 107)]{8co—3){33co —306co+214}
[1/{2 X9)]{3co—36co +44co —12)
[1/{2'X 243 X 23) ]{8co —3){75co' —1260co2+2180co—828 )

[1/{2 X27)]{15co—300co'+700co —476co+96)

9 (8' —3)

3 (3a)—2)
[1/{9x7)]{8~—31{6~—7)
[1/{2X3)]{3co'—6co+21
[1/{2 X 9X 11)]{8co —3){15co2—45co+22)
[1/{2 X9)]{15co'—60co +52co —12)

[1/{2' X 81 ) ]{8co —3){30cos —165co2+ 194co—60)
[5/{2' X27)]{45co —300co +480co —268co+48)
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289 165453S( 8)= 248832

45 464 213 273
14929920

7 175 468425 141S ( —10)= 895 795 2QQ

S ( 1 1 )
1135753416866657

53 747 712000

180 168 229 948 381 789
3 224 862 720 000

S( 13' 200407807104309615071
1 354 442 342 400000

14)
223 220093 886 359 508 924469

568 865 783 808 000 000

248 892 118 198 506 334 751 975 591
23 8 923 629 199360 000000

In addition, values of the following sums have been com-
puted, valid to 25 digits:

S(—16)=2.767 867 752 796 214 680257 191&& 10

S( —17)=7.359 191237809 297 517 598 849 X 10',
S ( —18)= 1.957 712 849 836 060 068 184 363 ~ 10

For the construction of the case-(2) distributions it is also
necessary to know that coi ———, a.u.3

Using this collection of sums Prony's method has been
implemented to set up the polynomial equation (for the
effective energy differences) with rational coefficients for
both case-(1) and case-(2) distributions. Calculations have
been performed including sums from S(2) and S(1) rang-
ing over values down to S(—17) and S(—18). Table I
contains a partial listing of the polynomi'als used for the
construction of the effective distributions. A complete
listing of the polynomials may be found in Ref. 13.

The roots of these polynomials were evaluated using the
Newton-Raphson method. After the effective energy
differences were obtained, the effective oscillator strengths
were calculated using the previously described technique

S(2)—S(1)
S(2)—{S—1)
S(2)—S(—3)
S(2)—S(—5)
S(2)—S(—7)
S(2)—S(—9)
S(2)—S(—11)
S(2)—S(—13)
S{2)—S( —15)
S{2)—S(—17)
S(1)—S(0)
S(1)—S(—2)
S(1)—S{—4)
S(1}—S( —6)
S(1)—S( —8)
S(1)—S( —10)
S(1)—S( —12)
S(1)—S(—14)
S(1)—S(—16)
S(1)—S( —18)

0.010416 666 7
6.171 875 0000
6.486 918604 7
6.498 585 838 5
6.499 007 9440
6.499 025 644 9
6.499 026 6196
6.499 026 695 7
6.499 026 704 0
6.499 026 705 1

2.531 250 000 0
6.562 500 000 0
6.501 275 5102
6.499 114205 2
6.499 030 949 3
6.499 026 992 1

6.499 026 733 1

6.499 026 709 1

6.499 026 706 0
6.499 026 705 5

which utilized the alternant form of the matrix for inver-
sion. Once the effective oscillator strengths and energy
differences were known, the distribution was inserted into
the various second-order perturbation expressions. All
calculations have been performed to double precision (28
digits). In all cases the effective distributions were found
to satisfy the constraint (i.e., initial) S(k;) to at least 20
digits.

The case-(&) distributions which satisfy the criteria set
forth by I.uyckx et al. can be used to obtain'both upper
and lower bounds on the C6 coefficient. Table II lists the

TABLE II. Values of the van der Waals coefficient calculat-
ed using effective distributions.

Sums included

TABLE III. Values of the logarithmic mean excitation energies calculated using effective distribu-
tion.

Sums included

S(2)—S(1)
S(2)—S(0)
S(2)—S(—1)
S(2)—S(—2)
S(2)—S(—3}
S(2)—S(—4)
S(2)—S(—5)
S(2)—S{—6)
S(2)—S(—7)
S(2)—S(—8)
S(2)—S(—9)
S(2)—S( —10)
S(2)—S(—11)
S(2)—S(—12)
S(2)—S{—13)
S(2)—S(—14)
S(2)—S{—15)
S(2)—S(—16)
S(2)—S(—17)
Actual

L( —1)

0.115524 5
—0.326 494 6
—0.025 752 0
—0.068 1191
—0.071 582 8
—0.072 848 2
—0.073 049 1
—0.073 184 8
—0.073 211 6
—0.073 236 5
—0.073 242 0
—0.073 248 2
—0.073 249 7
—0.073 251 7
—0.073 252 2
—0.073 252 9
—0.073 253 1

—0.073 253 3
—0.073 253 4
—0.073 253 8

L (0)

0.462 10
—0.087 40

0.054 86
0.085 74
0.091 34
0.094 78
0.095 57
0.096 31
0.096 50
0.096 72
0.09678-
0.096 86
0.096 89
0.096 92
0.096 93
0.096 95
0.096 95
0.096 96
0.096 96
0.096 98

L(1)
1.848
1.104
0.933
0.846
0.820
0.796
0.788
0.779
0.776
0.771
0.770
0.768
0.767
0.766
0.765
0.764
0.764
0.763
0.763
0.761

L(2)

7.39
9.52

10.61
11.59
12.03
12.60
12.85
13.23
13.38
13.65
13.75
13.95
14.03
14.18
14.24
14.37
14.41
14.51
14.55
15.92
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TABLE IV. Values of the logarithmic mean excitation energies calculated using effective distributions.

Sums included

S(1)—S(0)
S(1)—S(—1)
S(1)—S(—2)
S(1)—S(—3)
S(1)—S(—4)
S{1)—S(—5)
S(1)—S(—6)
S(1)—S(—7)
S(1)—S{—8)
S{1)—S{—9)
S(1)—S(—10)
S(1)—S(—11)
S(1)—S(—12)
S(1)—S(—13)
S(1)—S(—14)
S(1)—S(—15)
S(1)—S(—16)
S(1)—S(—17)
S(1)—S( —18)
Actual

L( —1)

0.215 767 1
—0.108 474 7
—0.079 844 9
—0.074 466 6
—0.073 774 0
—0.073 407-0
—0.073 340 4
—0.073 286 4
—0.073 275 0
—0.073 263 1
—0.073 260 4
—0.073 257 0
—0.073 256 2
—0.073 255 1
—0.073 254 8
—0.073 254 4
—0.073 254 2
—0.073 254 0
—0.073 254 0
—0.073 253 8

0.287 68
0.13047
0.11024
0.101 50
0.099 62
0.098 15
0.097 78
0.097 39
0.097 29
0.097 16
0.097 12
0.097 07
0.09705
0.097 03
0.097 02
0.097 01
0.097 00
0.09700
0.097 00
0.096 98

L(1)
0.384
0.592
0.654
0.701
0.716
0.732
0.738
0.745
0.747
0.751
0.752
0.755
0.755
0.757
0.757
0.758
0.758
0.759
0.759
0.761

L (2)

0.51
1.60

'
232
3.35
3.87
4.73
5.12
5.82
6.12
6.71
6.95
7.44
7.64
8.06
8.22
8.58
8.72
9.03
9.15

15.92

values of C6 obtained from the effective distributions.
All values obtained from the S(2)—S(3—2N) distribu-
tions and the S(1)—S(0) distribution are guaranteed to
provide a lower bound to C6. All values obtained from
the S(1)—S(2—2X) distributions with the exception of
the $(1)—S(0) distribution, are guaranteed to provide an
upper bound to C6. Deal has calculated C6 to 11 digits
as 6.4990267054. The values obtained here bound this
result from above and below as claimed.

The case-(1) and case-(2) distributions can be used to
compute upper and lower bounds on the logarithmic sums
L (k;) as described earlier. Results from the effective dis-
tributions are presented in Tables III and IV. The actual
values have been taken from Shimamura. The bounding
behavior is seen to be in accordance with that described
previously. As far as the accuracy of this technique is
concerned, the results are good for L ( —1) and L (0), fair
for L (1), and not encouraging for L (2).

It should be noted that the variational perturbation
basis of Johnson, Epstein, and Meath yields an effective
oscillator-strength distribution which satisfies S (0),
S(—1), S(—2), S( —3), . . . . But the variational pertur-
turbation technique does not have the flexibility of the

method described here and it cannot be used to obtain all
the bounds on C6 and the logarithmic sums.

VIII. CONCLUSION

It has been shown that Prony's method of exponential
interpolation provides a simple method for solving the
equations required for the construction of effective
oscillator-strength distributions. Using Prony s method
also leads to a new closed-form expression for an upper
bound to the static polarizability in terms of S(—1),
S(0), S(1), and co&. The calculations of effective
oscillator-strength distributions of the ground state of
atomic hydrogen have led to bounds on logarithmic mean
excitation energies and C6 which are in accordance with
the bounding behavior discussed in Sec. VI.
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