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Shot noise and general jump processes in strong laser-atom interactions
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We discuss relations between different jump processes used by us and other workers for the

description of external electromagnetic field fluctuations. We show that the shot noise, the random

telegraph signal, and the Poisson process are examples of a general class of fluctuations described by

the relevant Burshtein-Chapman-Kolmogorov-Smoluchowski equation. We establish general condi-

tions for which all these processes lead to the same atomic response in strong field-atom interac-

tions.

I. INTRODUCTION

In several recent papers' strong field-atom interac-
tions with external noises described by random jump pro-
cesses have been discussed. Phase, frequency, or ampli-
tude fluctuations of the driving electromagnetic field were
described by us' using the forward Chapman-
Kolmogorov-Smoluchowski (CKS) equation for the joint
probability distribution of the noise
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Accordingly, any dynamical variable V(t) which satisfied

an evolution equation V= —iMV with a matrix M locally
dependent on external noises could be averaged exactly,
i.e., solutions of the following Burshtein-Chapman-
Kolmogorov-Smoluchowski (BCKS) equation

dV —iM(a) ——V
dt T

+— d a Vp (1.2)

for the marginal average Va(t) of V could be obtained.
The properties of the jump processes are completely de-
fined by I/T (frequency of jump), f(a

~
P) (conditional

probability of jump from a to p), and the number of in-
volved states a.

In our work' we have discussed in detail analytically
and numerically various applications of Eq. (1.2) for a
two-state (a=+a) Markov chain with the transition func-
tion

f(a
~
P) =&(a+P) . (1.3)

This two-state jump process (random telegraph signal)
was used by us to construct more complicated stochastic
processes with pre-Gaussian statistics and with non-
Lorentzian band shapes.

Apart from Eq. (1.3) there are at least two obvious pos-

sible choices of the transition function f(a
~
p) with in-

teresting physical consequences. The first possibility as-
sumes that the transitions f(a

~
P) are functions of the

state difference only

f(a P) =g(a —P) . (1.4)

Some examples of phase fluctuations with a transition
function f(a ~P) given by Eq. (1.4) were discussed in
Refs. 4—6.

The second case defines f(a
~
p) as independent from its

initial state prior to the jump, i.e.,

f(a
~
P)=g(P) . (1.5)

Examples of phase fluctuations and atomic response based
on selection (1.5) were discussed in Refs. 7 and 8. In both
cases, g(a) can be an arbitrary function of its argument.

It is the purpose of this paper to establish relations be-
tween all these apparently very different models of phase
fluctuations described by the CKS equation with func-
tions (1.3), (1.4), and (1.5), respectively. In fact we show
under what conditions these differing jump processes lead
to the same physical results already discussed by us in the
framework of random telegraph signals. This establishes
a general framework for all these jurnp processes and
shows the importance of the random telegraph signals
used by us in our previous discussions of atomic response
to external fluctuations.

In Sec. II of this paper we show that the CKS equation
with f(a

~

p)=g(a —p) is equivalent to a shot-noise
description of the fluctuating phase or frequency. The
shot-noise model known in electronic devices turns out to
be very closely related to the telegraph noise description of
laser phase or frequency fluctuations. We establish the
proper conditions under which the shot-noise model leads
to physical results already obtained by us for random tele-
graph signals.

In Sec. III we discuss phase fluctuations described by
the CKS equations with the transition function given by
Eq. (1.5). Again a very close connection to random tele-
graph jumps of the phase is established. Finally, some
concluding remarks are given in the Summary.
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II. SHOT-NOISE PHASE FLUCTUATIONS
The shot-noise model of phase fluctuations assumes

that the instantaneous phase C&(t) of the electromagnetic
field consists of a sum of statistically independent pulses

n

C(t)= g a;h(t t—, ), (2.1)

where h (t t; ) —is a causal pulse-shape function [h (t) =0
for t & 0], generated at a random time t; with amplitude

I

a;. The probability distribution function of the indepen.
dent amplitudes is given by the function g(a;)=g(a).
The number n, of accumulated pulses in a time interval
At, is given by a Poisson distribution: P„=e"(n)"In
with n = ( I /T) b t, where 1/T is a fixed parameter.

The generating function of shot noise is very well
known since the early investigations of noise in electric
currents. For an arbitrary smooth function g(~), we
have the following result:

t f
exp i f dsg(s)C)(s) =exp —f ds f dag(a)exp ia f dr g(r)h(~ —s) —1

0 0 S
(2.2)

& @(t)& =—f da ag(a) f dr h (t —r),T 0

(C (t) )@(t~)) =—fda a g(a)T

(2.3a)

X f drh(t, —r)h(t, —r) .
0

(2.3b)

Even if it is possible to discuss the shot-noise phase fluc-
tuations for an arbitrary pulse-shape function we shall as-
sume for simplicity that h (t) is a unit step function

h(t)=8(t) .

From Cambell's formulas we then obtain

(2.4)

From this relation we can calculate all the correlation
functions of C&(t) by a repeated differentiation of Eq. (2.2),
with respect to the arbitrary function g (t) As a.n exam-
ple we obtain Cambell's formulas'
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This important result indicates that the probability dis-
tribution function of shot-noise phase fluctuations satis-
fies the CKS equation with a transition function given by
condition (1.4). From the CKS equation (2.8) we calculate
very easily the phase-dependent part of the electric field
correlation function. Using Eq. (2.7) we obtain

( e —ie((+1)+4(&)) —exp 1 —fda g(a)eT

(2.9)
i.e., the power spectrum has a Lorentzian band shape with
an effective line width y given by

y =(I—g)/&, (2.10)

I

By simple time differentiation of Eq. (2.7) we obtain the
following equation:

((I&(t))@(tq))=—f daa g( )ami (nt t(q) .
T

(2 5) where we have denoted

g= f dag(a)e' (2.11)
This formula is equivalent in form to the Wiener-Levy
correlation function of the phase-diffusion model. " The
important difference between the shot noise and the
Wiener-Levy stochastic process is that &b(t) with the
characteristic functional (2.2) is not a Gaussian stochastic
process.

With all these descriptions of the shot-noise fluctua-
tions we can derive the proper CKS equation for the joint
probability distribution function of the phase defined as
follows:
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The shot-noise model of phase fluctuations leads to the
BCKS equation (1.2) with a transition function
f(a

~
P) =g(a —)(3). In all of the examples below, we take

g to be an even function of its argument, for simplicity.
In order to calculate the two-level atom response to

such phase fluctuations we proceed in a similar way as in
the random telegraph signal case, ' i.e., we solve the BCKS
equation (1.2) with condition (1.4) for the optical Bloch
equations. For example, the stochastic average of the
two-level inversion w(t) = (w(t)) satisifies the following
set of equations:

With the help of Eq. (2.2) we obtain
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where we have used the notation

cr+& ——J dao~ e ', o+~ —— da cree' (2.13)

for the integrated marginal averages of the dipole opera-
tors o. and o. . For simplicity we have also

I

g= f dae+—' g(a) [see Eq. (2.11)].
By a repeated differentiation of Eqs. (2.12) we can ob-

tain the following third-order differential equation satis-
fied by the stochastic expectation value of the atomic in-
version operator:

2
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(2.15)

A closer investigation of the system of Eqs. (2.12) indi-
cates that at exact resonance, Eq. (2.15) can be reduced to
a second-order differential equation of the following form:

w+ w'+Qpw =0 .(1—g)
T (2.16)

Equation (2.15) was derived for the first time in Ref. 4
without any reference to the shot-noise'model of phase
fluctuations. For a uniform distribution of g(a) in the in-
terval [0,2m], we have g=O and Eq. (2.15) is equivalent
to a random telegraph phase signal' with the amount of
jurnp a =m/2, and also leads to the same dynamical equa-
tion for frequency fiuctuations with a =0. The explana-
tion of these facts is very simple. The shot noise with
g=0, the phase telegraph with jump m/2, and the fre-
quency telegraph with a =0 all lead to a Lorentzian
power spectrum of the electric field correlation function.
The obvious difference between shot-noise and the tele-
graph signal is in the replacement of 2/T by 1/T. This
means that the frequency of any change from a state u is
half of the frequency of a telegraph signal. This is of
course due to the simple fact that the two-state telegraph
signal has to change its sign with probability 1 in contrast
to the shot-noise case where such a probability is —, (be-
cause the phase can always jump up or down).

From Eqs. (2.1) and (2.4) we calculate that the frequen-
cy

d+to(t)= = g a;5(t —t;)
dt

(2.17)

is also a shot noise but with a 5-type pulse and its auto-
correlation function has the white-noise form. Models of
shot-noise frequency with different pulses can be easily
obtained by a simple convolution of Eq. (2.17) with a
proper shape function.

Because we are mostly interested here in effects of phase
fluctuations on strong-field atomic responses, we take
1/T » 1/T ~, 1/Tr and Ap && 1!T~,1/Tz. At exact reso-
nance (6=0), we obtain from Eq. (2.14)

w+ w+ +Op w+Qp w=0 .
2(1—g) " (1—g)' p . p (1—g)

T T2 ' ' T

III. GENERAL JUMP PROCESS

The last example of phase fluctuations that we discuss
in this paper is given by condition (1.5), i.e.,
f(a

~
p)=g(p). With such a transition the CKS equation

(1.1) can be solved exactly leading to

—
t
t —~OI /TP(at
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r

/t —tp[
X 1 —exp T

(3.1)

With this explicit form for the probability distribution
function of the phase we calculate easily the phase-
dependent part of the electric field correlation function

—~'[@tt~—@~&o~], p p
—

~

t to (
/T—(e )=g+1—g e (3.2)

where, as in the previous section, g = do; e+—' g cx .
Expression (3.12) has a very clear resemblance to the

proper correlation function of phase fluctuations
described by a random telegraph signal which we have de-
rived in Ref. 1. For a distribution of phase which is
peaked around two possible values +a, i.e., if

g(a) = —,
' [5(a+a )+5(a—a )], (3.3)

we obtain g=cosa and the correlation function (3.2) is
precisely equal to the random telegraph model of phase
fluctuations.

For a uniform distribution of phase given by
g(a)=1/2n, we obtain g=O and the spectrum has a
Lorentzian band shape with line width 1/T. This corre-
sponds' in form to a jump process with a jump size
a =~/2.

For a more complicated distribution of a given for ex-
ample by a Lorentzian profile with band width a, we ob-
tai.n g =e . For very small a, i.e., if g =1, we obtain the
telegraph model with the jump size equal to zero. ' For
very large values of a, i.e., if g=0, we recover the.uni-
form distribution of phase already given. Note that in ex-
pression (3.2) the characteristic line width 1/T is precisely
half of the random telegraph frequency 2/T, as has been
noted in the previous section.

As in the previous section, we derive from the BCKS
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equation (1.2) with condition (1.5) the following exact set
of equations of motion involving the two-level atomic in-
version (for 5=0 and 1/T& ——1/T2 ——0): g2 —— ag u e—+ ' (3.&)

w+ n(')w = ——w+ —g&oa,0 T T

B=—QpC,
2

C =i Q(A +B)——C+ —g2w,
1 2
T T '

i 1 1
A =—QpC ——2+—g2B,

2 ' T T

(3.4a)

(3.4b)

(3.4c)

(3.4d)

Note that only for the two-peaked distribution function
given by Eq. (3.3) ao we have from (3.5b)

C=w )+w+i =2cosw (3.7)

i.e., the two equations involving higher "harmonics" (cr+2
and o.2) are decoupled from (3.4a) and (3.4b).

As a result we obtain the following third-order differen-
tial equation for the stochastic expectation value of the in-
version operator:

8= f dag(ot)(o+ tT )—=cr+ —o,
C= f dag(a)(e ' w +e'~w )=w ~+w~,

A = f dag(ct)(e ' o+ e' —o )=et+2 o2—,

(3.5a)

(3.5b)

(3.5c)

where we have used the following notation to denote the
integrated marginal averages of the Bloch vector corn-
ponents:

w + w+Q()w+ Qpcos aw =0,
which is precisely' the random telegraph equation with
jump size equal to a and with the change of 2/T to 1/T.

For an arbitrary function g(a), we have to solve the en-
tire set of equations (3 4). By a repeated differentiation
we can obtain the following fifth-order differential equa-
tion satisfied only by the averaged atomic inversion:

Q Q Q

T
r

Qo Qp Qo
3gZT3

Note that the evolution of the averaged atomic inversion
operator is governed by two line widths, g= f dtze —' g(a) and g2 ——fdcte —' g(a), as predicted
in Ref. 4.

IV. SUMMARY

In this paper we have discussed several examples of
generalized Poisson processes described by the CKS equa-
tion with different transition functions f(a

~
p). We have

shown that the case of f(a
~

p)=g(a —p) is equivalent to

a shot-noise model of external fluctuation, and that the
case f(a

~
p) =g (p) corresponds very closely to a two-

state Markov chain description of phase fluctuations. The
exact equations obtained for the atomic response variables
indicate that the different versions of telegraph signals
discussed by us in Refs. 1—3 are general enough to take
into account the cases discussed. This paper also shows
the universality of the jump processes and their atomic
responses regardless of the details of the stochastic models
employed.
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