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The Mossbauer resonance absorption line in solids is of narrow, natural width. In viscous liquids

the hnewidth is broadened by diffusion. In many biological systems —whole cells, membranes, or
proteins —at temperatures above the freezing point of the internal water, a superposition of broad

and narrow lines is observed. Here, the Mossbauer spectral shapes expected in this new "phase" of
proteinic matter are calculated. The calculation is based on the assumption that the unfrozen con-

formational degrees of freedom of the macromolecules can be described in terms of damped har-

monic oscillators acted upon by random forces. The known classical correlation functions for har-

monically bound particles in Brownian motion are utilized to calculate the Mossbauer spectra. The
theory predicts the following: a spectrum which can be approximated by a superposition of a nar-

row and a broad line; and a sharp decrease in the total resonance absorption as a function of tem-

perature and asymmetric quadrupole doublets in ' Fe spectra, even when the Debye-Wailer factor is

isotropic but the damping frequencies are anisotropic. The presented formulas, with only minor

changes, are also applicable to the description of neutron quasielastic scattering from systems in

which nuclei diffuse in restricted geometries: bound diffusion on surfaces, lamellar systems, ionic

polymers, biopolymers, and membranes. Finally, calculated spectra are compared to recent experi-

mental Mossbauer spectra, and the agreement is outstanding. The spectral shape of particles parti-

cipating in both bound translational and free rotational diffusion is also calculated.

I. INTRODUCTION II. THEORY

Recent studies of t'he Mossbauer absorption in biologi-
cal systems such as proteins and membranes and in poly-
mers' reveal unusual spectra, different from those ob-
served in ordinary solids or viscous liquids. The spectra
can be 'described as composed of a narrow line, as in
solids, and a broad line, as that observed in liquids.
Quasielastic incoherent neutron scattering from nuclei in
bound geometries display similar spectra. ' ' " In the
present paper we apply the theory of damped harmonic
oscillators in Brownian motion developed by Uhlenbeck
and Ornstein' to calculate the expected Mossbauer ab-
sorption spectra and neutron scattering spectra in such
systems. ' ' Comparison is made to other formulas
developed for Mossbauer and neutron spectroscopy of nu-
clei performing bound diffusion in solids and
liquids. ' ' ' ' ' The present calculation predicts
Mossbauer spectra which can be looked upon, to a good
approximation, as composed of a narrow and broad lines
with total intensity strongly temperature dependent.
When the diffusion is anisotropic it predicts a generalized
Karyagin-Goldanskii effect, even when the Debye-
Waller factor is isotropic. The calculated Mossbauer
spectra are compared to various experimental observations
and the agreement is very satisfactory. In the Appendix
the spectral shape obtained in spherical particles partici-
pating in both bound translational and free rotational dif-
fusion is calculated in detail.

A. Dynamics of a harmonically bound particle

The general formula for a Mossbauer spectrum in the
classical limit is given by' ' '

oo
~ II (co)= dt exp[ i (co —too)t —Tr

~

t
~
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X drodr G(r, ro, t)
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Xexp[ik (r —ro)]p(ro) .

Here I is the natural width of the Mossbauer line, k is
the y-ray wave vector, and G(r, ro, t) is the probability
that at time t the nucleus will be at r if at time zero it was
at ro. p (r) is the stationary probability of the particle be-
ing at r, which equals G(r, r', oo) and is of course in-
dependent of r'.

A particle of mass m bound to a center by a harmonic
force —mw r, damped by a frictional force —mPr', and
acted upon by random forces P(t) will follow the equation
of motion

m r+ m13r+ mw r =F(t) .

In the case of one-dimensional motion, Uhlenbeck and
Ornstein' have derived general formulas for G(x,xo, t)
Their formula for the overdamped case, which seems to
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tion, derive k (x ) from the relative intensities of the
two lines, and then obtain a from Fig. 3.

We have obtained Eq. (4) for the overdamped case. For
the sake of generality, we quote the form of the absorp-
tion spectrum for arbitrary w and f3: where

Xexpj —k (x )[1—P(t)]I,

00I (~}= dt exp[ —i (~ ~o)t] exp( —I
~

t
~

)

T 2

e cos(w~t)+ sin(w, t), w, =w — — ~0

P(t)= e-~~'~" 1+—t, w=P/2
2

2

e ~~'
~ cosh(w't)+, sinh(w't), (w')2= — —w2~0 .

2N 2

We have seen a closed-form expression for I(co) in the
overdamped limit, both in an integral and in a sum-of-
Lorentzians form. The extreme underdamped case can
also be expressed in a convenient form as a sum of
Lorentzians. In the extreme underdamped case the ex-
pression for P(t) can be approximated by

P(t)=e ~'~ 'cos(wt) .

A power-series expansion of exp[k (x )e ~~'
~

~ cos(wt)]
yields

k (x )1
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We observe that in the overdamped case the spectrum is
composed of Lorentzian lines of width I +2na at coo,
whereas in the underdamped case one observes sideband
lines at coo+nw of width I +nP. The intensities in both
cases are the same.

, The model described above can be generalized to treat
anisotropic diffusive motions which might be relevant in
particular systems, as, e.g., in single-crystal proteins or
oriented membranes. For the anisotropic overdamped
harmonic oscillator, with independent motions along the
three axes, Eq. (4) becomes generalized to the form

2
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FIG. 3. The effective linewidth of the broad line, in the two-
Lorentzian-lines approximation of Eq. (4) or Eq. (5), as a func-
tion of k (x ).

where a„=w„/P„, and similarly for a~ and a, .
The line shape, including narrow and wide components,

will then depend on the angle of incidence of the y rays.



2294 I. NOWIK, E. R. BAUMINGER, S. G. COHEN, AND S. OPER 31

I

In polycrystalline proteins or unoriented membranes, in
those cases where there are appreciable quadrupole hyper-
fine interactions, one might expect a generalized
Karyagin-Goldanskii effect, the observed line shape be-

ing a sum of different lines corresponding to the various
I

transitions between the substates of the hyperfine struc-
ture. Thus in a powder sample, the spectral shape of a
nuclear transition between quantum numbers M& and Mz,
with M~ —M2 ——AM will be given by

1(~)= f J I Pt exp[ —&'(tp cop)—t ——,
' I

~

t
~

—k cos 8(x )(1—e "
)

0 —oo

—k sin 8[cos p(y )(1—e )+sin p(z )(1—e ' )]I

&&f(bM, H) sin8d8dg, (10)

where f(QM, g) for the transition in ~7Fe, is given by f(0,0)= —, sin 9 and f(+1,0)= —,(1+cos 0). For axial symmetry

((z~) =(y2), a =a, ) we obtain for the two Fe quadrupole lines the spectral shapes (g=cos8)

1,(tp)= J dt I exp[ i (to t—pp)t ———,'I
~

t
~

—k'(x')(1 —e
2m'

—k'(y')(1 —e ' )(1—g')]f, (g)&rt,

(k r)=k(e r)=kpa, q, .
I

(12)

If we assume that all normal-mode coordinates follow the
harmonic damped motion given by Eq. (2), ' and if in all

where f, (q)= —,'(1+rI') and f2('q)= 4 ( 3
—

m ) Spectra

calculated using Eq. (11) for various a„and a~ values are

shown in Fig. 4. The asymmetry in the spectra is observ-

able even when (x ) = (y ).
The theoretical treatment given above assumed oscilla-

tors of a single frequency (Einstein model). We can ex-

tend the treatment to a general distribution of normal fre-

quencies and damping frequencies (Debye model).
If a y-ray-absorbing nucleus is bound to a macroscopic

entity, such as a macromolecule, its motion r can be ex-

panded in the molecular normal-mode coordinates ql with

1 =1,2, . . . , X. If the wave vector of the y ray is k=ke,
we can write

cases the overdamped limit is applicable (this requirement
can be relaxed, as will be discussed later), then, as all nor-
mal modes are statistically uncorrelated, we obtain

6(r ro t)«=gg(ql qpt »"qt
I

where qol are normal mode coordinates at time zero,

g (ql ~qpl~ t)
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FIG. 4. Mossbauer spectra of harmonically bound particles
acted upon by axially symmetric anisotropic damping forces.

If out of the X modes there are m modes for which

aj » I (j = 1,2, . . . , m), namely, mj /Pz » I" or PJ. is rel-
atively small yet still p~ &&I, we obtain that within the
finite range of experimental observation,

i
cp,„—cop

i (500I,
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where (xf ) refers to fast fluctuation rates, az » I .
Thus again the experimental spectrum consists of a su-

perposition of a narrow and broad line, the narrow line of
width I" of relative intensity

within a model of discrete jumps of the ion among %
equivalent sites (diffusion within a cage) which also
predicts narrow and broad lines. ' ' The recoil-free
fraction of the absorption line of natural width is given in
this model' ' as

2

f=fo —ge'" "
n

(18)

f„„=exp —k' g ar'(qI')
I (&j)

and the broad line of relative intensity 1 f„„.The —broad
line is composed of many lines each of which has a half-
width I /2+ gl ~&.~

ntnl and intensity

+ [(k'ar'&ql'&) '«1)lf-.
1 (&j)

where I n~j are series of integers, QI n~ n, ——
n =1,2, 3,4, . . . The total intensity is given by f«t. Thus
the absolute intensity of the narrow line is f„j'„„and
that of the broad line is f„,(1 f„„).In —biological sys-
tems at the "phase transition" between the solid phase and
"viscous liquid" phase, the extra degrees of freedom of
the molecular motions melt, become active, and contribute
both to the appearance of a broad line and to a sharp de-
crease in the total resonance absorption f„,.

It is worth mentioning that for very high n values as-
sumed for the m modes, namely large to and small P, the
underdamped limit may be reached. However, since
w &P» I Eq. (8) shows that only the n =0 line will be
observable and thus all previous conclusions are still valid.

The theoretical treatment given in the present paper is
similar to those giveri by Knapp et al. ' and Shaitan and
Rubin' for Mossbauer spectroscopy and by Rahman
et al. ' for neutron scattering. However, the present
treatment is characterized by the following. (a) It presents
the final formula in a closed form. (b) It treats the prob-
lem in three dimensions and this enables the introduction
of anisotropic binding and damping forces in a very sim-
ple way. (c) It presents a way to analyze a Mossbauer
spectrum in terms of only two lines and yet obtain all the
physical information which would have been obtained by
applying the exact formula, Eq. (4). (d) It treats the gen-
eral distribution of restoring and damping frequencies in a
scheme which does not require additional parameters in
analyzing the experimental spectra, except for the mean-
square displacement of the fast fluctuations, (xf ).

B. Comparison with dynamics of diffusion in a cage
I

We have concluded that the relative intensity of the
narrow line f„ is given by exp( —k (x ) ). It is
worthwhile to compare this expression to the value given

This formula yields, for the case of X=2,
r

sin(kd)
kd

2 1 2Ro= 4d (20a)

for X =4 (tetrahedron),

sin(kd)
4 0 + 2=3 2 ~Ro= 8d (20b)

for X=6 (octahedron),

sin(v 2kd) sin(kd)
v'2kd kd

for %=8 (cube),

f=
8 fo( 1+3Zt + 3Z~+Z3 )

sin(kd~l )

kd&l

Ro= 2d (20c)

(20d)

Here d is the shortest "jump" distance and Ro is the dis-
tance of each site to the center.

If we now allow X—+ oo, with all N points equivalent as
in the previous cases, and located on a spherical surface of
radius Ro, then the sum in Eq. (19) becomes

f o sin(kR) 1»n (kRo)
2RdR =f, kR 2R,' (21)

The average value for the square jumping distance is
(R') =2R', .

According to Eq. (21), Ro of about 0.4 A for the 14.4-
keV transition of Fe makes the narrow absorption line
invisible ( &1%). This result is different from that ob-
tained assuming a finite number X. For a finite number

where R„are the coordinates of the nth atom.
In a polycrystalline sample the orientation of k relative

to R„=R„—R is random and can be averaged out to
yield

sin(kR„)
kR„™
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6=2k, (1 f/f 0 ) . — (22)

The diffusion constant is defined by the formula
D = —,'A, (R ). For kRQ «1, b, =2k D, which is con-

sistent with the ordinary diffusion broadenin~ formula.
In this case, where (R ) =2RO and Ro ——3(xo), we ob-

tain D =A, (xo) and thus A, in the jump model coincides
with a of the harmonically bound diffusion model. '

C. Application to incoherent neutron scattering

The same formulas presenting the Mossbauer spectra
also represent the spectral function for scattered neutrons.
The only differences are (a) the natural width I can be
dropped, (b) coo is zero, and (c) instead of the convolution
with the source line in the Mossbauer case, a convolution
with the experimental energy resolution function has to be

N, even when (R ) is very large, a finite intensity 1/X
stays with the absorption line of natural width. In the
model based on the overdamped harmonic oscillator, the
recoil-free fraction for atoms oscillating around a center
within distance Ro would be given by exp( ——,k Ro)
which coincides with Eq. (21) only for low values of kR0.

%ithin the above model of jumps among N equivalent
sites the Mossbauer spectrum consists of many broad lines

which together appear as a single broad line of half-width

y/2= I /2+ b./2 where, as before, I is the natural

linewidth. The extra width 6 will now be given approxi-
mately by the general "diffusion-jump" models, ~'

b, =2k[1—g(k)], where A, is the jumping rate and g(k) is

the Fourier transform of g(r), the probability to jump a
distance r. In our case, if we assume that the probability
to jump to any point is the same, the probability to jump a
distance between R and R +dR is just the number of
points in that region. Thus we obtain for g(k) the same
formula as that for f/f 0 and may write

performed. The present formulas can thus be used suc-

cessfully for representing neutron scattering spectra from

diffusing nuclei in bound geometries. It is of interest to
make a comparison of the predictions of Eq. (4) with

those of Eq. (33) of Ref. 10, which treats the effects of
bound diffusion in a sphere of radius R on neutron

scattering spectra. Of special interest is the linewidth of
the broad line as a function of the momentum transfer k.
Within the present model, the half-width of the broad

line, Fig. 3, is k independent for low values of k and

equals a=D/(x ) =3D/(r ). The model of bound dif-

fusion in a sphere yields at low k a broad line of half-

width 4.333D/R (Fig. 2 in Ref. 10). Considering that

(r ) in our model .represents a Gaussian average of the
particles' motion amplitude, and R in Ref. 10 represents
the largest displacement of the particle, the two formulas

are not much different at all. At high k values both
models yield a broad line with half-width k D.

We conclude that neutron spectroscopy of nuclei in

bound diffusion can be treated by Eq. (4) or Eq. (5), with

advantages of Eq. (4) for clarity of behavior in extreme

cases and in anisotropic cases and of Eq. (5) for comput-

ing purposes. The sum converges very fast in comparison
to the slowly converging sum of Eq. 33 in Ref. 10.

III. EXPERIMENTAL RESULTS

In Fig. 5 we present typical Fe absorption spectra ob-
tained near room temperature in four different biological
systems which are

(a) iron storage material in packed cells of chick em-

bryo f1broblasts,
(b) membrane-bound iron storage material from Myco-

plasma capri colum, '"
(c) membrane-bound iron storage in packed cells of

Escherichia coli, and
(d) crystals of deoxy-myoglobin (deoxyMb) highly en-

riched in Fe.
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FIG. 5. Mossbauer absorption spectra in various biological systems containing Fe. The solid curves are theoretical least-squares

fits using Fq. (4). The parameters g) (in units of 10 '0 cm/sec) and n (in units of l0 sec '), are respectively (a) 40, &0; (b) 87, &&; (c)

26, 5; and (d) 4.3, 2.5.
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In cases (a), (b), and (c) the iron is in the form of inor-
ganic aggregates of size less than 50 A bound strongly to
the membranes. In (d) each protein molecule contains a
single iron atom which is part of the heme group, bound
within the protein.

A least-squares fit of Eq. (4) to the experimental data
for deoxyMb crystals [Fig. 5(d)] at 283 K yields
D =4 3X10 ' cm s ', (x )=1 7X10 A, and
cx =2.5 100 sec or v, =4X10 sec. The diffusive
motions of Fe in deoxyMb are large-scale internal motions
of structures internal to the protein of which the iron
atom is a part. Assuming, therefore, that m is of the or-
der of the mass of the protein (molecular weight 17000),
we obtain 13-3X10' s ' and w-9X10" s '. We thus
see that indeed, w ~~P and /3t &&1 (t is of the order of
10 sec—the lifetime of the Fe excited state), as is as-

0.0 10.0
Veiocity ( rnrn/sec )

FIG. 6. S7

at 230 K. T
ossbauer spectrum of Fe in dival t '

N f'en iron a ion
a . The inner lines show the decomposition of the s ec-'

trum into thin o e elastic narrow doublet and the quasielastic broad
line. (Nafion is the trade nname for perfluorosulfonate mem-
branes developed by DuPond. )

sumed in deriving Eq. (4). The parameters derived in the
three other biological systems displayed in Fig. 5 are given
in the figure captions. In, all cases consistently better fits
were obtained using Eq. (4) compared to fits to the sum of

le 'f
a narrow and a wide Lorentzian line in acco d 'thr wi sim-

p e di fusion-jump models. Another example of the phe-
nomena discussed is observed in Fig. 6 h h d' l
Mossbauer spectra of iron nuclei performing bound dif-
fusion in a polymer.

In Ftg. 7 we display the experimental spectra of deox-
yMb Ref. 23) which definitely exhibit an asymmetric
shape at temperatures above the freezing point of the
internal water, yet none at temperatures below this freez-
ing point, 220 K. Thus one is tempted to fit these spectra
with the formula of Eq. (9) with anisotropy in the mean-
square deviation. Such least-squares fits are shown in Fig.

IV. CONCLUSIONS

Many aspects of the expected spectra from nuclei per-
forming bound diffusion are not very sensitive to the ex-
act dynamical model for the kind of motion. All theories
predict a narrow, elastic line with additional broad quasie-
lastic lines. The relative intensity of the narrow line and
the width of the broad line are numerically similar in all
theories, though given by different mathematical expres-
sions. The unique properties of the present model are that
it considers many modes of motion as 11, as we as an1sotropic
motion, and yields a closed-form formula which can be
easily calculated in extreme limits and easily calculated by
computer. Only with very accurate experimental spectra
will one be able to distinguish between the relative validity
of different dynamical models.
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APPENDIX: SPECTRA FROM NUCLEI
IN PARTICLES PERFORMING

BOTH BOUND TRANSLATIONAL
AND FREE ROTATIONAL DIFFUSION

In cases where the diffusing bound particle is composed
of many molecuies, as in the case of a rigid macroscopic
particie, rotational diffusion may influence the Mossbauer
or scattered neutron spectral shapes. The case of bound
translational diffusion was treated in great detail in the
present paper; the case of free rotational diffusion was
treated in detail elsewhere. For a nucleus at a distance r
rom the center of mass of the particle, the intermediate

scattering function, for a y ray of wave vector k, or neu-
tron wave-vector change k, is given by

0.940 —.
-4 0 2 4

Velocity ( rnm/sec )
+ra&(rik, t) = g (2l +1j)t (kp)p

l=o
(Al)

FIG. 7.G. 7. Mossbauer spectra of Fe in deoxy-myoglobin which
display anisotropic harmonically bound motion. The spectra
were fitted by Eq. (9) assuming axially symmetric mean-square
displacement ( (x

~ ~
) and (x z ) ) and isotropic P.

Here jr(x) is a spherical Bessel function and D„, is the ro-
tational diffusion constant.

Considering the translational and rotational motion as
uncorrelated, we can calculate the spectral shape for the
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composed motion. The total intermediate scattering func-
tion is given by [see Eq. (4)]

(AS) with intensities

F„,(r, k, t) =F„,(r, k, t) exp[ —k (x )(1—e ')] . (A2)
A&(R) = f ai(r)r dr3 R

2

Performing the expansion as in Eq. (5) we obtain that the
final spectral function is given by a double infinite sum of
Lorentzian lines:

I (r, co)= —i (co—coo)—I
~

t
~
l2

e ' F„,(r, k, t)dt
27T

=—,'(2l +1)[jt'(kR)+ ji —1(kR)

2I+1 .
jt(kR)jt )(kR)] .

where

a„t(r)1 „~/2'

t =on =o (I'nI/»'+(~ ~o)'

1 „t/2=1 /2+na+l(1+ 1 )D„„

a„t=exp( —k (x )) (2l+1)ji(kr) .
(k2(X 2) )n

nI

(A3) Since the narrowest line in Eq. (A5) is of width I +2k D
and since generally I &&k D and, at least in the
Mossbauer case, D„,~&k D also, we expect that Eq. (A5)
can be reproduced by a single Lorentzian line of a width
slightly larger than 2k D. In the case of a homogeneous
spherical particle, where D,« ——4 D/R, one can calculate
the effective width of the spectrum given by Eq. (A5) by
equating

In practice we have to average the spectrum over all
values of r in which the nuclei are located. For a spheri-
cal particle of radius R with a homogeneous density of
nuclei, the spectrum of Eq. (A3) will be given by

I(co= I I(r, co)r dr .3 2

R

Thus the spectrum is still the same sum of Lorentzians as
in Eq. (A3) except that now the intensities are given by

I ff/2m AI(R)I t/2vr

( I ff/2) + (co —coo) t o ( I )/2) + (co —coo)

At co=coo, considering k D &)1 /2, we obtain

2k'D " At(R)

(A6)

3 R
A„t(R)= a„,(r)r'd»

R

3 k2( 2) (k'(X') )"—
2 n!

x[jt (kR)+jt )(kR)

jt(kR)jI )(kR)] . (A4)

In the simple case of a homogeneous spherical particle the
spectrum is completely characterized by three parameters;
the radius R, the mean-square deviation (x ), and the
diffusion constant D (where a =D /(x ) and

For k (x ) ~ S the translational diffusion behaves as
unbounded diffusion, Fig. 3, and the intermediate spectral
function can be taken as exp( —k Dt). Thus the total
spectrum will be given by

ai(r)I i/2m.
I(r, co) = Q (A5)

t =o (I t/2)'+(co —coo)'

where

In Fig. g I eff (in units of 2k D) is displayed as a function
of kR. For kR -3, the value of I,tt is in full saturation,
and equals 1.271&&2k D. Thus for a macroscopic parti-
cle, even the size of a small molecule (R —5 A), the
Mossbauer spectrum will be affected by rotational dif-
fusion only to the extent of broadening the translational
diffusion hne by 20—30%.

In the general case of a sphere performing bound
translational and free rotational diffusion, one can
represent Eq. (A3) by a superposition of an effective nar-
row line, the n =0 line broadened by rotation, and a broad
line, n & 1, also broadened by the rotations. The effective

l.2—

at(r) = (2& + 1)jt («)

I t/2=I /2+k D+l(1+1)D, ,

Again, in the case of a homogeneous spherical particle
after averaging over r, one obtains the spectrum of Eq.

I.O—
I I

Ip-2 O-I
I I

IO' IO' IO'
I I I

I I 0 IO

k R

FIG. 8. The effective width of the spectral shape from nuclei
in a spherical particle of radius R performing free translational
and rotational diffusion.
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width of these two lines can be calculated by the harmonic
averages

1 + Aoi

~nar l =O ~ol

and

IO

IO

l

~brod pg =& l =0 nl

These were calculated as functions of k (x ) for
k R &1000. In Fig. 9 I »r is given in units of I as a
function of 2k D/I'. 1 b„z is shown in Fig. 3, in units of
Za. We observe that the effect of rotation on the broad
line is about the same for all k (x ) values. In a recent
paper we have applied the formulas discussed in this ap-
pendix to analyze the spectra of iron in magnetic particles
located in bacteria.

C:

IO'

O
L

I I I I I I III
IO' IP4

FIG. 9. The line broadening of the n =0 line of Eq. (A3) for
spherical particles of radius 8 (kR & 10) as a function of the
diffusion constant.
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