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In previous papers formulas for mean wave numbers and spectral widths of transition arrays have

been presented. Here the method is extended to the cases nl n'lj'-nl n "lj", (nlj) n'lj'-(nlj) n "lz",
and (nlj) +'-(nlj) n'l~', i.e., when the spectrum exhibits several subarrays, due to the effects of
large spin-orbit interactions. The first case is typical of the x-ray transitions between the internal
subshells of the atom. The second and the third cases occur in the vuv and x-ray spectra of highly
ionized heavy atoms. The evolution of the array 3d 4s-3d 4p along the isoelectronic sequence is

presented as a first example of calculation, and criteria for the choice of the relevant formula are
proposed. A second example is that of the 3d -3d 4p array in the spectrum of tungsten. Formulas
are given (in the Appendices) for the total intensities of subarrays and for the variances of the distri-
bution of energy levels in subconfigurations of the types nl n'lJ' and ( nl~ ) (n'l~' )

I. INTRODUCTION

The calculation of the mean value and of the variance
of the wave-number dh'stribution of the transitions between
pure electronic configurations is useful in the interpreta-
tion of the spectra of highly ionized atoms. Formulas
have been derived' for these quantities and applications
to experimental cases have been presented. '

Throughout these studies, it has been assumed, or ob-
served experimentally, that the lines of an interconfigura-
tional transition array coalesce into just one broad band,
whose full width at half maximum (FWHM) and average
energy are the significant features. In fact, this is only
one extreme situation, where, for instrumental and/or
physical reasons, the experimental array is unresolved.
Another extreme situation is that in which all the lines
can be identified individually. In some intermediate situa-
tions the lines of the array are distributed in several bands,
whose width may either be small with respect to their
separation or of the same order of magnitude.

Two cases are frequently encountered.
(i) The first case is that of the x-ray emission spectra of

neutral or weakly ionized atoms. When a vacancy is pro-
duced by external means in a closed internal subshe11
n'l' + of the atom, it is soon filled up by an electron of
some higher subshell, through radiative transition. If
1'&0, the spin-orbit integral g„t ——f ~R„t(r)

~

g(r)dr-
is often the largest-energy radial integral in the initial
electronic configuration n'l' +'nl . . ., whatever external
open subshells nl . . . this configuration may contain.
Then, the energies of the initial levels depend primarily on
the value of the angular momentum j' of the internal hole
n'l'~ +' (j'=l'+ —,

'
), and this leads to split arrays.

(ii) The second case is that of the vuv or x-ray emission

spectra of highly ionized atoms in the hot plasmas of
current interest. In such a case the transitions occur
within the external subshells of the highly ionized atom.
If at least one spin-orbit integral predominates over the
electrostatic Sinter integrals, the spectrum is split (see, for
example, Fig. 3 in Sec. IV).

In both cases it is clear that the variance or FWHM of
the whole transition array has no physical interest. For
example, the Ka& and Ea2 x-ray lines appear so far apart
in the spectrum that it is generally useless to remember
that they are, together, the 2p 'nl -ls 'nl array (the
notation nl ' representing an nl vacancy in the closed
subshells). The relevant quantities are, now, the average
energy and the variance of each of the subarrays into
which the array splits.

As in the previous studies, ' we can compute the vari-
ance of the distribution of the transition wave numbers,
weighted by their electric dipole (El) strengths. The re-
sults are useful if the other broadening effects are negligi-
ble. Such an assumption appears to be valid in the spectra
of highly ionized atoms [case (ii) above], but it is not real-
istic in the x-ray spectra of neutral or weakly ionized
atoms [case (i) above], where several other broadening
phenomena have a major importance (e.g. , see Ref. 6).
However, in the latter case the width which we can com-
pute contributes at any rate to the x-ray linewidth.

In the following we are essentially interested in three
specific types of subarrays.

(i) (nl) 'lj n-(nl) n "lJ', denoted i+j'-l j" in shortened
notation (Sec. II); the complementary subarray,
l + j' '-I + j" ', which has the same properties,
is typical of the atomic x-ray lines.

(ii) (nl~) n'l~'-(nlj. ) n "l~", denoted j j'-j j" (Sec.
III B). In Sec. IV we present, as an example, the evolution
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of the 27Co-like 31 4s-3d 4p subarrays between types
l j'- l j"and j j'-j j"with increasing nuclear charge.

(iii) (nij) +'-(nl/) n'l~', denoted j +'-j j' (Sec. IIIC);
j +' is generally the ground configuration in highly ion-
ized heavy atoms. In Sec. V we show, as an example, the
case of the 3d -3d 4p subarrays.

The above-mentioned examples are comparisons be-

tween the formulas developed here for the first and
second moments of the distributions of wave numbers and
ab initio computations of all the lines of the arrays.
Keeping the style of the two previous papers of this series,
which were purely theoretical, we shall not include here
extensive comparisons with experimental data. These,
which usually require the present as well as the previously
derived formulas, will appear in another series of papers.
Nevertheless, we shall very briefly comment, in Sec. VI,
on a laser-produced spectrum of highly ionized thulium
and see how the new moment formulas allow its interpre-,
tation. The formula for the total intensity of a subarray is
given in Appendix A and that for the variance of a sub-
configuration in Appendix B.

As in Ref. 1, denoted I in the following, the variance is
defined as cr =p, 2

—(p & ), where

p = X [{b
I
FI

I
") (a

I
II

l
a)]"M

b I
a, b

is the nth moment of the weighted line —wave-number
distribution. The weight w, b of a transition is the z part
of its El strength [ toab
W= g, & w, b. But, in contradistinction with what was
done in I, the sums on a and b do not run, respectively,
over the complete sets of states of the lower and upper
configurations A and 8, but on subsets defined in the fol-
lowing sections.

As in I, we assume that the configurations of interest
are sufficiently isolated for configuration mixing to be
negligible. This assumption holds in highly ionized spec-
tra, provided that the extreme situation of I.ayzer com-
plexes is not reached.

Concerning the average wave number, the quantity of
interest is not p &, but rather

5E ( Y~X)=T,„(Y~X) [E,„(Y)—E„(—X)], (2)

where Y and X are respectively the upper and lower sub-
configurations, T,„(Y~X)=@~, and E,.„ is the average
wave number of a subconfiguration [in analogy with Eq.
(13) in I].

In the sequel each letter l, l', l" figures unambiguously,
either the whole symbol nl, etc. , or only the orbital quan-
tum number I, etc. Each letter j, j', etc., is added as a
subscript or even replaces niJ, n'lz', etc. , when g„r, g„r,
etc. , is predominant.

b =
/
[I qII', (sl")j"]J"M)

(3)

with fixed j' and j" values. In Eq. (3) the coupling '0&

(41') depends upon the values of all the energy integrals
other than gI ($1-).

Apart from these restrictions on the summations, the
formal calculation of the variance resembles that of the
array i 1'-l l" in I. In particular, the same products of
Slater integrals (PSI) occur as in Table III of I, with the
same dependences on X.

Moreover, the couplings 4& and 4I' in Eq. (3) can gen-
erally be chosen in a way appropriate to each desired PSI
[among the exceptions are the F"(i,l')6" (l, l') products,
for example]. Then, for all PSI, it suffices to calculate the
variance by Racah's methods in a simple case (N= 1, or
4l + 1).

The complete expression of the variance cr for the
subarray l' j'-l j" is listed in Table I. In this table the

"= I. '~ 1/2

"= R. —1/a

'= I.'+ 1/c

rules imposed by the electric dipole transition operator Z,
I"—l' = 1, and the lines which do not fulfillj"—j' &1 have a negligible strength. Therefore the

transition array splits into three subarrays, as shown on
Fig. 1 for the case l"=l'+1.

For computing the mean wave number and the variance
of each of these subarrays, Eq. (1) can be used, with the
summations running over all eigenstates

a =
~
[l %~,(sl')j']J'M),

II. SUBARRAYS OF THE ( nl} n'lj' -( nl) n "lj" TYPE

(q I,"= R.'+1)

FIG. 1. Splitting of a transition array l I'-l l" into subar-
rays, due to the large values of the spin-orbit integrals of the
outer electrons I' and l".

In the (nl) n'lj' (nl) n "lj"-array, denoted i j' ij"in-
the following, we suppose that i' and 1" are different
from zero and that the spin-orbit integrals $1 and (I- are
by far the predominant energy parameters. Each configu-
ration splits in two subconfigurations, characterized by
the value j'= l'+ —,

' or j"=l"+ —,. Because of the selection
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TABLE I. Different parts of the formula giving the variance o. of the subarray ( nl) n'IJ' -( nl) n "IJ". t =N(4l —N +2).
2 2

5(k, k') J 1 (2j '+1)(21+1)(2l'+1)
'I k I 2 I k I I' k I'

tFk(ll')F (II')
k(+0)k'(0) 2k+1 1' T I 4l+1 000 000

K2.. Same as K2 with I" and j"
5(k, k') {2j'+1}{21+1}
2k+1 2{4l+1)

replacing I' and j', respectively .

I kl' I k'I'
tG (II')G (II') .4(4/+]) 0 0 0 0 0 0

Same as E3 with I" and j"
k j'

g( 1}k'~(
k (+0) k' . I 2 I

replacing I' and j', respectively .
2

I k I (2J +1)(2/+1)(2/ +1)2 I k / I' k I' I k' I'
I' k' I' 4/+1 0 0 0 0 0 0 0 0 0 tFk(ll')Gk(ll')

Same as EC4 with I" and j" replacing I' and j', respectively .

—25(k, k')
k (+0) k' (+0) 2k + 1 (l'

I k I I'
~ 000 0

k j' j"
I'

I
I"

k /' I"
0 0 0

k j j k 1" {2j+1}{2j-+1){2l+1)(2l+l)(21 +1}
4l +1

k I"
tF (I/')F (II") .

1

2(4I + 1)

'2
J 1 J (2j'+ 1)(2j"+ 1)(2l + 1)(2/'+ 1)(2l"+ 1)

1 I' 4l+1

2 2
I kl' I O'I"
0 0 0 0 0 0 tG (II )G (ll )

~ f

I(.,= g $(—1)"
k(~0) k I

I k I
~ 000

k j'
1

2

I' k I'

000

k j" j" k j", I k I (2J'+ ] )(2j"+ 1)(2l + 1)(2l'+ 1)(2l"+ 1)j' II« ' I«1" k' I" 4/+ 1

2
I k'I"
0 0 0 tF (ll )G (II )

K7 ~ Same as K7 with I' and j ' interchanged with I" and j", respectively ~

spin-orbit integrals g&. and g~ do not occur, of course, and
also not the differences bF"=F"(l,l) (in l I')—F"(l,l) (in
l~l") and bg„~=/„l (in l l')—g„~ (in l l"), which are
supposed to be equal to zero, for the sake of simplicity.
Each line is denoted K; or K, with the subscript i pro-
gressing down Table I in analogy with Table III of I.

For the subarray average wave number, the quantity 5E
defined in Eq. (2) turns out to be 5E(l j ' lj ")=0, in-
analogy with Eq. (12) of I. If a passive open subshell i(. is
added, it can be shown, along the same lines as in Ref. 2,
that

~'(~.~"~ ~ I '')=~'(I"J' ~ j")+~'(~ j' ~ j") (4)

Now, if we suppose that l', say, vanishes, results listed
in Table I and the above remarks are still valid, because
the coupling defined in Eq. (3) can still be written. How-
ever, the transition array splits into two subarrays, instead
of three like in Fig. 1, because the lower configuration
does not split.

III. SUBARRAYS IN PURE j-j COUPLING

A. Principles

It frequently happens, in heavy atomic ions, that all the
spin-orbit integrals in the open subshells predominate over
the Slater integrals. Then, the coupling is of the j-j type
in both configurations, and the transition array splits into
several subarrays. As in I, we have studied the cases

+
The example of the d p-d d' array is displayed in Fig.

2, in the assumption of vanishing Slater integrals. Each
configuration splits into six subconfigurations, represent-
ed by horizontal segments. Because the ionic core d
must not change in the transition, and because of the
selection rule

~j"—j '
~

(1 for the jumping electron, the
array splits into nine subarrays only, represented by verti-
cal arrows. The wave-number splittings between these
subarrays are such that only three lines can be seen in the
spectrum, each one being the superposition of three subar-
rays. In fact, the splittings between the peaks are equal to
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(l~)
(~)

(zo)
()5)
(6)
(5)

(s)

sh, ) P 3/a

3/z. s/2. P g/p

(dip) P

somewhat more complicated. The example of the d -d p
array is presented in Table II. Each line refers to one of
the subarrays. Only three broad bands appear in the spec-
trum, corresponding to the three one-electron lines d3/2-
p&/p d3/2 p3/2 and d5/2 p3/2 and resulting from the su-
perposition of subarrays.

In brief, it appears that all the subarrays of the l I'-
1 1" and 1++'-l 1' arrays belong to one of the following
two classes: (i) j j'-j j", with a possible passive j"'
open subshell in both configurations; (ii) j + '-j j', with a
possible passive j" open subshell in both configurations.
Each subarray of d -d p is assigned a class in the right
part of Table II.

B. Subarrays of the jNj'-jNj" type

In the application of Eq. (l), the summations now run
over all eigenstates

a =
~
[j 4&,(»')j']J'M),

b =
~ [j 4,",(»")j"]J"M)

(5)

3/z ds/z P)/p

(ds/a) P)/p

(101) (2(7)(177)

FIG. 2. d p-d d' transition array. For the sake of simplici-
ty, the Slater integrals are supposed to be zero. Each configura-
tion splits into six degenerate subconfigurations (degeneracy in
brackets). The nine allowed subarrays group into three peaks
(number of lines in brackets).

with fixed j, j, and j values. The principles of the cal-
culations resemble those for 1 j' 1j" (Se-c. II). The re-
sults for the variance are listed in Table III, which is
presented in the same general way as Table I.

Three points are noteworthy.
(i) As each of the Slater integrals enters the formula for

the variance together with a reduced matrix element of
the (j& ~ ~

C' '(
~
j2) type, we have chosen to express the latter

through the formula

((»1)JI
I
IC'"'II(»2)j»=( —I) ' «2ji+ l)(2j2+ I)

j& k j2
02 2

those between the lines of the one-electron p-d' array.
Now, in physical cases the Slater integrals do not vanish;
it may only happen that their effect is much smaller than
that of the spin-orbit integrals. Thus, the three lines in
Fig. 2 are replaced by broad peaks.

The case of the l +'-l l' arrays in pure j-j coupling is

with the assumption that 1, +.1+ 12 is even (see Ref. 9).
(ii) It will be useful in Sec. V to consider the case where

nl and, say, n'1' are identical, provided that j&j'. In that
case the PSI F"(1,1')F" (1,1'), G (1,1')G" (1,1'), and
F"(1,1')G" (1,1') are actually identical (but not their angu-
lar coefficients in the variance expression, of course).

TABLE II. Example of the d -d p transition subarrays. On the spectrum, only three peaks can be
seen, each one resulting from the superposition of three subarrays and corresponding to the transitions
d3/2-p1/2, d3/2-p3/2, and d5/2-p3/2. The right-hand side gives the type of each subarray referring toSecs. III 8 and III C.

Subarray

3 2d 3/2-d 3/2 p1/
2-d3/2 p3/2

JN+1 JNJ~
JN+1 JN

Type

2d 3/2d5/2 d3/2d5/2 p1/2
d3/2d5/2 p3/2

2
d3/2 p3/2

j +'-j j' (plus spectator d5/2)
j +'-j j' (plus spectator d5/2)
J J J J

2 2d3/2d 5/2 d5/2 p1/2
2-d 5/2 p3/2

d3/2d5/2 p3/2

j J -J J

j +'-j j' (plus spectator d3/2)

3 2
d5/2 d5/2 p3/2 JN+1 J.N. ~
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TABLE III. Different parts of the formula giving the variance o. of the subarray ( nIJ ) n 'lJ' -{
nlrb ) n "l~".

y'=N(N 1—)(2j —N)(2j N—+1), t'=N(2j —N+1), II(l, l', k)=[1+(—1)'+'+"]/2, hF"=F"(nl, nl) [in (nl~)~n'lJ ] F—"(nl, nl) [in
(nlJ)~n "1").

F ~ ~ 5(k, k')

k (+0) k' (+0) 2k + 1

1,jj k, (2J+1)3 J k j '
2j(2j+1) J J k (2j —2)(2j —1)4j —, 0 ——,

~ kt ~ 2

tgFkgFk'
2 20

P — ' j J 'F (/I') (ll'
k(~0) k'(~0) 2k+1 2J 0 —

2 2 0

5(k, k')
2k +1

P3.- Same as P3 with I" and j" replacing I' and j', respectively .

P2.. Same as P2 with I" and j" replacing I' and j', respectively .

(2j + 1)(2j'+ 1) t'H(/, /', k)II(/, /', k')6 (II')6 (II') .
(2j + 1)(2j'+ 1) 2j 2 0 —

2 2 0

k'
P g g 2( 1)k' ~ (2J +1)(2j '+ 1)

(~0) k. J J 2J
even

1 1

2 2

J k J J
01

2

k j' j k' j'
'H(l, l', k')F (II')Gk {II') .—

2 2
—

2

P4.. Same as P4 with I" and j" replacing I' and j', respectively .

25(k, k') . J
k (~o) k'(~0) 2k+1 J

even even

k
t (2j+1)(2j'+1)(2j"+1)J" 1 2J

k j
0 1

2

k

01

2
1

2

J lt k 'll

t'F (II')F (II") .-'0 —-' '
2

t '2
k k'1

1

J J J
~

(2j+1)(2j'+1)(2j"+1)
2(2j + 1)(2j'+1)(2j"+ 1)

2J

J k Jx
02 2.

k (+0) k' IJ
even

1

2

I II 2

t'H(l, l', k)H(l, l",k')6 (II')Gk (I/") .
2

. 2(2j + 1)(2j'+ 1.)(2j"+ 1)
1 [j j k'

2J

J k J J k

2 2 2
—0 —— —0 I 1

2 2

I ~ ll 2

H(l I" k )F'(ll')6'(ll")
2

P7. Same as P7 with I' and j' interchanged with /" and j", respectively .

(iii) Table III can also be used if, say, l =0, in which
case the array splits into two subarrays only.

Concerning each subarray average wave number, the
quantity 5E defined in Eq. (2) is zero.

If passive open subshells A, , A,', etc., are added, they
contribute to o. in ways which depend on the magnitudes
of the spin-orbit integrals g~. For example, if g~, g~, etc. ,
are small,

o'(A, "A,'~ j "j '-A, x'"' j~j")

with i (i') being the total angular momentum of a A, (A, ')
electron. It can be noted that Eq. (8), together with Table
III, suffices for computing all the subarrays the l l'-1 l"
array splits into, when gt, gt, and gt» are predominant ra-
dial integrals.

C. Subarrays of the j +'-j~j' type

In the application of Eq. (1), the summations now run
over all eigenvectors

if they are all large,

=~'(j~j ' J~j")+o'(x J"x"J")-
+ tr'(A, '~j' X'~g")+ ~ - ~;-

a = ~j +'ql, Jllf),

b =
I [J"Ki '1~'M)

o2(i i'" j j ' i "i' ' j j")-
=~'(J "J'-i i ")+~'(&"i' t'i")-

+tJ (i' j ' i'"j")+-
with j and j' fixed. The results for the variance are listed
in Table IV, which is presented in the same general way as
Table III [see also (i) and (iii) in Sec. III 8].

In the case where each (Fl, ttl) nSlater integral has the
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TABLE IV. Different parts of the formula giving the variance cr of the subarray ( nlj ) ( 71lj ) 71 lj .
x'=N(N+1)(2j —N —1)(2j —N), y'=N(N —1)(2j —N)(2j —N+1), z'=N {N—1)(2j —N —1)(2j —N), u'=N(2j —N —1)(2j
—N), O'=N(N —1)(2j—N), m'=N(2j —N), Fz and F& are the Slater integrals F (nl, nl) in the subconfigurations (nlj) +' and
( nlj )~n'IJ', respectively, II(l, I', k) =[1+(—1)' +'+"]/2.

5(k, k')

k(~o) k'(~o) . k+
J J k (2j+1)3

2j(2j+1) J' J' k' 4J(2j —1)(2j —2)
' even even

j k jx 0
, 2 2

1

2

kl ~ 2

(x'F,'F,"'+y'F,'F,'—2z'F„'F,') .
0 2

k (+0) k' (+0)
even even

5(kk') J J k J J k J
2k+1 j J 1 j J k IJ

j k' ', 1 j j k'
J' 1 2j(2j+1) J' J' 1

(2j +1)'(2j'+ 1)
j (2j —1)(2j —2)

~ k( ~ ~ ) k) e)

[u'FgF" (ll')+u'FuF (ll')] .X
2 2 2 2 20 —— — 0

even

2
k k'1 j' j'k j' j' k 1

Zj(2j+1)
5(k', 1) 1

3 2J +1
(2j +1)'(2j'+1)
j (2j —1)(2j —2)

i k
II(l, 1',k')[u 'Fg G" (ll')+u'Fu Gk (ll')] .

2 2 2 2

5(k, k')
k (~0) k (~0) (2k + 1)(2J + 1)

eveneven

k

2j J J k J J
J J

(2j + 1) (2j'+ 1)
2j(2j —1)

02 2 2
1

2

j k' j j' k' j'
)Fk{II) )Fk'(ll) )

0 —— — 02 2 2 2

5(k, k')
(2k + 1 )(2j'+ 1)

J
—'J

k'

j' k
1 5(k, 1)

1 j
2J 3

J J

1

2j'+1
5(k', 1) 1

3 2j'+1

', 2 ~ k) ~ ) 2

{2J+ 1) (2J + 1) g(I I I )H(l I k ) Gk(ll )6 (II )
2J(2J —1) 2 0 ——, 2 0

&6= XX
k (+0) k'

even

~ ) ~ ) k
1)j+j' .

2j'+1 J J

k'1 kk'1
1 j j'1

j i i J J 2J J Jk
5(k', 1)

3
1

2j'+1

(2j+1)2(2i'+1)2 i k j j k j
X 1 1 . 1 1j{2j—1) —0 —— —0

~ I ) ~ ) 2

H(I, I', k')m'F (II')6 (II') .
2 o —

2

same value in both subconfigurations, the formu1as sim-
plify, as

x '+y' —2z' =4X (2j N)(j —1), —

u'+u'=2JV (2j —X)(j—1) .

The application of Table IV when j = —,
' can always be

avoided.
In the evaluation of the subarray average wave number,

the quantity 5E defined in Eq. (2) reads
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even

(2j+1)(2j'+1) k J J J k

2j j j —, 0

~ / k
~ J

F"(Il')
2 o —

2

~ k
~ g 2

y„('+'"2"+"5( " ' ' ', ~(i, i,k)G"(a)
6j 0

while the average wave numbers E„ofthe subconfigura-
tions can be evaluated by means of the tables published by
Larkins. '

If passive open subshells A, , A, '', etc. , are added, they
contribute to o. in ways which depend on the magnitudes
of the spin-orbit integrals g~, g', etc. For example„ if
these integrals are small,

2(J"vt iv'. . . N+1J"vgiv'. . . JNJ')

2( N+1 jNj')+~2(gvj yves)

+o (A, j-A,'"j')+; (12)

if they are large,

2( ~ v iv'. . . N+I ~v&v'. . .

=~'j("+'J J')+~'(r'J-l j ')+o'(I'"j r""j ')+. .-.

(13)

IV. FIRST EXAMPLE: THE 3d 4s-3d 4p ARRAY

We chose the simple 3d 4s-3d 4p transition array (al-
though it is usually resolved in the observed spectra) as
typical of the evolution of the pattern of a transition array
along the isoelectronic sequence.

A. Evolution of the pattern

I

formulas published by Larkins' and by Bauche et al. '
The corresponding calculated spectra are presented in Fig.
3. The conclusion is that Table III of I gives a satisfacto-
ry interpretation of the spectrum in the case of Kr, and
Table I of the present paper in the cases of Mo and Pr.

Kr d p-d ~

I l

!'i
I

I

Is,' ll s I I I I t IIII Il. . . .„, , „"'4o'd'''''''4'Hd'''''''5'0'd'''''' h'So
' ''' 6'0( ' ' '''b6d''''''7'0'd'' ''''70d'''''''8'oo

3 {A)

I

I

I

I

I

I

I
I

I
Ie1

I

In order to fulfill the basic assumption of isolated con-
figurations, . we studied the spectra in the range
Krx—Wxrvm, (i.e., from Z=36 to Z=74). If we use
the crude assumption that the external 3d, 4s, and 4p or-
bitals are hydrogenic with the same effective nuclear
charge Z* (=Z —26), (i) the (3d, 3d), (3d, 4s), and (3d, 4p)
Slater integrals are proportional to Z*; (ii) the spin-orbit

$3d and f4~ integrals are proportional to (Z'); and (iii)
the ratio $3d/g4~ is independent of Z* and equal to

:047 (Ref 11~ p 123)~

It is clear from (i) and (ii) that the spin-orbit integrals
become predominant when Z increases. This is the reason
for the splitting of the transition array into two subarrays,
corresponding, respectively, to the transitions 4s ~~2-4p &&2

(longer wavelengths) and 4sI~2-4@3/2 (shorter wave-
lengths). Furthermore, in view of (iii), there exist values
of Z for which the pe integral predominates over the
Slater integrals whereas $3d does not.

VVe used the relativistic parametric-potential code RE-
LAC (Ref. 12) for computing the wavelengths and the El
transition strengths of the 401 lines of the array 3d 4s-
3d 4J' for 36Krx, 42MoxvI, and 59Prxxxrrr. The relativ-
istic Slater integrals obtained were converted into the usu-
al Slater and spin-orbit radial parameters by means of the

„I I tl, I,Ii„„l,l, l,
300 ' ' 35b

Iq
N)III 4f+14ll4lS. LIJJLIULI I I II I

454 500 A(A)

P~ ds -d'

I

I

I I

I

I

'I
IIIIIIIIIW~WR I II! US~ ~RSJI UHKI / I CIIII IIIII I I I I

J'00 200 y{A)

FIG. 3. Examples of calculated spectra in the 3d 4s-3d'4p
series. Each line is represented with a height proportional to its
strength, except those with a strength less than 3% of the
highest, which have all, conventionally, been increased to that
3% limit. The dashed curves are the envelopes of the line spec-
tra for some small linewidth, sufficient for the coalescence of
the lines in one or two peaks. The solid curves are Gaussians
whose F%'HM have been calculated by means of Table III of I
(36Kr) and Table I of the present paper (42Mo, 59Pr).
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TABLE V. Example of the 3d 4s-3d 4p series. The full widths at half maximum F%'HM1 and FW'HM2 have been computed us-

ing Table III of I and Table III of the present paper. All entries are in cm

~FWHM

( d's-d'p)

~FWHM1

(d s1/2-d'P1]2)

~FWHM2

( d s &/2- d P3/2 )

~FWHM1+ ~FWHM2
3

—'E (3d, 3d)

36Kr X

10579

11 311

16499

27 810
12 870

10905

42Mo XVI

21 733

16071

24 280

40 351

36999

27 955

117240

48Cd XXII

42 851

20 837

32212

53 049

83 254

59 170

148 159

g4Xe XXVIII

78 691

25 556

39489

65 045

160 825

109772

189519

&9Pr XXXIII

125 153

29 428

45 477

74 905

260445

174 712

215 270

69Tm XLIII

283 590

37 140

94 618
598 050

386415

265 832

74%' XLVIII

407 195

41 125

63 538

104663

860 790

543 107

291 697

B. Choice of the variance formula

First, let us recall that it would be generally incorrect to
consider an l +'-I+l' (or I I'-I l"} array as a superposi-
tion of subarrays j +'jj' (orj-j'jj"). In-deed, doing
so would mean neglecting the off-diagonal Hamiltonian
matrix elements between the jj subconfigurations. These
are, however, responsible for the departure from pure jj
coupling and are not the predominant integrals. Thus the
question of the choice of the proper formula is unavoid-
able.

Now, we shall propose some simple criteria for choos-
ing the variance formula adapted to the physical case of
interest. The first criterion to be found concerns the
choice between the cases l I'-l l" (one peak) and l j'-
l j" (several peaks). For the case of d s-d p we have
found, through numerical studies of various situations,
that such a criterion can be built on the comparison be-
tween 3(qF/2 (the 4p spin-orbit splitting) and the full
widths at half maximum of the two subarrays, calculated
bymeans of Table I: if

—,'F (3d, 3d) & —,'(3d & —,gqz . (16}

The numerical results listed in Table V can be used for
applying both criteria defined above. First, the compar-
ison between the fourth and fifth lines gives a test of Eq.
(14): The conclusion is that the variance of the whole
3d 4s-3d 4p array is void of physical interest beyond
Z=45. Second, the comparison between the lowest three
lines of Table V gives a test of Eqs. (15) and (16): The
l j ' lj" model s-hould be more adequate for Z=50—65
and j~)'-j~g" beyond Z=65.

The three ranges of Z values are clearly visible in Fig
4, where the curves represent the variations of —,

'
g~, —,

'
gd,

(lo cm )

3d and 4p spin-orbit splittings, and the angular coeffi-
cients of the F (3d, 3d) Slater integral vary by at most
one-half inside a d configuration. On the contrary, the

j j'-j j"model should yield better results when

~FwHM(d ~1/2 d pl/2 }+~FwHM(d & l/2 d p3/2) (3gqq/2,

(14)

the separation in two subarrays and the values of their
FWHM are meaningful (note that, for a Gaussian curve,
the FWHM is equal to 2.355o ).

The second criterion relates to the choice between the
cases l j'-l j" and j j'-j j", which both correspond to
two peaks in the present example (I'=0) and to three
peaks otherwise. Because each peak, in the j j'-j j"case,
turns out to be the superposition of several subarrays (see
Sec. III A), the FWHM of each of the latter cannot be uti-
lized for defining a criterion. Instead, one could look at
the purity of the j jcoupling in the -configurations them-
selves. Thus, the I j'-I j"model would be considered as
adequate in the 3d 4s-3d 4p case when

—,
'

$3d (—,
' F (3d, 3d ) & —', gg~

with F2(3d, 3d) being the largest Slater integral involved.
Indeed, the quantities —,f3~ and —', f4~ are respectively the

600

400

BOO

p
I I I

36 42 48 54 59 68 74 g
FIG. 4. Values of 2 g~, 2 gd, and 2 E (d, d) along the

isoelectronic 27Co-like 3d 4s-3d 4p series.
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TABLE VI. Comparison of the FWHM of the two subarrays of the d s-d p spectrum, in the cases
of »Pr XXXIII and 74WXLVIII. The results given by the two sets of formulas C,Tables I and III) can be
compared to those of the calculated spectra All entries are in A.

»Pr XXXIII d s&/2-d p3/2
8 8

d $I/2-d p&/2
8 8

(+ ~ I
fthm

~ II

7.6
112

5.6
7.7

Calculated
spectra

6.9
11.3

74% XLVIII d $1/2 d p3/2
8 8

d s)/2-d p)/2
8 8

2.4
6.8

1.8
4.6

1.9
4.5

and 2F (d,—d) versus Z. /he I I'-l l" model is adequate
for low Z values, j j '-j j" for large Z values, and l j '-

l j" in between. Although the latter range corresponds,
strictly speaking, to 56 & Z & 61, we think that l j'-l j"
is also useful for neighboring values (e.g., for larger Z
values, because it is simpler to apply than the j j'-j j"
model).

A test of the second criterion can be found in Table VI,
where three values of the FWHM of both subarrays of the
3d 4s-3d 4p array are given for the 59PrxxxiII and the
74M XLVIII ions: that calculated in the l j'-l j" model
(Table I), that in the j j 'jj" mod-el (Table III), and that
deduced from the subarray envelopes drawn on the spec-
trum (see Fig. 3). The figures in the third column of
Table VI agree better with those of the first one in the
59Pr case and of the second one in the 74W case.

Both above criteria can be easily generalized to other
types of arrays, especially Eq. (14). For the cases of Eqs.
(15) and (16), it can be asserted that F (nl, nl) is the larg-
est relevant Slater integral in nl n'1' configurations.

V. SECOND EXAMPLE: THE 3d -3d 4p ARRAY

%'e chose the 3d -3d 4p transition array in the spec-
trum of 74WXLVIII (z7co-like sequence) as a typical appli-
cation of the formalism developed in Sec. III. The lines
of the array are grouped in three peaks, because both in-
tegrals g&d and f4~ are large. The calculated spectrum is
presented in Fig. 5, namely, the lines computed ab initio
by means of the RE?.AC code' and three Cxaussian curves.
Each of these curves represents the superposition of two
subarrays: Its mean wave number (variance) is the
weighted average of the subarray mean wave number
(variance). All the numerical data for the subarrays are
listed in Table VII.

The weights of the subarrays can be evaluated in the
way described in Appendix A. The most meaningful
comparison is that of the Gaussian curves with the en-
velopes, as in Fig. 3 (see Sec. IV). This comparison is sa-
tisfactory.

O
O

CU

d'- d'p

OO
OJ

I—
H
QO

O
I—

f

f

f

f

f

I

l

I

I

l

I

OO

O
Ol

O
IIII' l

I

. S

FIG. 5. 74WXLVIII 3d -3d 4p transition array. For the definition of the curves, see caption of Fig. 3.
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barrays of the 3d -3d'4p transition array in
) h'f l I d b

f the calculations of the positions anTABLE VII. Details oi t e ca c
d difference between e

and 4, 2 and 5, and an3 d 6 are superposed, an e
W XLVIII spectrum. ( )

ix A). The subarrays 1 and} t l strength (see AppendixQf Eq. (11). (Weight& tota s re
exhibits three peaks (see Fig. 5).

Subarrays

d 3/2d 5/2" d 3/2d 5/2 P 1/2

d 3/2d 5/2 P 3/2
2 6

d 3/2d 5/2 P 3 /2
3 5

d 3/2d 5/2" d 3/2d 5/2 P 1 /2

d 3/2d 5/2 P3/2
3 5

4d 3/2d 5/2 P3/2

No.

4
5
6

d
(cm-')

14 342 800
15 193 562
14 661 202

14 337 452
15 196566
14647 942

6E
(cm-')

11 324
—4684
11 192

16986
—7026

8954

Axis
wave number

(A)

6.9666
6.S838
6.8155

6.9665
6.5835
6.8227

(cm ')

65 625
67 100
41 798

50 858
52 155
51 905

FWHM
(A)

0.075
0.068
0.046

0.058
0.053
0.057

Weight

5
1

12

10
2

15

VI. CONCLUSION

(17)

N+I INi an-d & - a~l'-l l" arrays are frequently en-
ectra of highly ionized atoms. Whhenp

interaction is large, t ey
Th. --"-"---ays, as was stresse yd b Cowan. e a

s of the subarrays j-
+'-' ' can be readily calcu a e

above. The influence of passive open1es a d q at'o s

1

n occurring, is accounte or.

e for ihe whole arrays. '

However, many othher situations can

+'- ' +'j' subarray both relevant sub-

'
h are the following.

b fi 'o . I 1o
with Eq. (8) of Rex. 2, we propo

2 .N+ ., ~ . ~ Ã(2J —S) 2 .2,
)

2 .N+I iN' N iN'+I)'T (J J J J

X'(2j ' N')
2( .,2—

Zj' —1

e s
' ' - '

e ious' ). In such cases the presentlet satellites in 2He-like ions . n s

bl'hd fo 1 fo ha we have pu is e
collf1 llratlolls In I, we givevariance of the o 'g

varianceo t esu cthe formulas for the va
'

arlier, the main purpose oof this paper lsAs mentioned ear ier,
1 lications of whichop o ' pm the hysica app ic

arately. The case owill be pubhshed p
0 is in the course o eing p' . 6 the relirninary in erpr

s ec h 1' obtained in laser-s ectrum of thu turn o
as. Four 2sNi-like lines have been com-

b"" ' '" th' Cuputed, p us ad, 1 associated satellite su ar

for j,j'~ —,', and

X 1 X'~E(J J'"+'~J""J'")

Ni Cu Ni
Ol Cl~Cu ~
Y)

O

2J + g~( N i N+I)
2j

2J + gE (
N' N'+ I )~ ~ ~

2'j
l I'-l l" array it may happeen that the only

W h obt
' dfo 1

for the corresponding suba y,arra, denote j-
l +'-l j' and j +'-' l' arrays have not been

cons de ed. Actua y,ll we have o aine

I .i2'+I 4l —N+2 i2J'mentary array l 'j' - j
b 'd '"b

x-ra atomic spectra.
lt

hll o 'o1 d
en that t e o serve

' '
n of assive open su s e sp

lines which do not obey jj coupling e.g., sin

I I I II I I' g
I

m of thulium obtained in a laser-FIG. 6. X-ray spectrum o u i
a. The calculated spectrum consis sproduced plasma. e c

Ni-like spectrum and of as-to lines of the 28 i- i e
cu- through 32Ge-like spec-sociated satellite su y u- rbarra s in the 29 u 1

tra, w ere specctator electrons are 4s, p,
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through 3QGe-like spectra, with spectator electrons
4s, 4p, 4d, 4f. The overall pattern is fairly well reproduced
by the subarray formalism. A more quantitative compar-
ison, requiring a detailed description of the plasma condi-
tions, including optical thickness and intensity scale cali-
bration, is beyond the scope of this paper and will be pub-
lished elsewhere.

0

1

2

1

2
3
2

4
3

8
3

TABLE VIII. Calculated values of the factor all jj defined in

Eq. (19).

Transition

APPENDIX A: TOTAL INTENSITIES
OF SUBARRAYS

The total strength K of a subarray can be expressed in
terms of the E1 transition radial integral in the nonrela-
tivistic limit

I~i,n'r= I R„I(r)R„I(r)r dr .

The basic formula reads

K (~
N iN' ~ iv+ 1 iN' 1). —

df-
1

2

3
2

3
2

3
2

5
2

3
2

3
2

5
2

5
2

5
2

20
15

4
15

36
15

56
35
4
35
80
35

(19)

where l & is the larger of l and l', and where

j 1 j'
~» JJ' (2j + 1)(—2j'+ 1)

l

K(i"~- 4l +2
aI p,", (I„(„(-)', (21)

where l'& is the larger of l' and l". Numerical examples
for the subarrays belonging to the d -d p array are listed
in the eighth column of Table VII.

The intensity of an emission line is the product of its
strength by the fourth power of its wave number, univer-
sal constants, and the population of the upper level divid-
ed by its degeneracy. Now, the recorded signal depends
on the sensitivity of the recorder (e.g., the photographic
plate), which is a function of the wave number. Thus, the
above strength formulas are useful for the comparison be-
tween theory and experiment only in narrow ranges of

a quantity symmetrical in lj, l'j', whose numerical values
are listed in Table VIII. It can be noted that, for each
given l-l' pair in this table, the a~~ JJ' numbers are propor-
tional to the corresponding entries for "SPIN= —,

" on

p. 243 of Ref. 11. The case X'=1 in Eq. (19) gives the
answer for the j j'~j +' subarray.

If passive open subshells occur in the subarray, the K
quantity is to be multiplied by their total degeneracy. For
example, using Eq. (19) with X=O and X'=1, we derive

wave numbers. Then, the area of a given peak (i.e., the
product of its height by its FWHM) is proportional to its
calculated total strength multiplied by the average popula-
tion of the upper states.

For taking into account relativistic corrections in the
frame of the Pauli approximation, where the radial func-
tions depend on the j quantum number, one can replace,
in formulas (19) and (21), I„I„~ and I„I „~ by I„~J„Iz
and In'lj'', n"I"j "~ r spect~v ly.

APPENDIX B: VARIANCES OF THE
SUBONFIGURATIONS

The formulas for the variances of the subconfigurations
are easily deduced from those for the subarrays, which are
listed in Tables I and III:

cr (1 j')=D)+(K +5K +6K )7,

where D& can be found in Table I of I, and

~'V ~")=Pi...+PI...
(22)

+(P5+P6+P7)X'(2j' —X'+ 1)l2j', (23)

where P~„, is deduced from P~ (Table III) by replacing
4F"dd'" by F (l, l)F (I, l), and P'&„, is deduced from
P&„, by replacing X,l,j by N', l',j'.

This straightforward derivation of the subconfiguration
variances from the subarray variances can be explained in
the same way as, in I, Table I could be deduced from
Table III [see the argument under Eq. (11) of I]. It is
essentially a consequence of the Jfile sum rule (Re-f. 11,
p. 279).
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