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Electron-velocity distribution functions have been calculated for electrons moving in a gas under
the influence of an electric field. By assuming a differential scattering cross section such that
scattering is entirely at 0' and 180', it is shown analytically that the electron drift velocity m, the
mean electron energy (e), the transverse diffusion coefficient Dr, and the longitudinal diffusion
coefficient DL are not, in general, determined by the momentum-transfer cross section alone. The
magnitude of the errors incurred by neglecting the higher-order terms in the spherical-harmonic ex-

pansion of the velocity distribution function for this collision model are indicated. Velocity distribu-
tion functions have also been calculated for attaching gases. It is found that the velocity distribution
function can be considerably altered by attachment for pure gases and gas mixtures. Consequently,
any attempt to determine collision cross sections from electron-swarm measurements of m, DT, and

DL in attaching gases should include attachment processes in the solution of the Boltzmann equa-
tion. The magnitude of this dependence has been found to be determined largely by the ratio of the
attachment collision frequency to the energy-transfer collision frequency and the velocity depen-
dences of the momentum transfer and attaching collision frequencies.

I. INTRODUCTION

Electron transport and rate coefficients measured in
swarm experiments are related to the microscopic col-
lision processes occurring in the gas by the Boltzmann
equation. The solution of this equation, which involves
determining the velocity distribution function f (r, v, t) has
been the subject of numerous investigations in recent
years. Approximations are required in order to simplify
and thus to solve this six-dimensional time-dependent par-
tial differential equation. Most solutions are based on the
assumption that the electron swarm has reached equilibri-
um and that the velocity distribution function can be ex-
panded as an infinite Legendre polynomial series.

It has generally been assumed in the past that since the
ratio of the electron to the molecular mass (m/M) is
small, then elastic electron-molecule scattering in velocity
space is almost isotropic and is, in fact, no more anisotro-
pic than cos8. This approximation implies that f (r, v, t) is
given with sufficient accuracy by only the first two terms
of, the Legendre expansion. Further assumptions implied
by this approximation are that the average fractional gain
or loss of energy by the electrons in collisions with the gas
is srriall and that the electron scattering in inelastic col-
lisions is isotropic. A scalar and vector equation involv-
ing the first two terms of the distribution function can
now be derived and solved by numerical analyses to obtain

the velocity distribution functions. ' The relationship be-
tween the transport and rate coefficients measured in

swarm experiments and the microscopic electron collision
cross sections can then be found. As a consequence, the
determination of the distribution function using this ap-
proximation requires only a knowledge of the
momentum-transfer cross section 0 (or "effective"
momentum-transfer cross section when inelastic collisions
are included' ). Several recent studies have investigated
the validity of this approximation by devising numeri-
cal techniques which allow solutions of the Boltzmann
equation to be obtained when higher-order terms in the
distribution function are retained. In general, these stud-
ies have concentrated on the situation where the average
electron energy gain or loss at collision may not be small
and have shown that, indeed, large errors can arise in the
calculated transport coefficients if the ratio of the total in-
elastic to elastic scattering cross section is large. ' Fewer
studies have explicitly looked at the effect of highly aniso-
tropic (i.e., large-momentum-transfer) electron-molecule
collisions, ' although all these techniques are capable of
studying these effects in detail. Studies by Haddad
et al. ' using the multiterm moment method solution of
the Boltzmann equation devised by Lin et aI. have
shown that highly anisotropic electron scattering can lead
t6 significant errors in the derived transport coefficients if
only the first two terms of the Legendre expansion of the
distribution function are retained.

It is instructive to consider an idealized collision model
in which the extreme case of electron scattering occurring
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at 0 and 180 is considered. This approximation enables
us to solve the Boltzmann equation analytically, which is
equivalent to retaining all the terms in the Legendre ex-
pansion of the velocity distribution function. Consequent-
ly, we are able to derive explicit relationships for the
dependence of the electron drift velocity w, transverse and
longitudinal diffusion coefficients Dr and DL, respective-
ly, and the mean electron energy (e) on the functional
speed dependence of the momentum-transfer collision fre-
quency v~(c) and compare these coefficients with those
derived by the two-term expansion of the velocity distri-
bution function (i.e., in the situation where the electron
scattering is only weakly anisotropic). (The symbol c will
be used to denote speed in three dimensions and the sym-
bol u for speeds in one dimension. ) This analysis shows
that both Dz- and DL are more sensitive to anisotropies in
the electron scattering than are w or (e) and is described
in Sec. II.

Another assumption that has been made in convention-
al analyses of the Boltzmann equation is that the genera-
tion of new electrons by ionization or the loss of electrons
by attachment can be treated simply as energy-loss pro-
cesses. This assumption fails to account for the effect of
the time and spatial dependences in the number density on
f(r, v, t) (and hence the effect on the derived transport pa-
rameters w, (e), Dr, and Dr. and electron ionization and
attachment coefficients a/N and g/N, respectively). Ex-
periments designed to measure the transport coefficients
analyze an isolated swarm of electrons that possess time-
dependent spatial gradients in the mean electron energy
across the swarm. Consequently, unless the rate of elec-
tron attachment or ionization is independent of (e), elec-
tron gain and loss will be highly nonuniform across the
swarm, leading to a shift in the centroid of the swarm in
addition to that caused by the drift of the original elec-
trons.

Lucas" has attempted to incorporate the influence of
the spatial gradients in the distribution function on the
calculation of the transport coefficients, but the technique
is based upon an arbitrary expansion of f(x,c) (Ref. 12)
and contains errors in the analysis. ' Thomas, ' along
with several other subsequent studies, has attempted to
include the influence of the spatial gradients in n (x, t) due
to the growth in the electron swarm by ionization on the
calculation of the transport coefficients. Most of these
studies, though, have not explicitly shown the effect of the
velocity dependence of the electron ionization or attach-
ment cross sections on the derivation of the electron trans-
port parameters. It is necessary to include the ionization
and attachment collisions in the calculation of the distri-
bution function even for a uniform concentration of elec-
trons since the variation of the attachment or ionization
collision frequency with speed, v, (c) and v;(c), respective-
ly, means that different regions of the velocity space will
decrease or increase in population at different rates.
Thus, if v, (c) or v;(c) are comparable to or greater than
the energy-transfer collision frequency [=(m/M)v (c)]
for elastic collisions], it might be expected that the veloci-
ty distribution function is strongly influenced by attach-
ing and ionizing collisions. This subject is discussed in
Sec. HX.

II. ANISOTROPIC SCATTERING'

We adopt the following collision model in order to
show the influence of anisotropic scattering on the deriva-
tion of the transport coefficients.

(1) The gas temperature is assumed to be 0 K (i.e., the
electrons do not gain kinetic energy from the gas mole-
cules).

(2) Elastic scattering only and m/M &( l.
(3) Electron scattering is entirely at 180', and hence the

fractional electron energy loss at collision is =4m/M.
(Scattering at 0' is a nonevent for elastic collisions since
there is no change in momentum or energy. ) Thus, if the
velocity of an electron immediately after a collision is v,
then the velocity before a collision v' is

v' = —v/(1 —4m /M) '

and since m/M ~(1,
v'= —v(1+2m/M) .

(4) The total collision cross section is assumed to have
the following functional speed dependence o.z(u)=AV~,
so that the total collision frequency is v(u)=NAu~+',
where X is the gas number density and the momentum-
transfer collision frequency is

v~(u) =2NAu~+' . (2)

The Boltzmann equation describing the motion of elec-
trons under the influence of a uniform electric field E,
when inelastic collisions are absent, is'

(nf) +div, ( nfv) +div„
a
at

eE +S=O.
m

(3)

When E is in the —x direction, at equilibrium, the elec-
trons move only in the +x direction, and consequently
electron diffusion transverse to the field does not occur.
The problem now reduces to a solution of the one-
dimensional Boltzmann equation which can be written in
the following form:

a [nf(u)]+u [nf(u)]+ [nf(u)]
8 Ee

at Bx m 9v

A. Uniform spatial distribution

We will first restrict ourselves to the situation of a uni-
form electron stream in which spatial gradients in the
electron number density and f are negligible. In these cir-
cumstances, Eqs. (1) and (4) give

Ee d f (u) = —vf (u)+ I+. vf( —u)
2m

m Qv M

2m 4 2m cgv

cifv M dv

+n v(u)f (u) du =nv(u')f(u')
~

du' ~, (4)

where nf (u)du dx =n (x, t)f (x, u, t)du dx is the number of
electrons between x and x+dx and with velocities in the
interval v to v+dv.
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Similarly, for the interval —u to —( u +du)

Ee df 2m
( —u) = vf ( —u) — 1+ vf (u)

m du M

uv f (u) — uf (u) . (6)

Define the symmetric and antisymmetric distribution
functions as

' 2p+4
(2p+ 4) uFp(u)= exp2al (1/(2p+4)) a

where I is the gamma function, and
r 2

a~+ = (2 +4)
m 2m%A

From Eqs. (8) and (11)
r

(12)

and

F,(u) =[f(u)+f( —U)]/2

F&(u) =[f(u) —f ( —u)]/2,

F&(u) = (2p +4)'2'+'
2p +4

I (1/(2p+4)) a (13)

where f (u):—Fp(u)+F~(u).
Adding Eqs. (5) and (6) and using m/M «1 and

v~ =v~(u) =2v gives

+ 00
Define the electron drift velocity as w=— UF~(u)du.
Thus,

1/2

Ee dFo 1 m d= —v~ F~+ — (v UF&)
m du

(7)
w= a (2p+4)

M

X I'((p +4)/(2p +4))/I (1/(2p +4)) . (14)
while subtracting Eq. (6) from Eq. (5) and integrating
gives

Ee m
F& —— uv Fo ~

m M

Substituting Eq. (8) into Eq. (7) gives
r 2

m dFo

(8)

2
m 2 2

m

M u&m+ ~ u&m

2

+ u &m &m Fo
m

du

Using Eq. (2) and where p «M/m, only the first term on
the right-hand side of Eq. (9) is significant, so that

m
Fo ——C exp

o 2
Ee

m
Fo ——C exp

M '2 du (10)

m&m

Equation (10) can also be obtained directly from Eqs. (7)
and (8) by neglecting the second term on the right-hand
side of Eq. (7). Using Eq. (2) and the normalizing condi-+ 00
tion that Fodu =1,

where {u I„=[(m/M)u] and is defined as the mean-
square speed of the gas molecules. In the present analysis,
at sufficiently large values of E/X, {u I,„«(Ee/mv )
over the whole range of u except when mu /M & {u I„,
in which case Fo is negligibly small. Hence,

The mean electron energy is

(e) = —,
' m{u'J,„

= —,
' ma I (3/(2p+4))/I (1/(2p+4)) . (15)

The application of Eqs. (14) and (15) to the calculation of
w and (e) for specific energy dependences of the total
scattering cross section is discussed in Sec. IIC after we
have derived expressions for the electron diffusion for this
anisotropic scattering model.

B. Isolated electron swarm

Cieneralizing the electron motion to include spatial gra-
dients in the electron number density but still considering
electron motion in one dimension (i.e., the transverse dif-
fusion coefficient DT 0), Eq. (4) an——d its counterpart for
nf ( —u) can be added and subtracted to give

8 Ee(nFp)+u (nF, )+ (nF) )
Bt Bx m Bu

and

m
(uv~nFp) =0,

M Bu

8 8 Ee 8
(nF~ )+u (nFp)+ (nFp)+nv~F~at Bx m Bu

+ (uv~nF~ ) =0 . (17)
m

The last term in Eq. (17) is negligible as shown above [Eq.
(10)], while the term (8/Bt)(nF& ) can be neglected provid-
ed spatial gradients in the electron concentration are not
large. ' Thus,

nF) ——— Ee 8
U (nFp) 4- (nFp) (18)

Transforming to coordinates moving with the centroid of
the swarm (i.e., X=x —wt), Eqs. (16) and (18) give



2218 H. A. BLEVIN, J. FLETCHER, AND S. R. HUNTER 31

(nFo) —
2 (nFo) — (nFo) —w (nFo)—u Ee 82 8 Qe

dt vm v m Bu BX BX m BU vm

a Ee
UB (nFO)+ (nFO)

m Bu

m
(uv nFo) . (19)

m
~vmuF0 ~

SICLet Fo be the solution for a homogeneous stream of electrons free of spatial gradients in the number density. ' Thus,
rewriting Eq. (10) with Fo =Fo—gives

Ee dFO

m du

and
'2 2

Ee 1 m 1 Ee
(nFo)+ uvm "Fo=

m v Bu M vm m
nFo (Fo/'Fo )

Substituting this expression into Eq. (19) gives

d U
(,nFo ) — (nFo )—

dt v
u Ee 8 Ee 8 U 8

(nFo) —w (nFo)— (nFo)
vm m BU BX BX m Bu v BX

l

BU V

, 8 FonFo, . (20)

Let nFO be represented by the expansion

oo ekn
nFo Fo g bk——(u) axk '

with bo(u) —= 1, and let n (X,t) satisfy the equation

dn Bn
BX

Then
oo oo gk+m

(nFo) =Fo g g bk(u)D
k=0m =2

2
FO dbt,

dU Vm du

from which b
&
(u) can be found by integration, and

Substituting this expression into Eq. (20) and separately equating the coefficients of Bn/BX and 8 n/BX to zero, the fol-

lowing expressions can be obtained:

U Ee dFO, Ee d UFo Ee—g)Fp— (21)
Vm m dU m dU Vm m

2

Fp—D2Fo
vm

u Ee d
(b Fg ) b Fgg E8 d U

v m du m du v

r

d Fp d&2

du Vm dU
(22)

vm m

or

oo

D2 =2f Fodu-
vm Vm

1 0

Integrating over all velocities in Eq. (22) gives

du . (23)

The coefficient D2 is the coefficient of diffusion in the
direction of the applied electric field and is designated the
longitudinal diffusion coefficient DL .

The transport parameters w*, (e)*, and DL given by
Eqs. (14), (15) (where w*=—w and (e)*=—(e)), and (23),
respectively, are now explicitly dependent on the function-
al speed dependence of the momentum-transfer collision
frequency v (u). The values of these transport coeffi-
cients obtained for various speed dependences of v (u)
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TABLE I. Comparison between the transport coefficients obtained from the present analysis and the
"trvo-term" expansion of the distribution function for v =const; p = —l.

Present results Two-term expansion results

( )g m Iu )av M Ee
2 2 mVm

2 I
M

2
( )~ m Ic )av M Ee

2 2 Pl Vm

2

M
M
2

DI —— M Ee
~&m ~+m

2

D
&m 3 Pl Vm

Dp ——0 DT ——DI

can be directly compared with those obtained by the con-
ventional "two-term" expansion approximation of the dis-
tribution function.

where higher-order spatial derivatives are assumed to be
negligibly small. This equation has the solution

C. Special cases

1. v (u)=v =const (i.e., p= —1)

X
n(X) ~exp

4DL t

Thus, Eq. (24) gives

(x wt )—=exp
4DI I;

m Iu

2 f u Fodu

k=0

For small spatial gradients in n, only the first two terms
of the summation are important in the region where most
of the electrons are found (i.e., when X=wt) Thus, .

(e) = f u Fo 1+b~ — du . ,(24)

From Eq. (21) b& can be found, i.e.,

(Iu24 J
u2)

Vm LU

(25)

For an isolated swarm, the spatial distribution of the elec-
tron concentration is given by

dn Bn
BX

The values of w', (e)*, DL, and DT obtained when v
is independent of the electron speed are given in Table I
along with the values obtained from the two-term approx-
imation analysis using this speed dependence. These anal-
yses indicate that whereas w' and (e)* are identical in
both of the approximations, DL is three times larger for
the anisotropic electron scattering case than for the weak-

ly anisotropic scattering situation, and although DL ——DT
for the two-term approximation, by definition DT ——0 for
the present anisotropic scattering model.

The variation in the mean energy across the electron
swarm in the direction of the applied electric field can
readily be found for the situation where vs=const. In
this case

m Iu *],„(e = 1+
2 X 2m'

2. v (u) cc u (i e , p =.0). (constant elastic collision
cross section)

The transport parameters derived from the present
analysis assuming that v is proportional to the electron
speed are given in Table II. These results indicate that, in
this case, both w" and (e), calculated using the anisotro-
pic scattering model, are significantly different from those
calculated using the two-term approximation, being ap-
proximately 15% higher and 5% lower, respectively, than
the two-term results. The longitudinal diffusion coeffi-
cient calculated using the anisotropic scattering model is
almost five times as large as that calculated using the
two-term approximation. These results indicate that .al-
though the effects of anisotropic scattering on w and (e)
are small, they may still be significant for certain speed
dependences of the total scattering cross section. The
changes in DI and DT for this scattering model are, on
the other hand, very significant for both of the special
cases considered and indicate that more modest anisotro-
pies in the electron scattering wi11 still have a large effect
on the accuracy of the calculation of the diffusion coeffi-
cients if these anisotropies are not taken into account.

D. Expansion of the distribution function
in spherical harmonics

The velocity distribution function calculated using the
present anisotropic scattering model can be expanded in
spherical harmonics in order to show that the higher-

where x=wt and DL ——Iu "),„Iv . Consequently, the
mean electron energy increases linearly across the swarm
in the direction of the swarm motion when v is constant.
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TABLE II. Comparison between the transport coefficients obtained from the present analysis and
the two-term expansion of the distribution function for v =const && U; p =0.

Present results
1/4 1/4 1/2

Two-term expansion results

w* =0.7801
M

m =0.8974 M,
Ee

2m%A,

mIv *I,„
2

), mIc' I„
2

' 1/2

=0.338m M
P7l

Ee
2m%A

' 1/2

=0.427m
M
Nl

Ee
2m%A

=0.555M' *

' 1/4 ' 1/2

D =0 3457
m (NA ) 2m%A

=0.530M' *

' 1/4

DI. ——0.0716
m (Xa ~ 2m+a

DT ——0 DT ——2.041DL

order terms in the expansion are not insignificant in com-
parison with the first two terms as is usually assumed.

Let the equilibrium distribution function in three-
dimensional velocity space be denoted by

f(c,8)= g fk(c)Pk(cos8)
k=0

= (Fp +Fi )5( + u) + (Fp Fi )5( —u )—

where Pi, (cos8) is the kth-order Legendre polynomial.
Multiplying this expression by P„(cos8) and integrating
over a shell in velocity space for speeds lying between c
and c+dc yields the following:

00 +1
2mc g fk(c) f Pk(cos8)P„(cos8)d(cos8)

k=O

=(Fp+F& )P (1)+(Fp F& )P ( —1)—
=(Fp+Fi )+(—1)"(Fp F,);—

alternatively,

f„(c)=, [(Fp+Fi)+( —1)"(Fp—Fi)) .(2n+1)
4vrc

Thus,

fp(c) =
z Fp(c),1

27Tc

fi(c)=,Fi(c),3

2&c

fp(c) =
~ Fp(c),5

27TC

etc. , where Ep(c) and Fi(c) are given by Eqs. (11) and (13)
with U=—c.

When this expression for fz(c) is substituted into Eq.

(2.23) of Huxley and Crompton, ' the present values for
fp(c) and fi(c) are recovered from their analysis. In the
usual two-term approximation, fz(c) and higher-order
terms are assumed to be negligible in comparison to fp(c)
and f&(c). This implies that the drift velocity of the elec-
tron swarm is small in comparison to the average random
velocity of the electrons. The present analysis using the
scattering model described above has shown that, on the
contrary, the term fq(c) and higher-order terms can be
comparable in magnitude to fp(c) when the electron
scattering is highly anisotropic. Consequently, even if the
electron drift velocity is considerably less than the average
random electron velocity, this is not a sufficient condition
for neglecting the higher-order terms in the Legendre ex-
pansion of f(c).

III. ELECTRON ATTACHMENT

Several attempts have been made in recent years to in-
clude the effects of electron attachment and ionization
upon the electron-velocity distribution function of elec-
tron swarms and the derivation of the transport and rate
coefficients for these swarms. When the rate of ioniza-
tion or attachment is significant in comparison to the
energy-transfer rate, the Boltzmann equation given by Eq.
(3) must be modified to include terms to account for the
electron loss or gain, which can be both spatially and tem-
porally dependent within the swarm.

Most of these analyses find their origin in the work of
Thomas, ' who indicated that the influence of these elec-
tron nonconservation processes depended upon the type of
experiment that was being performed. When the current
in an external circuit produced by a continuous stream of
electrons [the steady-state Townsend (SST) experiment' ]
is analyzed, there exists a region between the electrodes in
which the electron stream is at equilibrium (i.e.,
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Bnf/Bt =0), but the growth in the electron number densi-
ty within the stream must be taken into account by in-
cluding the term [Bn(u, x)/Bx]f =a,n(u, x)f in Eq. (3),
where u, =a —g, and a and g are the unnormalized ioni-
zation and attachment coefficients, respectively. Alterna-
tively, when the current in the external circuit is analyzed
for a pulse or swarm of electrons which are liberated
within the drift gap and drift to the anode under the ap-
plied field [the pulsed Townsend (PT) experiment' ], the
number density in the swarm changes with time such that
[Bn (u, t) /Bt]f= v~n (u, t)f, where v~= v; —v„and v;
= (v;(u)) and v, —:(v, (u)) are the average ionization and
attachment collision frequencies, respectively. Tagashira
et al. ' have analyzed these experiments in detail and
have defined a further type of experiment where the
development of the electron number density within a
swarm in a drift gap is analyzed as a function of both po-
sition and time [the time-of-flight (TOF) experiment' ].
This experiment is distinct from that where the motion of
the electrons causes a current to flow in an external circuit
as in the pulsed Townsend experiment.

For the present analysis, it is initially assumed that the
electron number density is spatially uniform and that the
velocity distribution function is at equilibrium. We also
assume that the E/N is sufficiently low, such that elec-
tron ionization processes are negligible and only attach-
ment processes need be considered. The influence that the
position and magnitude of the attachment process has on
the shape of the electron-velocity distribution functiori
and on the derivation of w and (e) will be described for
two different functional dependences of the momentum-
transfer cross section on the electron speed. The changes
in the transport coefficients occur irrespective of the an-
gular scattering model that is assumed. Finally, we will
indicate the changes in the drift velocity that occur due to
the spatial variation in the mean energy across an isolated
electron swarm and how these changes are related to the
functional velocity dependence of the attachment collision
cross section.

A. Anisotropic scattering model

In the present study we first assume that the electrons
are distributed uniformly in space and that elastic electron
scattering again occurs only at 0' or 180'. Inelastic col-
lisions are assumed to be negligible. Thus, the one-
dimensional continuity equation given by Eq. (4) applies,
in which an extra term to account for electron attaching
collisions —nv, (u)f (u) is included on the right-hand side.
In this situation, Eqs. (16) and (17) become

n(t)=n(0)exp( —v, t) . (28)

Assuming that the velocity distribution function has at-
tained equilibrium, then BFo/Bt=BFi/Bt =0. This as-
sumption may be questionable when the electron attach-
ment rate is large, as has been clearly shown in the work
of Crompton et al. ' on resonant three-body electron at-
tachment to 02. This work has shown that when the elec-
tron attachment process is large and strongly energy
dependent, the electron energy distribution function never
relaxes to the thermal Maxwellian distribution, even for
"thermal" electrons. For the present model, we assume
this approximation is valid, and substituting Eq. (28) into
Eqs. (26) and (27) gives

However, in Eq. (26) the attachment collision frequency is
comparable to the energy-transfer collision frequency,
v„=(m/M)v for this scattering model, and it is not pos-
sible to neglect the term. These comments apply because
we are only considering elastic and attaching collisions.
In general, an attaching gas will possess considerable in-
elastic loss processes as well as electron attachment. In
this situation v„can be considerably larger than v, over a
wide range of E/N, allowing the transport coefficients to
be obtained with sufficient accuracy by neglecting the at-
tachment process. However, when v, (u) is large and
peaks at near zero energy, as, for example, in SF6 and Fz,
these terms must be retained in the analysis if accurate
transport coefficients are to be calculated, as the rate of
energy transfer is comparable to or less than the attach-
ment rate in these circumstances. In experiments where a
strongly attaching gas is diluted (typically 0.1% to 10%)
in a rare gas in order to perform drift velocity and attach-
ment. measurements over a wide range of F. /N, v, may
again be comparable to or larger than the energy exchange
frequency. Such measurements have been perforined in
fluorine containing electronegative gases-rare-gas mix-
tures for use in excimer laser kinetic studies' and for dif-
fuse discharge opening switch studies. '7 Conversely, the
effect of electron attachment on Fp(u) in experiments
where the attaching gas is mixed in minute traces ( &1
part in 10 ) in a high-pressure buffer gas' is again negli-
gible, even if the buffer gas is a rare gas, as in this situa-
tion, v, &&v„. For completeness, the attachment terms
will be retained in both Eqs. (26) and (27).

To solve Eqs. (26) and (27), first integrate Eq. (26) over
all speeds, i.e.,

dn = —nv, ,dt

thus

3 Ee
(nFp)+ n

at V1 BU

PB 8
n (uv Fp)= nv, Fo (26)—

and

(27) or
8 Ee ~+o

(nFi )+ n +nv Fi —— nv, F, , —
BI m BU

m d
(uv Fp)=(v, —v, )Fp,

dv M dv

where, as before, v is the momentum-transfer collision
frequency for elastic collisions. In many gases, v, &&v
and the attachment term can be neglected in Eq. (27) (or
included in the total momentum-transfer cross section).

Ee dI']
vl dU

and

mv I
(v Fo)+ v. —v. + v~ Fo (29)
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Ee dFO
=(va va vm)FI .

Nl dU
(30)

0.50

0,45 M/m = 1600 v~(v)/v~

When v, (u) is a rapidly varying function of u over the
range of speeds where Io is appreciable, then V, will be
much less than v, (v) for most of this range, and the
preceding comments concerning the importance of the ra-
tio v, /v„remain valid.

Equations (29) and (30) can be solved numerically for
Fo(E/N, u) and FI(E/%, v) when v~ and v, are known.
For illustrative purposes, calculations have been carried
out for the following parameters:

Mlm = 1600,

0.40

0.35

1
0.30

N

o~

0,80
C)

0.15

v~(v) =v~ =coIlst,

0 for iu i
&u,„

~.~~m = .
A(BV l)exp ——B

0.50

0.45 M/m = 1600 &a(v)/&~

0.40 0.000

0.35 0.00l

0.30
N

0.25

020
C)

0.15

0.005

0.010

0.10

0.05

0.00
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

V (RELATIVE UNITS)

where A is a constant, B=(IvoI,„)' /u, h, V=
~

u
~
/

( Iuo J,„)', u, h is the threshold velocity for the attach-
ment process, and (IuoI,„)'~ is the root-mean-square
velocity calculated from Eq. (15) using the velocity distri-
bution function given earlier when attachment is neglect-
ed. In this example, (IutI I„)'~ and hence B are propor-
tional to E/JV. The small Mlm ratio was chosen in this
example to enhance the influence (if any) of electron at-
tachment on the electron drift velocity obtained when us-
ing a constant collision frequency model. '

Figures l and 2 show the calculated distribution func-
tion Fo(v) obtained for two values of B and several values
of A. Values of relative mean energy, (e) /(e)~ o~, and(v —0)~

0.10

0.05

0.00
0.0 0.5 1.0 1.5 8.0 ' 2.5 3.0 3.5 4.0

V (RELATIVE UNITS)
FIG. 2. Model calculations of the velocity distribution func-

tion Ep(U) for the same parameters given in Fig. 1, except for
the different values of 3 and 8 shown in the figure.

relative drift velocity, w/Iv~-, o~, were calculated from

these distribution functions and are listed in Table III to-
gether with values of the relative attachment frequency
v, /v~. The mean energy and drift velocity are given in
relation to the values obtained when attachment is
neglected in Eqs. (29) and (30), and the relative changes in
these parameters are independent of E/N for this col-
lision model.

As expected, the drift velocity is not appreciably altered
for this collision model, as can be seen from multiplying
both sides of Eq. (30) by u and integrating over all veloci-
ties. For v, /v~ &&1, then Iv=Ee/mv~ to a very good
approximation, and the small differences from unity
shown for w/Iv~„-o~ in Table III may be partly due to{v =0)
errors in the numerical integrations. The marked changes
in the distribution function, which produce the very large
changes in the calculated values of (e) shown in Table
III, indicate that, apart from the particular case when
v~ =const, significant changes in the drift velocity would
also be produced in general. Rather than pursue this fur-
ther with the anisotropic scattering model, calculations
have also been performed using the two-term spherical
harmonic expansion of the distribution function since this
should give a more realistic assessment of the influence of
attachment in practical cases.

B. Two-term spherical harmonic expansion

FIG. 1. Model calculations of the velocity distribution func-
tion Fo(U), assuming only elastic and attaching collisions for an-
isotropic electron scattering. For these calculations, v was as-
sumed to be constant and M/m, A, and 8 were given the values
shown on the graph. The curve for v, (v)/v is shown on an ar-
bitrary scale.

We will again limit the discussion to a model gas where
only elastic scattering and attachment occur. Following
the same procedure outlined above, then for a uniform
concentration gradient, Eqs. (5.40) and (5.41) of Huxley
and Crompton' become
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TABLE III. The influence of electron attachment on the mean energy and drift velocity of the
electrons —anisotropic scattering model, with v =const and M/m =1600.

B=5
A =0.001
A =0.005
A =0.01

2.37 X 10-'
1.042 X 10-'
1.526 X 10-'

(e&/(e&(„,)

1.062
1.598
3.045

m/m, ~a=

0.9999
0.9999
1.001

B =10
A =0.001
A =0.0025
A =0.005
A =0.01

1-59X 10
3.62 X 10
6.04 X 10-4
8.38 X 10-4

1.107
1.293
1.639
2.23

1.000
1.001
1.003
1.008

1 Ee d
( gf )

3 Pl dc

rn 3 d 3~ 2c (v~f0)+ vg vg+ vm c fo ~M dc
(31)

Ee
(v —v —v )fi= fo ~

rn Bc

Model calculations have been performed using fo(E/N, c)
and f~(E/K, c) obtained from Eqs. (31) and (32) for the
following parameters:

M/m =5&&10',

v (c)~c
(i.e., constant collision cross section),

v, /v (a)= 8~ V——exp ——& «r IU I »th8 2

where v~(a) is the momentum-transfer collision frequen-
cy for the speed a, which is defined by Eq. (12) with
P =0, and in this case, V=c/a and 8=alu, h. Equation
(12) shows that in this situation, 8 is proportional to
(E/N)' . A more realistic M/m ratio was chosen in this
example to indicate that, in general, appreciable modifica-
tions to w and (e& can occur, even for very small v, /v~
ratios.

Equations (31) and (32) have been used to calculate
fo(c) and f~(c) for two values of 8 and several values of
A, and the distribution functions fo(c) are shown in Figs.
3 and 4. Values for v, /v (a), (e&/(e&~- o~, and

(&~ =o)'
w/w~- 0& calculated using these distribution functions
are listed in Table IV. The results given in Tables III and
IV indicate that (e& increases with increases in the mag-

nitude of the attachment cross section. This phenomenon
may be termed "attachment heating" and occurs when
v, (c) peaks at energies well below the mean energy of the
electrons. Conversely, when the peak in v, (c) occurs at
higher electron energies than (e&, high-energy electrons
will be lost from electron-velocity distribution, and the
resultant (e& values will be lower (i.e., "attachment cool-
ing" will occur). An analogous situation occurs when ion-
ization processes are significant. In this case the sharing
of the initial electron energy between the two electrons
after an ionizing collision results in a lowering of (e&
("ionization cooling" ) for the electron distribution as a

3 1 5

The calculations given in Tables III and IV also indi-
cate that, in general, attaching collisions will modify the
drift velocity of the electron swarm. Although Naidu and
Prasad have found that w(E/X) is independent of the
gas pressure PT within the experimental error in the per-
fluoroalkanes, recent accurate measurements by Hunter
et al. ' have found that w (E/X) is dependent on PT for
both C3F8 and n-C&F&o but independent of PT for CF~
and C2F6. Both the rnolecules C3F8 and n-C4F~O possess
strongly pressure-dependent three-body electron attach-
ment processes at gas pressures PT (400 kpa, in contrast
to CF4 and C2F6, in which the electron attachment rate is
independent of gas pressure, over this pressure range. '
Aschwanden has also observed that w(E/X) is depen-
dent on PT in 1-C3F6, which is also known to-possess
strongly pressure-dependent apparent three-body attach-
ment processes. In both of these studies the drift veloci-
ty measurements were performed at sufficiently low gas
pressures (PT & 10 kPa) such that multiple scattering ef-
fects are negligible. Naidu and Prasad observed that
DT/p values (which, as a rule, are more sensitive to
changes in the velocity distribution function ) in C3FS and
n-C4F~O were pressure dependent, while those in CF4 and
C2F6 were independent of gas pressure. Similarly, As-
chwanden has found that DI /p in 1-C3F6 is also depen-
dent on PT. %'e propose that the pressure dependence in
w, DT/p, and Dt. /p observed for these molecules may be
related to the changes in the velocity distribution function
that we have observed in the present model calculations.
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2.0

t.s - M/m = 50000 Va(v)/ I/m

A = 0.000

= 0.001
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Q
1.0
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0.6
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FIG. 3. Model calculations of the velocity distribution func-
tion 4mv fo(v) using the two-term spherical harmonic expansion
of f (v) for the values of M/m, A, and 8 shown in the figure.
In this calculation the momentum collision frequency has the
velocity dependence v =constXv, and the curve v, (v)/v~ is

shown on an arbitrary scale.

C. Spatial dependences in v,

Monte Carlo studies of the electron motion in H2, in
addition to the analysis given above, have shown that con-
siderable spatial dependences in (e) can occur, even when

w'=w* I+, f v, (Iu2*I,„—u )fcdu
&m

(34)

The influence of the spatial gradients in (e) on the value
of w' can be shown from the following special cases.

(I) When v, (u) is approximately constant over the velo-
city interval 0 &u &2Iu *j,„, then w'=w* (i.e., the spa-
tial gradient in (e) has a negligible effect on the drift
velocity and the other transport coefficients).

(2) When v, (u) is only appreciable for u2« IU2*),„,
then

+a V av1+
&m

or

the swarm has achieved equilibrium. ' ' When ionization
processes are significant, v; is also highly spatially depen-
dent within the swarm. By analogy, when spatial depen-
dences in (e) occur for an attaching gas, the suggestion
has been made that v, and hence the transport parameters
will also be spatially dependent. Consequently, the cen-
troid of an isolated swarm, and hence w, will be displaced
due to the spatial dependence in v, (x), while the swarm
averaged value V*, retains the value calculated above.

Following a similar procedure to that given above for a
one-dimensional isolated swarm with constant v, it is
found that the drift velocity is changed by attachment to
the value

+ oow'=w*+ I v, fobi(u)du, (33)

where fc is the spatially uniform velocity distribution
function, and w*=Ee/mv —as before. For v, «v, the
value of bt(u) given in Eq. (25) can be used in Eq. (33) to
give

2.0

MVam'=a* 1+ &a1+
Va

s.s - M/m = 5000

B=20
7

1.2

A = 0.000

A —0 005

A = 0.010
'';0 l8 LU 1—

veau fcdu

Thus, for low energy or thermal electron attachment, the
electron drift velocity will be larger than the spatially uni-
form value w'.

(3) When v, (u) is only appreciable for u ~&IU "I,„,
then

O
1,0

0.80
CQ

0.6

A =0.080

0.2

0.0
0.0 0.5 1.0 1.5

V (RELATIVE UNITS)

FIG. 4. Model calculations of the velocity distribution func-
tion 4@v fo(v) for the same parameters given in Fig. 3, except
for the di fferent values of A and 8 shown in the figure.

Consequently, when electron attachment is significant
only at higher electron energies, then the electron drift
velocity will be smaller than the spatially uniform value
W

The presence of significant ionization processes has pre-
viously been shown to increase the electron-swarm drift
velocity. ' Thus, for gases which possess large thermal
and near-thermal electron attachment cross sections, such
as SF6 and Fz, for example, at E/N values near break-
down (i.e., when V, =v;) electrons will be lost at the rear
of the swarm by attachment and gained at the front by
ionization. Both processes reinforce one another to con-
siderably enhance the electron drift velocity. For gases
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TABLE IV. The influence of electron attachment on the mean energy and drift velocity of the
electrons —two-term spherical harmonic expansion model, with v =const &(c and M/m =5)& 10 .

v, /v (o) (&&/&&&(- 0)(v —0) l8 /LU( 0)v

8 =10
A =0.001
A =0.005

1.415X 10
5.06X 10

1.077
1.324

0.952
0.808

8 =20
A =0.005
A =0.010
A =0.020

6.28 X 10-'
1.068 X 10-'
1.653 X 10-'

1.058
1.104
1.168

0.956
0.920
0.870

such as the perfluoroalkanes, which, on the other hand,
only attach electrons at high energies, over a limited E/N
range the drift velocity will be reduced by the presence of
electron attachment and then increased by ionization at
higher E/N values. This effect may possibly partly ac-
count for the negative differential conductivity region in
the drift velocities as a function of E/N which has been
observed for all of these gases at E/N values where elec-
tron attachment starts to become a significant electron-
oss process 17,21,26

The increase in electron number density at the front of
the electron swarm due to spatial gradients in (e) when
ionization is significant has also been shown to lead to
marked increases in the longitudinal diffusion coefficient
NDL. ' In contrast, the transverse diffusion coefficient
NDT is relatively unaffected by these processes as trans-
verse gradients in (e) have been shown to be negligible
when the swarm has achieved equilibrium. ' ' By analo-

gy, then, although NDI will be considerably modified by
attachment, NDT will remain relatively unaffected by
spatial gradients in (e) in the field direction.

The work described in this paper has concentrated on
the analysis of the electron motion in the presence of at-
tachment, where the velocity distribution function has at-
tained local equilibrium (i.e., where 8fo/Bt =8f&

/Bt =0,
but where spatial gradients in (e) have been included).
Several other recent studies have considered the situation
where temporal variations in fo(v) and f&(v) are signifi-
cant. ' ' ' These studies have shown that for both elec-
tron attachment and ionization the changes in the trans-
port and rate coefficients due to temporal changes in the
distribution function are, in general, less than those due to
attachment and ionization modified electron diffusion and
spatial gradients in (e). ' '2

IV. CONCLUSIONS

This work has shown that anisotropic electron scatter-
ing and attachment can significantly modify the velocity
distribution function for electrons in gases. Although the
derivations and the numerical examples are related to
specific and, in some cases, unrealistic models, the follow-
ing general conclusions can be drawn from this work.

( I) Anisotropic electron scattering will, in general,

modify the transport coefficients as derived from a two-
term spherical harmonic expansion of the Boltzmann
equation. The diffusion coefficients NDL and NDT ap-
pear to be more sensitive to the scattering anisotropy than
w or (e), and this sensitivity is dependent upon the func-
tional velocity dependence of the momentum-transfer
cross section o (c) or collision frequency v (c).

(2) In principle, higher-order terms in the spherical har-
monic expansion of f (c) are required when the scattering
anisotropy is large. The present analysis indicates that the
condition that w &&(Ic I,„)' is not a sufficient condi-
tion to neglect the terms fz(c), f3(c), etc. in this expan-
sion. A similar conclusion has been reached in the work
of Reid and Haddad et al. ' Other studies have shown
that although anisotropy in the electron scattering can
lead to significant errors in the derivation of the electron
transport parameters if this anisotropy is neglected, the
most significant errors occur when the average energy ex-
change collision frequency is large, as occurs, for example,
when the ratio of the elastic to inelastic scattering cross
sections approaches unity. '

(3) The velocity distribution function is modified by the
presence of electron attachment and ionization, and conse-
quently, all the transport and rate coefficients will be a
function of the magnitude and speed dependence of v, (c).

(4) For an isolated electron swarm, an additional modi-
fication to w (and NDL) is introduced by spatial varia-
tions in the attachment rate. The magnitude of w has
been shown to increase or decrease depending on whether
electron attachment occurs at thermal or higher electron
energies.

(5) When three-body attachment processes occur, the
transport parameters may depend on N as well as E/N.

The modifications to the distribution function, and
hence the electron transport coefficients, described in this
paper, which occur due to electron attachment and ioniza-
tion, must not be confused with the changes in the defini-
tion of the transport coefficients which occur due to the
different experimental methods used to perform these
measurements, ' with the possible exception of the spatial
gradients in (e) which occur in PT and TOF experiments

but not in SST experiments, although f(v) in the SST ex-

periments will be different if these gradients are neglected
in the analysis of the electron motion.
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It must be stressed that the present results are only indi-
cative of the possible modifications to the theoretically de-
rived transport parameters. The magnitude of the
changes produced for particular gases can only be assessed
by carrying out detailed calculations for realistic differen-
tial scattering and attachment cross sections. In particu-
lar, it is expected that the results will be strongly influ-
enced by the inclusion of inelastic collision processes.
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