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A novel theory of the electric dipole moments of homopolar but isotopically asymmetric molecules
(such as HD, HT, or DT) is formulated, such that electrical asymmetry and the resulting dipole mo-
ment arise as purely electronic properties within a suitable Born-Oppenheimer approximation, and
nonadiabatic (rovibronic) perturbations play no part in the theory. It is shown thereby that a much
simpler and more direct explanation for these dipole moments can be given than that invoking non-
adiabatic perturbations: The dipole moment arises from isotopic variation of the local effective elec-
tronic reduced mass and its effects on binding energies and sizes of orbitals. It is an odd function of
the isotopic splitting parameter o= %Lm /u, where A=(M,—Mp)/(M,+Mp) is the nuclear mass
asymmetry for nuclei 4,B and (m /u) is the electron-nuclear mass ratio (for HD, this parameter is
1.36X10~%. A canonical transformation exhibiting these effects (in the form of an asymmetric ef-
fective potential) is the basis for the new formulation. Since ay is small the resulting dipole moment
function is essentially linear in ay, and hence the dipole moment functions for HT and DT may be
computed by rescaling the results for HD. ‘Since the problem is purely electronic in the new formu-
lation, variational and convergence studies are easy to carry out. In this and the following paper we
formulate the new theory in detail and carry out variation-perturbation calculations of the HD di-
pole moment. The results are in good agreement with theoretical results obtained by nonadiabatic
perturbation theory and demonstrate that this approach to isotopically induced dipole moments is
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valid.

I. INTRODUCTION

Within the limits of the Born-Oppenheimer approxima-
tion as it is normally constructed, a homopolar but isotop-
ically asymmetric molecule such as HD has no permanent
electric dipole moment, and hence no electric dipole rota-
tion or vibration-rotation spectra. However, nonvanishing
transition moments for such spectra arise when the nona-
diabatic corrections to this approximation are considered.
The theory of these transition moments has been widely
studied,! ~® from the early work in 1935 by Wick! to more
recent extensive calculations by Bunker,’” Wolniewicz and
co-workers,*%7 and Ford and Browne.! In all these stud-
ies the method used is perturbation theory within a full
set of electronic, vibrational, and rotational states, since
the nonadiabatic perturbation couples electronic and nu-
clear motions. Such calculations have practical interest
since the pure rotation and vibration-rotation spectra have
been observed and experimental estimates have been made
of the transition moments.’ 13

However, we can show that HD should have a per-
manent electric dipole moment, without invoking nonadi-
abatic perturbations. For deuterium, the electronic re-
duced mass and binding energy are slightly greater, and
the corresponding wave function smaller, than for hydro-
gen. In the ground state of HD this has two effects: (i)
The contribution of the ionic structure HT*D™ is slightly
greater than that of H™D™; (ii) when the distorting ef-
fects of chemical bonding in the molecular-orbital distri-
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butions are considered, the smaller size of the D orbital
skews the center of charge. Both effects produce a net
moment with the sense HYD~. Moreover, we can see
that this moment should be ~Am /u smaller than the per-
manent moment of a typical polar molecule, where
A=(M,—Mpz)/(M4+Mp) is the mass asymmetry pa-
rameter and m /u is the electron-nuclear mass ratio. For
HD, Am /u=2.72X10"% and the correct value for the
HD permanent moment is 8.51% 10~* debye. [Only for
the isotopic hydrogen molecules will the effect even be
this big, since both A and m /u are much smaller for a
molecule like NN (Am /u=2.6x10"°), and only the
valence electrons can contribute much to a net imbalance.]

In Appendix A we have made a crude application of
this simple picture of the HD dipole moment, which
yields the qualitatively correct result 4.9 10~* debye
(H*D™) at R=R,. This suggests that we might
rigorously reformulate the Born-Oppenheimer separation
of electronic and nuclear motions so that the molecular
asymmetry of HD appears directly in the electronic Ham-
iltonian (rather than indirectly via the nonadiabatic cou-
plings). A permanent electric dipole moment would then
arise in the usual way and for the ground electronic state
it could be computed variationally within a purely elec-
tronic basis set. Transition moments for the vibration-
rotation transitions would be related as usual to the
dipole-moment derivatives near the equilibrium separation
R,.

In this and the following paper'* we make just such a
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reformulation, and we carry out calculations of the per-
manent electric dipole moment of HD in its X!Z+
ground state near R =R, with the result 8.51X10~* de-
bye (H*D™) at 1.40 a.u., in good agreement with previous
theoretical values. Nomnadiabatic couplings play no part
whatever in our theory or calculations.

To do this, we transform to new electronic and nuclear
coordinates, chosen so that nonadiabatic couplings de-
pending only on the mass asymmetry parameter vanish
exactly.!”® Since it is these couplings which produce the
HD dipole moment in the usual formulation, their remo-
val forces the physical asymmetry of the problem to show
up elsewhere in the Hamiltonian; in particular, when we
make the Born-Oppenheimer separation in the new coor-
dinates, we find the new electronic Hamiltonian no longer
has D _;, symmetry. _

For the one-electron case (i.e., the artificial problem of
HD*) this electronic Hamiltonian, to within terms
~(Am /u)?, is just that for an electron moving in the field
of two charges Z. (=1++Am /u) separated by distance
R (deuteron has charge Z ), plus a constant electric field
of magnitude +A(m /u)(e/R?) parallel to the molecule
axis, and also orienting the electron in the sense HTD~.
The “dipole moment” (with respect to the geometric
center of HD*) consists of two parts, a term linear in R
resulting directly from the transformation, and a term
which arises in response to the Hamiltonian asymmetry;
both have the sense H*D~. Were there no electron corre-
lation, this simple picture would also hold for HD, but the
strong interatomic electron correlation in hydrogen com-
plicates the situation and markedly reduces the overall di-
pole moment.

In this formulation, both the Hamiltonian asymmetry
and the resulting dipole moment [, (R) are odd and thus
essentially linear functions of the very small parameter
ao=~+Am/u. Hence the HT and DT dipole moment
functions may be obtained merely by scaling those for
HD, and transition moments for their vibration-rotation
spectra require recalculation only of the vibrational ma-
trix elements.

The main goals of this work are conceptual, rather than
quantitative: we show that the dipole moment of isotopi-
cally asymmetric molecules has a simpler physical ex-
planation than is suggested by the nonadiabatic coupling
approach. However, since our scheme is variational, we
can test the convergence of the calculations, and we be-
lieve the results we have obtained establish the accuracy
of the value 8.51x 10~* debye to better than 0.1%. The
good agreement with the results of ‘Bunker® and of Ford
and Browne® gives high confidence that this value (as con-
trasted with the experimental result obtained by Trefler
and Gush'®) is the correct one.! Because the dipole mo-
ment depends so sensitively on electron correlation effects,
a much more accurate calculation, or a calculation for the
dipole moment at much larger or much smaller internu-
clear separations, will require a more sophisticated wave
function than the James-Coolidge-type expansions® used
here.

Section II of this first paper defines the transformation
to new coordinates and the ensuing Born-Oppenheimer
separation. Section III describes the resulting electronic
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Hamiltonian and its physical interpretation and im-
plementations. Section IV contains a brief discussion of
the problem and results from the standpoint of our main
goals. In the second paper,'* we give an account of our
calculations, including details about certain new molecu-
lar integrals, convergence studies, and tables of vibration-
rotation matrix elements for the three isotopically asym-
metric hydrogen molecules.

II. NEW COORDINATES AND DYNAMICAL
SEPARATION

A. System description

The system consists of electrons 1,2 with masses my,
and nuclei 4,B with masses M, > Mp; with respect to a
fixed origin these have coordinates T (i=1,2), ﬁ%, f(%.
We remove the center-of-mass motion and define the rela-
tive coordinates -

F=rP—R%,.., i=12, (2.1a)

R=R$-RY, (2.1b)
where

RO, =(M,+Mp) "M RS +MRY). .10

defines the nuclear center of mass. Then the kinetic ener-
gy of relative motion is

T=P%/2u+B}+B2/2m+(B1'P2)/ (M4 +Mp)
(2.2)

where P; and Py are canonical momenta conjugate to T;
and R, and the reduced masses are

u=MMp/(M,+Mp),
my=mo(M4+Mpg)/(M,+Mg+mj) .

(2.3a)
(2.3b)

We also introduce the geometric center electron coordi-
nates defined by

pi=Ti—+AR , (2.4)

where A=(M ,—M3z)/(M,+Mp) is the mass asymmetry.
The electrostatic potential energy V (T, Ty;R) is invariant
under the inversion p;— —p; (i=1,2) at fixed R; that is,
the two nuclei appear electrically identical.

The coordinates T;, T,, and R are those usually em-
ployed in making the Born-Oppenheimer separation. If
that is done, the electronic Hamiltonian and its eigenfunc-
tions exhibit the centrosymmetric properties of ¥, and an
electric dipole moment cannot arise in the Born-
Oppenheimer approximation, but only indirectly, via
nonadiabatic couplings. We will not develop this ap-
proach; accounts of it may be found in Refs. 5, 21, and
22.

B. Transformation

For clarity we perform the desired transformation in
several steps. First, introduce symmetric and antisym-
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metric electron coordinates §, t,
=(?1+?2)/‘/§, ?=(?2~?1)/‘/§, Py (2.5)

and their canonically conjugate momenta P,,P;; the ki-
netic energy may then be written

T=P%/2u+B2/2m,+P/2m, , , (2.6)
where
m2=m0(MA +MB)/(MA +MB+2m0) . (27)

Next we define mass-scaled coordinates §,R,

I=vm,3, R=VuR, (2.8a)
and their conjugate momenta

Bs=Ps/Vm,, Pr=Pr/Vp. (2.8b)
Then T has the form '

T= ;(§R+p§)+ 2/2my . 2.9)
This form is preserved under any orthogonal “rotation”

mixing (R,S). As the crucial step we now make just such
a rotation, to new (scaled) coordinates (£, 7):

=

&= cosoy R+ sinop§ ,

(2.10)
7:7"= — sinaol:i-k cosaog ,
where the mixing angle oy is given by
tanoo=(A/V2)(m,/u)? . 2.11)
T now becomes
T=-;—(P§+p7,)+p,/2mo (2.12)

Now we unscale the coordinates E,?f , to define a new
heavy-particle coordinate £,

E=[(secoq) /VR]E (2.13a)
with its conjugate momentum

Be=(V/Ji coso)Pg (2.13b)
and a new (symmetric) electron coordinate 77,

7=[(secay)/V'm, 17 (2.13¢)
with its momentum

By=(Vm; coso0)B, - (2.13d)
A short calculation yields

E=R+Alm,/u)3/V?2) (2.14)
and the intuitively pleasing result

T=8—AR/V2=(5,+5,)/V2 . (2.15)

That is, the canonical electronic coordinate resulting from

this transformation is the (symmetrical) geometric center
coordinate. Now T is given by

T=P3/2u' +P5/2m,y cos’ao+P ;1 /2my , (2.16)
where p'=p cos’c,. Finally, noting that t=( p2—p1)/
V2, we transform back to individual electron coordinates

ﬁi (i= 172)’
Pi=(T—1)/V2, Br=(F+1I/V2, 2.17)

with corresponding conjugate momenta 7, 7,; the exact
relative kinetic energy then becomes

T=P/ 2 +(FI+7}/2m' + 772/,  (2.18)
where

m'=mqy(14+mg/4u)~". (2.19)
Note that m’ reduces to m;, u’ to u, and

4u=(M, +Mp), for A=0 (M ,=Mp), as is required for
consistency with (2.2).

C. Born-Oppenheimer separation

Now we shall employ the electron coordinates (p1,02)

.and the heavy-particle coordinate § as the dynamical coor-

dinates for a new Born-Oppenheimer separation: that is,
regarding E (not R) as a fixed parameter, we will solve
the electronic eigenvalue problem to obtain electronic
eigenstates for the system. As will be shown below, these
eigenstates, and the electronic Hamiltonian which defines
them, do not have g or u symmetry ggith respect to the in-
version p;— —p; (i=1,2) for fixed §.

In this representation of the problem, asymmetry does
not arise from the kinetic energy; indeed, T can be shown
to have gerade symmetry under the inversion. All asym-
metry now appears in the potential energy (when it is ex-
pressed in the new coordinates) and hence electrical asym-
metry will appear directly in the Born-Oppenheimer elec-
tronic eigenstates.

Since we shall work entxrely within the Born-
Oppenheimer approximation, the heavy-particle coordi-
nate £ appears merely as a fixed parameter characterizing
electronic eigenstates and energies. The only part played
by the heavy-particle kinetic energy, T¢=p E/Z,u’, will be
to define the vibrational-rotation states of the molecule as-
sociated with a given electronic state. Nonadiabatic cou-
plings will not be considered; they would have a complete-
ly negligible effect on the dipole moment, of order
(m /u)? or higher.

The new electronic and heavy-particle reduced masses

m',u’ differ from the old ones m,u by trifling amounts
[ ~A*(m /u)?*] and a negligible error in the dipole moment
calculation is introduced by setting m'=m,=m, u'=pu,
in what follows.??

As the electronic Hamiltonian for our problem, we take
the definition

he(P1P5E)=2m) T (FI+ 7D+ Ve(PrpnE)  (2.20)

where V; is the potential energy expressed in the new
coordinates. We have thus omitted the small “mass-
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polarization” term
Tyvp =(4p)~!

from consideration, as is usual in molecular electronic cal-
culations. It also has gerade symmetry, and like the nona-
diabatic couplings it can affect the dipole moment at most
by terms of magnitude ~(m /u)3.

ﬁf’l?é (221)

III. ELECTRONIC EIGENVALUE PROBLEM

A. Potential energy expressions

In the old coordinates [p;, i= 1,2;§], the potential en-
ergy has the simple form

V(FLpsR) =Vi(FuR)+Vi(FuR)+e2/rp+e?/R ,

(3.1
where ¥V, is the interaction of an electron with the nuclei -
A,B,

Vi(F:R)= —e? T L. 62
|F+7zR|  |pF—7R|

In the new coordinates [p;, i=1,2;& ], the potential energy
is a new function

VPP E)=V(p1,PuR(F1,F25E)) (3.3)

obtained by explicit substitution in Eq. (3.1) using the in-
verse relation

R=cos?oo[£ — +AMm /u)( 1+ 53] - (3.4)

The potential energy ¥, does not have D, symmetry
with respect to any point on the § axis; it does retain C,

symmetry about this axis. Two types of terms contribute

to the asymmetry.

(1) Internuclear repulsion. The term e%/R now be-

comes
2
e}/ Rt
| Eo—ao(p1+p2) |
where ag=+A(m /u)cos’oy and Ey=cos’cof is simply a

rescaled fixed parameter. Since we are interested in finite
values of £, (~1.4 a.u.) we can use the multipole expan-
sion to obtain

e’ = ez ( )+0(ad) 3.5)
—=—+ +2;)+0(ap) , .
R & ao §o 2 2 0

an expression which is valid provided | g+ p> | <<&o/cto.
For brevity, we have not written out the second-order
term, which has gerade symmetry. The first-order term is
just the potential energy due to a constant axial electric
field of magnitude age?/£3 vyhlch pushes the electrons to
negative z (the 4-nucleus end).*

(2) Electron-nucleus attraction—one-electron case. The
second kind of asymmetry appears in the electron-nucleus
interaction and is more difficult to understand. To do so
let us first consider the one-electron case (e.g., HD™'),
which yields a very simple result. Repeating the earlier

kinematic analysis for the one-electron case, we find

tanoy=+A(m /u)'?, (2.11")
F=F—+AR=p7, 2.15)
E=R++AMm /)7, (2.14)
R=cos?oy[E—+Am /u)p] , (3.4)

as the one-electron analogs of the correspondingly num-

bered equations above. Then the denominators in the po-

tential energy of interaction with nuclei 4,B are
ptEIR=(1FLay)p++ cos?oh€

where af=+A(m /u)cos’op; this may be rewritten in the
form

p+3R

Il

AFtap)p'+31E", 3.6)
where
E’:[l—%(a{)‘)z]“1 cos?ohE
is just a rescaling of the fixed parameter E, and
Pl=p+7aE"
simply redefines the (fixed) origin for electron coordi-

nates.?> But now the electron-nucleus attractions may be
rationalized very simply as

- zZ; z;
Vigp:)=—e* | —=—+——"——1|, 67
|F'+z8"1 |p'—=zE

where the effective charges Z;,Zp are defined

Zyp=(1F3ap)7",
Z}; being the larger. The “nuclei” in this rationalization
are separated by the internuclear distance § moreover, it
can also be shown that in this case the mternuclear repul-
sion can be rewritten consistently as

82 2 z :4 Z;?

—_— =

R g

, Z4Zp
gy
Thus, for the one-electron case, transformation from old
coordinates (T,R) to new coordinates (g, £), followed by
Born-Oppenheimer separation on surfaces of constant
| €], leads to an electron Hamiltonian for an electron
moving in the field of nuclei 4',B’ with charges Z},Zp
as defined above, and separated by distance &'—plus a
constant axial electric field of magnitude ape?Z4Zp/
(&) P is simply the electron coordinate measured from
the geometric center of this new “molecule.” Finally the
dipole moment of HD* [measured with respect to the
geometric centre of the original (physical) molecule”] is
just given by the expectation value of —ep on the
relevant eigenstate ¥, (p’';€'):

z'+0((ap)?) (3.8)

Enn(g,)zéea(')g'_e("/}n “—)”l'»bn) . (3.9)
[ un clearly has the polarity HYD~. While this model has
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little interest for the real ionic system HDT, it gives us
important clues for the interpretation of the two-electron
case.

(3) Electron-nucleus attractions, two-electron- case. Us-
ing Eq. (3.4), we write

FittR=(1Ftalpit+(1F ) " '&

Fral1F5a9) '], (3.10)
where j=4i, and ay, E o were previously defined. Two dis-
tinct rationalizations of this expression can be made, a
fact we will exploit computationally.

(a) Scheme 1. As for the one-electron case, we shift the
(fixed) origin of electron coordinates,

Bi’ =Pi+1a0k0 @.11)

and then manipulation of Eq. (3.10) yields

132

pitsR=(Z, )—1[(P it 50)+ 2 aO(PJ 7 50)"'0 ao)]

(3.12)
where Z, =(1F a,)~!. Again we interpret Z . as effec-
tive nuclear charges, £, as the internuclear coordinate,
and p';, i=1,2, as electron coordinates measured from the
geometric center of this new molecule.

(b) Scheme 2. In this rationalization, we rearrange Eq.
(3.10) directly to obtain the form

PiF5E)+0(ad)] .
(3.13)

1+ 3R=(Z ) '[P £ 5 E0) F T

D

Here j+#i, and Z, and E o are the same as before, but now
the p; themselves are the electron coordinates measured
from the geometric centre of the new molecule.

Each of these rationalizations leads to a different elec-
tronic Hamiltonian—and a correspondingly different ex-
pression for the electric dipole moment function. Of
course, each must give the same physical description, i.e.,
numerical value for the dipole moment. In Appendix C,
we prove that the two results must give the same answer
in a complete Hilbert space; hence we can use the conver-
gence of results for the two schemes as at least a necessary
condition for basis set adequacy.

(4) Notation change. To reinforce the above con-
clusions, and for the sake of clarity in what follows, we
will change the notation (for each scheme) to one which is
more usual in molecular electronic calculations.

(a) We will again use the name R for the internuclear
separation vector, i.e., E o is renamed R.

(b) The names T; will denote the electron coordinates
measured from the geometric centre of the new molecule,
that is, in Scheme 1, p'; is renamed T;, while in Scheme 2,
p; is renamed T;.

(¢) Electronic momenta are denoted P;, i.e, 7; is
renamed PB;.

We emphasize that this is purely a notation change. In
the rest of the paper there will be no chance for serious
confusion with previous usage.

(5) Electronic Hamiltonians and dipole moments. In

both schemes the electronic Hamiltonians for the system
can be written

h (T, TuR)=2m) " BI+BH+V(F,TuR), (3.14)

where

V(T T3R)=V (T T3 R)+ V(T T R) )
+e2/r;+e*/R+(age?/R?)(z; +2z,)
+0(ad) . (3.15)

However, in Scheme 1 the electron-nuclear attraction
terms are given by

z
VT T R) = — B !

L —
T 4i — 2 Q0T 45 |

Zp
= — , (3.16a)
| Tpi + 70T 5;
while in Scheme 2 they are given by
z
VT TR = —e? | ——— 24—
| Tai — 2o~ Bj |
V4
+ £ (3.16b)

In both equations, T, =T;
=Z,,2Zg=7_.

We must then solve the purely electronic Schrodinger
equations

ho(T1, T R)W(T), To;R) =€(R)W(F}, To;R)

for the X!'=* ground-state energy and wave function, for
each of the two schemes; then we evaluate the ground-
state dipole moment jZ, which is the expectation value of
the physical quantity —e(p;+ p,) (old notation); in new
notation, the resulting formula is

Be(X'ZH;R)=aeR—2e (¢ (X'=*) |7 |y V(X'=H)) ,

(3.17)

(3.18a)
for Scheme 1, and simply
BeX'=+;R)=—2e (¢ P X'=%) | T | g P(X'=H))
(3.18b)

for Scheme 2.

B. Method of calculation

We use a variation-perturbation method to solve the
electronic eigenvalue problem. Terms in the electronic
Hamiltonian of order a3 and higher are neglected.

(1) Perturbation Hamiltonian. For each scheme, the
electronic Hamiltonian (3.14) may be written
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he(T1, T R)=h2(T}, T R) +aoh, (T}, T5R) (3.19)

(@p=1.36x10"* for HD). The zeroth-order part has
D_, symmetry and is just the Hamiltonian for the
homonuclear system (H,), :

=2, =22
Pi+P2 1 1 e? 2
hd=——=—¢? — |+t
) 2m i=1,2 | T4 T rp, R
(3.20)

the perturbation k., has odd (ungerade) symmetry in D _,
(to lowest order in a;) and creates electrical asymmetry in
the system. For scheme 1, A, is formally defined

2
. e
aoh, m:aoﬁ(zl +23)

S S | — a1
b h - 1 —- - ¥ 4:
i=1j= | Tai— 70T 45 | 4
i

%1

- 1 - .

| Ui+ 50T |  7Bi

(3.21a)

while for Scheme 2

2
(2 e
aohs! )=ao——R2 (z1+2z;)

L 2 Z, 1
—e? z z T .
i=1j=1 | |T4—7aoTg| Ta
j-i
_ % 1
| Ui+ 3o q;| - 7B
(3.21b)

Terms of order a3 and higher in Eq. (3.15) have been
neglected, and we will also neglect some other higher-
order terms which appear in the evaluation of matrix ele-
ments of Egs. (3.21). The terms of order a} have even
(gerade) symmetry in any case, and can have no effect on
the dipole moment; the next odd-symmetry (u) terms are
of order a3, The terms of order a3 do make a contribu-
tion to the ground-state energies e(X'=+), which we have
ignored since they have a negligible influence on the wave
function.
(2) Variation-perturbation equations. If we write

| $(X'Z4)) = |¢g)+ao| ) » (3.22)
then the resulting equations for |, ) and |, ) are
(hQ—e€) | ¢ ) +aghe |, ) =0, |
(3.23)

(h2—€) | )+ | 4)=0.

These equations are variational in the sense that effects of

the first-order term aph, are included to all orders. Now
we write [1,) and |,) as expansions in suitable odd-
and even-symmetry (g and u) basis sets,

[ )= k§1 b lgk) »

N (3.24)
|¢u)= 2 cnl“n) ’

n=1

substitution into Eqgs. (3.23) leads to a system of coupled
equations for the coefficients { by },{c,}:

N,
g
0= 3 bi({gr|h2|gr)—elgi|gr))
k=1
N, :
+ab 3 culgr|hi|ug), 1=1,...,N; (3.25a)
n=1 '
N, :
0= 2 cn((tt |h£|“n>""‘e<um I“n))
n=1
Ng
+ z bk(umlhe'lgk), m=1,...,N, . (3.25b)
k=1

If we neglect the terms of order a3 in Eq. (3.25a), the re-
sulting equations are equivalent to a first-order perturba-
tion theory of the wave function: Given a particular
(variational) solution for the even (gerade) wave function,
we solve the inhomogeneous equation (3.25b) for the odd
(ungerade) component. To compute the dipole moment,
we must also evaluate the matrix elements

(PX'ZH) | Ty [ YXIZH) =2a0(9, |21 | ¢)

N, N,
=2a, 2 2 Cnby

n=1k=1

X{u, |21 |8k -

(3.26)

for use in Eq. (3.18).

(3) Expressions for matrix elements of h,. In Appendix
B we show that the matrix elements of the operators A,
for each scheme may be evaluated using the following
prescriptions:

A A
hé (J)=e2 [V(IJ)“’ V(ZJ)

J=1,2 (3.27)

where (to first order in a,) the matrix elements of the
operator ¥ " are defined as
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(1) 1 1 1 1
{ =_1 dri | =R | — 1+ —
Xx|vV ®) 5 f f dr;dr; Rt
for Scheme 1, and by
v DD By L gr | lpl 1
HNVT@r=—3 f de'dTJ 2R "Ai+rBi y

for Scheme 2. In both cases it is understood that jz£i,
that the product of the functions (X*®) has odd
(ungerade) symmetry and that it is nonnegligible only for
rirj<<ag .

IV. DISCUSSION

Figure 1 shows the HD dipole moment function u,(R)
vs R obtained from the calculations described in the pa-
per'* following this. It is also the dipole moment function
for HT and for DT, provided it is rescaled by the factors
1.329 32 and 0.332 12, respectively.

The dipole moment function obtained by Ford and
Browne® is shown for comparison. There is a small but
significant difference between their results (and those of
Bunker®) and ours. While we cannot prove conclusively
that our results have completely converged, the stability
of our dipole moment to further augmentation of the basis

25

DIPOLE MOMENT OF HD
me(R) vs. R

Dipole Moment p,, (R) (1074 debye)

R (a.u.)

FIG. 1. Dipole moment function u.(R) (in debye) vs internu-
clear distance R (in a.u.), for HD (X'2*). Solid curve, results
obtained in this work (cf. paper immediately following for de-
tails); dashed curve, dipole moment function computed by Ford
and Browne (based on vibronic perturbation theory).

9 d 1 1.
lazi_azj ]+ {rA,; _rB,-

___+__

(*,--v,.-?,--v’j)lx*u,z)@(l,z)

(3.28a)

) 1 1

(£ V,—%:°V)) lX*( 1,2)®(1,2).

aZj ¥ 4i ¥ pi

(3.28b)

set near R,, and the close agreement of the values from
Schemes 1 and 2 suggests that this is the case. We note
that in the vibronic perturbation calculations, certain vib-
ronic energy differences were replaced by average values
for the electronic term difference in question, in order to
close sums over vibrational states. This could perhaps be
a source of error sufficiently large to account for the
discrepancy with our results.

In any event the relatively good agreement between
these two widely disparate theoretical calculations may be
taken to establish the value of the HD permanent dipole
moment reliably as over against the older experimental re-
sult reported by Trefler and Gush.!® Within its larger er-
ror limits, the more sophisticated and careful recent work
by Nelson and Tabisz!? yields a result in reasonable agree-
ment with the theory.

The main interest in this present work, however, lies in
the simpler perspective that it gives us on the origin of
these isotopic dipole moments. We see that it is not at all
necessary to invoke nonadiabatic or “rovibronic” pertur-
bations to understand the HD dipole moment; it arises
directly from asymmetry of the electronic Hamiltonian,
provided that we cast _that Hamiltonian in an appropriate
set of canonical coordinates. The model of this Hamil-
tonian as having a pair of nuclei with slightly different ef-
fective charges is particularly pleasing, since we can link
that directly to the orbital-size and binding-energy effects
which we know must be associated with the difference in
electronic reduced masses for D and for H. The “axial
electric field” term is less obvious in meaning but its ef-
fect is in the same direction as that of the effective
charges. By contrast, one of the real drawbacks of the
vibronic perturbation approach is the fact that its L and ||
coupling contributions are large and opposite in sign, so
that it is not obvious at the outset even what sense the di-
pole moment must have.

There still remains a small gap in our understanding of
the HD dipole moment. We have not tied our calcula-
tions directly and rigorously to the arguments about elec-
tronic reduced masses which we gave at the beginning of
this paper and which we would put forward as the best
pedagogical explanation of the problem. We settled for an
orthogonal transformation referring electron coordinates
to the geometric center of the nuclear system rather than
to its center of mass, and the asymmetry then appeared in
the potential rather than in the kinematic Hamiltonian.
In principle, it would be still more elegant to carry out a
transformation which does in fact generate a local elec-
tronic reduced mass as a direct feature of the electronic



Hamiltonian. In principle, such a transformation could
be achieved, by using the “switching function” approach
formalized by Thorson and Delos?’ for the treatment of
electronic excitation and charge transfer in slow atom-
atom and ion-atom collisions. In practice, it appeared to
us that such an approach would have been formidably dif-
ficult to carry out accurately.

We may remark that at certain points in our discussion
of the electronic model Hamiltonians of Schemes 1 and 2,
the reader might feel assailed (as we did) by doubts about
the “physical reality” of the “molecules” pictured by these
models. Of course, such doubts are the result mainly of
unfamiliarity with alternate viewpoints; the same difficul-
ties had to be overcome when one first encountered, in
Newtonian mechanics, the proposal that the system of
two “real particles” with only mutual interaction be con-
sidered physically equivalent to a system of two “fictitious
particles” whose coordinates are those of the center of
mass and the relative motion of the former pair. As long
as we do not break up the system into its “real com-
ponents” by some external intervention device, both
viewpoints are equally real.

The canonical-transformation strategies adopted in this
work stimulate curiosity whether they might lead to use-
ful progress on the general three- or four-body mechanics
for bound states of such systems as the muonium molecu-
lar ion (i.e., u~ plus two protons). This may be true, but
enthusiasm for this should be tempered by the recognition
that simplicity of the present work rests heavily on the
very small size of the perturbing parameter g, and conse-
quent ability to truncate to first-order terms alone. If
consideration of higher-order terms must be made, many
additional complications will have to be faced.
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APPENDIX A: A SIMPLE MODEL
FOR THE DIPOLE MOMENT OF HD

In this model calculation the dipole moment of HD
arises from the difference in electronic reduced masses for
deuterium and hydrogen. There are two effects: (1) since
D(1s) has a lower energy than H(1ls), the ionic configura-
tion HtD™ is slightly favored over H"D* in the HD
ground state; (2) since the D(1s) orbital is slightly smaller,
the two-center overlap distribution is skewed in the sense
H*D~. Both the differential binding energy and orbital
size effects are directly related to the parameter
ao=+Am /u=1.36x10"* appearing throughout this pa-
per: to first order in a

€[H(1s)] —e[D(1s)]=ay(a.u.) (A1)
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and the D(1s) and H(1s) orbital exponents (in a.u.) are

fo=1+7ap fu=1—7a,. (A2)
Our trial wave function is
IW)Z I‘I’o>+a0b I‘II1> (A3a)
~ where
| Wo) =No{[#15p(1)d15u(2) +1u(1)d1,p(2)]
+a[150(1)150(2) + & 1su(1)d1,u(2)]}  (A3b)
and
| ¥1) =N1[¢150(1)d150(2) — d1su( ) 15u(2)] (A3c)

are separately normalized components. The differential
contribution of the two ionic configurations is measured
directly by the coefficient of |,), while (to order a;) the
skewing effect of differential orbital size appears as a
small dipole moment of the zero-order state | ).
Calculation of the dipole moment i, yields the result

Ee(R)=4eN3{aeh (N,/No)a+S)R

—[S(14+a?)+2a]7}

where S is the overlap integral {¢;p | d1su) andv ¥ is the
overlap moment,

(A4)

¥=+{(diu|T|dip)

=—LtaoRe R(1+R +2R%+-:RY) . (A5)

It then remains to compute the coefficient b; using the
variation-perturbation method, we find, to lowest order in
Qo,

— (W | H [ W)+ (¥, | H | ¥,))
(W, |H |¥;)— (Y | H | ¥,)

aob =

(A6)

In evaluating the matrix elements in Eq. (A6), only the
lowest-order nonvanishing terms need be kept. These are
of zero order in the denominator and first order in a  in
the numerator. To evaluate the matrix elements, we write

H=ho(1)+ho(2)+e%/ri;+e*/R , (A7)

with special operator rules for the one-electron Hamiltoni-
an:

ho | $1sp) =€15p | 150) —(€2/ry) | d1sp) »
(A8)
ho | $rsu) =€1m | $1su) —(€2/rp) | rsu) -

The numerator of Eq. (A6) is given explicitly by
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— 3 (W | H | W)+, | H | ¥))

— 2NN, [(a-+s) (€1sm—€1sp) + <lsD - 1sD>-—<1sH - 1sH>H

-2 <1sD(1)1sD(2) ;:7 lsD(1)1sD(2)>—<1sH(1)1sH(2) i 1sH(1)15H(2)>

- <1sD(1)lsH(2) i lsD(1)1sD(2)>—<1sH(1)1sD(2) i 1sH(1)1sH(2)>H (A92)
=2aoN No{(@+5)[1+(14+2R)e ~R]—Fa—-2Y}, (A9b)

where Y is given by the expression

Y=R e R[(—S+ER+ZR>++RY)

+e RS 4+ ER+5RY]. (A9c)
Evaluation of the matrix elements in the denominator of
Eq. (A6) is straightforward. The state | ¥,) is in fact just
the model wave function for the hydrogen molecule
ground state studied in 1949 by Coulson and Fischer.?®

Figure 2 gives the resulting model dipole moment func-
tion versus R. While this model is too crude for quantita-
tive predictions (except perhaps for R >>R,), it obviously
shows that the HD dipole moment can be understood
without appealing to nonadiabatic perturbations as an ex-
planation.

APPENDIX B: MATRIX ELEMENTS
OF PERTURBATION h,

Matrix elements of the operators 17(31 ),f’\'(eZ) defined in
Egs. (3.16a) and (3.16b) must be evaluated carefully. For
example, consider a matrix element arising from the first
term of (3.16a):

1

-z, [ [ dndPrix*(1,2) ,
| rAi__z'aO?Aj |

]<I>(1,2) ,

(B1)

where X(1,2) and 9(1,2) are arbitrary (L 2-type) basis func-
tions. Since the location of the Coulomb singularity is not
fixed in either T4; or T 4; space, neither multipole expan-
sion nor numerical quadrature can be accurate or conver-
gent. To solve the problem, we transform the integration
variables to a new set,

T4 = COSY T 4; — SINYoT 45 »
(B2)
?141 = COS’}’()?AJ’ +sin'y0f’A,- s

where tany,=4a,. Since the transformation is orthogo-
nal, its Jacobian is unity and the integral becomes

1

Ai

2z, [ [ drudiry (X*®) ;

now the only remaining task is to reexpress (X*®) as ex-
plicit function of the new variables. Taking advantage of
the small size of ag, we use the Taylor expansion:
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SIMPLE MODEL
HD DIPOLE MOMENT
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FIG. 2. Dipole moment function u.(R) (debye) vs R (a.u.) for
HD (X'!3+), obtained using crude model calculation described
in Appendix A.
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- D — D - — - =y — — = — - B
F(I’Ai,?AJ-;R)=F(I‘ 'Ai,f';,j;R)+(f’A,'—r Q,-)'Vrl;'_F(?Qi,r ’Aj;R)+(rAj—r:4j)'Vr’,4‘F(r IA,-,I' :41;R)+ e
J

(where F =X*®). Since

-

we find

F(F 0, FapR)=F (T4, TR0+ 30Ty V0 ~T ¥, F +0(ah) .

= = s o - .
T4 —T 4 =(cosyo—1)T "y +8inyoT 45, T4j —T 4y =(cosyo— 1)T y; — sinyT y; ,

(B3)

(B4)

(B5)

If we retain explicitly only up through linear terms in ay, the original integral (B1) now reduces to the expression

1

74

—(1+%a0)<x 1
¥ 4i

<D>—%ao f f d’rid’r;

(?Aj'Vj _?Ai' V_,)(X*cp)

(B6)

(we have dropped the primes on the dummy integration variables). For the corresponding interaction with nucleus B
[second term in Eq. (3.16a)] we find, using a similar technique,

~2y [ [ d*rd?rxt !
| Tpi + 50T |

+%ao f f d3r,-d3rj {i
) i

Noting now that ?A,-=f’,-+%§, T’Bi=f}——;-§, subtract-
ing the zero-order terms are required by Eq. (3.21a), and
adding on the “constant electric field” terms arising from
the nuclear repulsion, we obtain the result summarized by
Egs. (3.27) and (3.28a). A derivation of Eq. (3.28b)
proceeds in the same way.

The condition of validity for these results is evidently
that the Taylor expansion be accurate when truncated at
the first-order term, i.e., that the product (X*®) be non-
negligible only for distances (rA,-,rAj,rB,-,rBj,R)<<(a0_1).
This will always be true for the basis functions and condi-
tions studied here.

APPENDIX C: EQUIVALENCE
OF RATIONALIZATION SCHEMES

We prove here that the two rationalization schemes we
have developed give equivalent physical descriptions of
the HD dipole moment, within the limiting assumptions
(variation-perturbation treatment, terms up to first order
in ag, and agR << 1): i.e., the value obtained for the dipole
moment [, is the same for both schemes, provided the
problem is solved in the complete Hilbert space.

Considering the two electronic Hamiltonians,

he'=h]+aoh; "V,
(Cn

2 0 (2
P =hd+ach?, |

¢=—(l—%ao)<)(

rpi

)

(Fpj* Vi~ T V)" ) . (B7)
I
we must solve the eigenvalue problem for each case,
hé") | \I,(J)) =&V ’ \I,(J)) (C2)

by the variation-perturbation‘ method. To do so, we write
| W) = | W2) +ao | W), ' (C3)

where |Wg) is the (gerade) solution of the zero-order
problem

RO | W9 =€XR) | WI) . (c4)

To determine I\IIE,J) ) we solve the inhomogeneous equa-
tion
(hQ—eN | W) =—n," | W) ; (C5)

if e expand in a complete set of (ungerade) eigenstates of
he,

I\I/LJ)>= 2 Cn | \Ilgu> s (C6)
n
then we find
<\I/0 h +(J) \I/O )
€nu —€g

and without loss of generality we may take c, to be real.
Given the above, we wish to prove that Eqs. (3.18a) and
(3.18b) are equivalent, i.e.,

—e (WD (F)+T) | W) +e(W D | (T;+T,) | ¥'V) =aeR (C8)
(of course only the z component is nonzero). From Egs. (C3), (C6), and (C7) we obtain
—e(WD | (2, +2,) | W) =age <\1/3 hV— 1 5 (z1+23) \1/2>+<\1/g (z14+22)—5 1 5he \1/2) ; (C9)
‘ h, —¢€g he —€g
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then the result to be proved is that
age <wg (he @ —he )5 (21 +22) (21 +22) 55 (he =R WS) =ageR . (C10)
e Cg e g
Now we can insert the complete set of ungerade eigenstates of 42 into these matrix elements; the left-hand side of (C10)
becomes
’ ’ l
age 2 \pgl(he(z)_he(l))IWSu)— W?m |(Zl+22)|¢2>
n nu — €g
1 ’ ’
W | (21 422) | W0, ) 55 (WO | (B, P —h, V) | W2) (c1n
nu — €g
From Egs. (3.28a) and (3.28b) we have the result
2 2
1@ _pr (D) g0) eR |1 1 d PO 0y - 2
(W, | (B, D—n, ) w)y= [ [ drdry 3|55 T g () s (C12)
integration by parts (over z;) yields the result
2 2 2
0 (@) ey 0y R osgo| 0 |e” e’
Vo | (hy P —h{ ) /9y = — El [ [ drdnvow [ 3z [ ot (C13)
But it is easily shown that
2 e2 d d 0
_ £ € — = |, A (C14)
E az 74 rB,~ dz; 0z,
so it follows that
0 b2y g0y _ R0 o 0 a a o\ .
W, | (h, ' —h, )]‘I’g)=—2—(€g—-6m,)<\1/,m E+£ g> 5 (C15a)
similarly,
0 (112 () g0 R, o _oy/yo||_0 a 0
(‘I’g | (he' ™' —h, )lwnu>=‘2_(6nu’"€g)<wg 5_2—:'{"5;; ’ Wnu) . (C15b)
Substitution of these equations into Eq. (C11) gives us
R 0 3 d
aoe | & ] > [(wg e 2 | )8R 2 | 90— (9 214200 980 (¥ l—+?az—2 %) }
1 0 a , 0 0
=5 0aeR(¥, 2z, + H(z14+27) | |y (C16)

and since the indicated commutator is just equal to 2, this
reduces exactly to the result required in Eq. (C10). To
prove the theorem, we needed only to insert a complete set
of ungerade eigenstates of h, i.e., the completeness of the
ungerade Hilbert space avallable to us. On the other
hand, no comparable assumptions were required for the
gerade space.

It follows that agreement of the results from the two
schemes is a necessary condition for the adequacy of the
ungerade basis set used in a calculation, but it does not
prove that the result then obtained for i, has converged
to the correct value. Nevertheless this does serve as at
least some test of basis adequacy.
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