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Relativistic Coulomb bremsstrahlung in soft-photon approximation

Leonard Rosenberg
Department ofPhysics, ¹wYork University, ¹wYork, ¹wYork 10003

(Received 8 November 1984)

A low-frequency approximation for the bremsstrahlung transition amplitude is derived for a rela-
tivistic electron scattered by a central potential which is Coulombic at great distances. The Coulomb
tail is shown here to have the effect of introducing correction terms, not present in previous relativ-
istic treatments, which depend logarithmically on the photon frequency. The approximation pro-
cedure, in the form presented here, is based on the fact that at low frequencies the dominant contri-
bution to the matrix element comes from the domain where r, the electron distance from the scatter-
ing center, is large. An asymptotic representation of the Dirac wave function is derived which in-
cludes a correction term of relative order 1/r compared to the leading term. This enables us to in-

clude a correction to the matrix element of relative order k, where k is the photon wave number.
The essential feature of the low-frequency approximation, present in previous versions, is preserved
here. That is, the result is expressed in terms of the physical amplitude, 3, for scattering in the ab-
sence of any radiative interaction. Another potentially useful feature of the present version is that it
involves angular derivatives of 3, not energy derivatives, and should therefore remain valid in a re-

gion where A varies rapidly with energy.

I. INTRODUCTION

In his derivation of the soft-photon approximation for
single-photon bremsstrahlung, Low' explicitly excluded
the case where both particles in the collision are charged.
This allowed him to make use of certain analyticity prop-
erties of the transition amplitude which do not in fact
hold in the presence of long-range Coulomb interactions.
Here we shall examine the effect of the Coulomb tail on
the form of the soft-photon approximation in the context
of a very simple model, namely, photon emission by a
Dirac electron scattered by a center of force. The scatter-
ing interaction is assumed to be described by a local, cen-
tral potential V(r) which behaves, for large values of r,
like the Coulomb potential

For small r the potential V(r) deviates from the purely
Coulombic form. One may, for example, think of V(r) as
representing a local, energy-independent approximation to
the effective potential for the scattering of electrons by
atoms (neglecting screening effects) or ions. (Alternative-
ly, one may keep in mind a model of proton-nucleus
scattering, but for definiteness we shall refer to the projec-
tile as an electron. ) With such a simple, explicitly defined
model we may take a quite different approach than that
used by Low. %'hile far less powerful and elegant, it does
allow us to account for the effect of the Coulomb tail us-
ing our knowledge of the asymptotic form of the solution
of the Dirac equation in the presence of a Coulomb poten-
tial. Here we recognize that the dominant contribution to
the low-frequency bremsstrahlung matrix element comes
from large values of r. From this point of view the most
striking and useful feature of the soft-photon

approximation —its dependence on only physically
measurable radiation-free scattering parameters —is easily
understood since the asymptotic form of the wave func-
tion depends on the scattering interaction through these
parameters alone. A similar approach has been discussed
previously in the context of the nonrelativistic scattering
problem. Substitution of the Dirac for the Schrodinger
equation causes no essential difficulties. In addition to in-
clusion of spin degrees of freedom the method of deriva-
tion has been improved to allow for the effect of all mul-
tipoles, rather than just the dipole and quadrupole terms.
This generalization is made necessary by the fact that v/c
is not treated as a small parameter here.

The problem of relativistic Coulomb bremsstrahlung, in
the potential scattering model, has of course received a
considerable amount of theoretical attention in the past.
However, none of this earlier work deals directly and
comprehensively with the issue of particular concern to us
here. Thus, in the early work of Bethe and Maximon an
analytic approximation is obtained which is valid for all
photon frequencies but the scattering energy is assumed to
be large compared to the electron rest energy and the ef-
fect of a short-ranged component to the potential is not
included. To fill this gap large-scale numerical pro-
cedures were initiated subsequently based on specific,
simple representations of V(r). These efforts, while ex-
tremely useful, lack the above-mentioned feature of the
soft-photon approximation —model independence in a rel-
atively simple analytic form. In addition to its practical
role (however limited) in the analysis of atomic-field
bremsstrahlung, results reported on here should be useful
in further studies of the infrared radiation problem. Here
we have in mind not only single-photon but also multi-
photon radiation processes where, in the general context
of relativistic collision physics, Coulomb-field effects ex-
ert a subtle and as yet not fully understood inQuence.
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Section II of this paper contains a derivation of the first
two terms in the asymptotic expansion of the wave func-
tion. The result may be of use in applications other than
that considered here. (One possible application that
comes to mind is the construction of a variational princi-
ple for relativistic Coulomb scattering. ) Use of this
asymptotic form in the derivation of the soft-photon ap-
proximation is described in Sec, III. Calculational
strategy is discussed in general terms in Sec. III A, and the
lowest-order version of the approximation is obtained in
Sec. III B. It is of a fairly simple form, differing from the
standard perturbative result only in the inclusion of a
multiplicative factor accounting for the effect of the
Coulomb tail. A correction term, of first order in the fre-
quency, is derived in Sec. III C, with some of the calcula-
tional details left to an Appendix.

II. WAVE FUNCTION AT GREAT DISTANCES

given in Sec. 32 of Rose's book (to which the reader is re-
ferred for notational conventions). Here, however, we in-
clude the irregular as well as the regular solution, in ap-
propriate linear combination, to allow for a phase-shifted
asymptotic form reflecting the influence of the short-
ranged component of the potential.

To begin we recall the form of the two-component
spin-angle function

3/j~l(1/2)(r)= X C(l2j, v'm'p)Y~ (r)X (2.2)
m', v'

(cr L+ 1) 3/r. i((/2)(r) = K3/j~—/()/p)(r),

with L= —ir g V and

(2.3)

describing an electron of total angular momentum j, pro-
jection p, and orbital angular momentum I =j+—,'. We
note the relation

—)(=j(j+1)—l(l+1)+ —,
' (2.4)

A. Preliminaries: Angular momentum decomposition

To prepare the way for later developments we summa-
rize, in this subsection, some well-known properties of the
solution of the time-independent Dirac equation

( ia V+—13+ V)$= Wg (2.1)

for an electron in a local, central potential V(r) We f. ol-
. low closely the treatment of the Coulomb wave function

Suppose that the electron, in a continuum state of energy
W =(p +1)', is initially in the spin state

X= C]/2X +& ]/2X
1/2 —1/2 (2.5)

with momentum p. We allow for scattered waves which
are either outgoing (+ ) or incoming (—) [as required by
the form of the matrix element shown in Eq. (3.1) below].
The full wave function may be expanded as

(+) 4
2Wp

1/2

g g c i C(l—'j,v~p) Y& (p)
j,l,pm, v

g' +—)(r )9'rl()/2)(r)

if ' +'(r)rr —r P")-((2)(r)
(2.6)

The radial wave functions are defined by a set of coupled
differential equations whose asymptotic solutions are of
interest to us here. Accordingly, we replace V(r) by—Ze /r in which case the solutions can be expressed in
terms of the confluent hypergeometric functions

E(a,b,z) = W(),abz)+ W2(a, b,z),
6 (a,b,z) =i W) (a,b,z) i W2(a, b,—z) .

(2.7a)

(2.7b)

The asymptotic forms of W, and W2 are given, for ex-
ample, in Schiff's text. The regular solutions, gz and fr(,
of the radial equations can be expressed as

(2.8a)

)( iy /W—
e '"=—

P+ lg

The irregular solutions are given by

rgr =( W+1) / (Nr+Nr )

rf, =i(W I)'"(0r C—r) . —

(2.10c)

(2.11a)

(2.11b)

C&r is obtained from Eq. (2.9) by replacing Ii with G.
Linear combinations of regular and irregular radial func-
tions which satisfy the proper outgoing-wave or
incoming-wave boundary conditions may be chosen as

g'+-'=e '(gz cos5„—gr sin5„), (2.12a)

re ——i( W —1)' '(@r( —+r(), (2.8b) f ' +'=e "(fr( cos5„—fr s—in5„), (2.12b)

with

C&r( ——(2Pr)r(y+iy)e '~"+'"e~
~

I (y+iy)
~

X [2(mp)'/ I (2y+1)]
XF(y+ 1+iy, 2y+ 1,2ipr ) .

Here we have

(2.9)

where 5„represents the contribution to the total phase
shift 5„due to the deviation of the potential from purely
Coulombic form. These phases are real; it follows that

( —)+ (+) f(—)+ f(+)
From the known asymptotic expansions of the hyper-

geometric functions we find that, for r~~,
1/2

y =e ZS'/p,
=K —e Z2 2 4 2

(2.10a)

(2.10b)

( Wg e '+ 6'g )/2,

where, ignoring terms of order 1/r,

(2.13)
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6g ——exp Ii [pr +y ln(2pr) —(l + 1)w/2] I

x 1 — + (&+1' +y )
2p8'r 2pr

%'e also have
I /2

(+) . W —1 2i5„rf+-i (gfe "—Wf )/2
&p

with

6'f ——exp Ii [pr +y ln(2pr) —(l + 1)m /2] I
T

x 1+ + ( —~+y+y)2p8'r 2pr

(2.14)

(2.1S)

(2.16) g C(l ,'j,vm—p)C(l ,'j, v'm—'lJ, ) =5~ ~5 ~

J~P

(2.19)

and examine these eight terms individually.
Consider first the angular momentum summations in

the components —,(1+P)iP&—,„', these are built up from the
incoming waves Wg and Wf. The dependence of these
functions on the angular momentum quantum numbers
presents an apparent obstacle to the performance of the
summations. However, noting first that y +y
=a +y /W we may replace the number v by the opera-
tor E = —(o"L+1) since it multiplies the spin-angle
eigenfunction in Eq. (2.6). The summations over j and p
may now be performed using the orthogonality property

In arriving at these forms we have used the relation

5„=5„+ri ny—/2 ar—gl (y + iy)+ (l + 1)m./2, (2.17)

expressing the total phase shift as the sum of components
associated with the short range and Coulomb interactions.
The 1/r correction terms which have been retained in the
spherical waves shown in Eqs. (2.14) and (2.16) lead to
higher-order corrections in the low-frequency expansion
of the bremsstrahlung matrix element, as shown below in
Sec. III C.

B. Asymptotic expansion of the full wave function

Let us new insert the asymptotic forms of the radial
wave functions into the expansion (2.6) and attempt to
carry out the sums over angular momentum states. It will
be convenient to consider separately the contributions to
the asymptotic wave function arising from the incoming
and outgoing spherical waves in Eq. (2.13) for the
"large"-component wave function; Eq. (2.1S) provides a
similar decomposition of the "small"-component contri-
bution. That is, we write

( —1) Yr" (r) = Y~" ( —r) .

The closure property then gives

$ 1'("(—r) YI (p) =5(A;—0-) .
l, v

In this way we obtain the asymptotic forms
1/2

)
( p)~(+) W+1 2'+ P in 2W pI'

(2.20)

(2.21)

XexpI i [pr +y ln(2pr)]—I

y/W
2pp'

(%+K +y /W )
2pI'

Turning to the summation over l we observe that the
phase factor exp(ilm/2) in the incoming spherical wave
function is multiplied by the identical factor i' appearing
in the expansion (2.6) and that the product may be ab-
sorbed by writing

x5(Q -,—A;)X (2.22)

(2.18)
I

p)q(+ ) W —1

2W

' 1/2 —27Tl
expI i [pr +y ln(2pr)] I o—"r 1+ y/W

2p7
( IC+E +y /W—)

2pI

(2.23)

The appearance of angular derivatives acting on the 5 function will not lead to complications since, in the matrix element
of interest, the Hermitian operator K will be allowed to act to the left and this will enable us to perform the angular in-
tegrations immediately.

Analysis of the large and small components of fz,„pr eed in sa similar way. Writing out the result in the adjoint
form required later on we have, with

g =C]/2X +Cr r ]/2 r —1/2
(2.24)

representing the final spin state of the electron, and with p' and W'= (p' + 1)' representing its momentum and energy,

respectively,
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' 1/2

[
) (1 P)y(

—) ]t X~t +
p'r exp [ i—[p'r +y' 1n(2p'r) ] ]

&&5(Q-—Q-, ) 1—
2p'r

(K+K +y' /W' )2p'r
(2.25)

' 1/2

[—,(1—P)gz, „'] —X', , exp t i—[p'r +y'ln(2p'r)] J28" p'r

t Wf
x5(Q;—Q-, ) 1+

2p'r
( —K+K +y' /W' ) o"r .

2p r
(2.26)

It will be convenient here to think of K as operating to the right.
The outgoing spherical waves in Eqs. (2.13) and (2.15) are accompanied by 5 matrix factors. Of course, one cannot

then perform the angular momentum summations explicitly; rather, the result may be expressed in terms of the physical
scattering amplitude. Following closely the treatment in Ref. 5 we introduce the 2&& 2 matrix

& ( p ', p;p) =E(p,cos8)+6 (p, cos8)o"n,
where cosO=p '-p and where

n=pXp'/
i
pXp' i,

l Zi5„
F(p, cos8) = — g (e "—1)(2j+1)P)(cos8),

4p

G(p, cos8) = — g (e "—1)P) (cos8) .
yc zis„

2p

We then find the asymptotic forms
1/2

—,(1+P)q(,+..),— —expji[pr+y 1n(2pr)]J 1 — + (K+K +y /W ) A (r, p;p)X
y/W i

28' r 2pr 2@r

(2.28)

(2.29)

(2.30)

(2.31)

and

p)y(+ )

1/2

exp[i—[pr +y ln(2pr)] jo"r 1+ + ( —K+K +y /W ) A(r, p;p)X .
28' r 2pr 2pr

(2.32)

In obtaining these results we have replaced the factor exp(2i5„) by exp(2i5„) —1 in order to arrive at the standard forms
(2.29) and (2.30). It is readily verified that the error in this procedure appears only in the direction i=p. Anticipating
that the expressions (2.31) and (2.32) will be required only for r=p' we see that the above-mentioned replacement is

valid provided we restrict our, . analysis to scattering away from the forward direction p '= p.
A very similar analysis leads to the asymptotic form of the scattered part of the final-state wave function. We find

that

1/2

[-,' (1 P)gp, '„,] —X' A(p', —r;p') 1—,+, (K+K +y' /W' )
y'/W' i

2p'r 2p'r

and

)& —expt i [p'r +y' in(2p'r)] Jr
(2.33)

1/2

[—,'(1—P)P'. ,)„,]t- —X't, A(p', —Vp') 1+, +i( K+K +y' /W' —) o"r

)& —expji[p'r +y'ln(2p'r)]] . (2.34)
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Here again we have assumed that p'&p and have antici-
pated that Eqs. (2.33) and (2.34) will be evaluated below
for the particular direction —r =p.

III; ASYMPTOTIC EVALUATION OF THE
BREMSSTRAHLUNG MATRIX ELEMENT

sponding to photon emission in the initial state, could be
generated from M'" by carrying out a fairly simple set of
transformations. The appropriate rule, now to be stated,
may be verified directly by examination of the form taken
by the matrix element after substitution of the asymptotic
wave functions. Thus, let us write

A. Discussion of procedure

The matrix element of interest is

(3.5)

One finds that after the required integration is performed~"' takes the form of a sum of products
d3„q( —)t .gq(+)e —ik r

P P (3.1) =g TisT2s ' Tn s (3.6a)

with

d3r. I~ —, . ~~ g.I. + e
—~k.~

d 3I .I ~, ~~ ~ g.I ~+ ~e —~" ~

(3.3)

(3.4)

The domain of integration is here understood to be con-
fined to the region r~R, with R chose'n large enough so
that the asymptotic forms developed in Sec. II B are valid.
For convenience we impose the requirement that our ap-
proximation be independent of R. This will be achieved if
we keep only those terms in the asymptotic expansions of
the wave functions which give rise to radial integrations
convergent at the origin. The integration domain can
then be enlarged to include the region r & R thereby intro-
ducing an error which remains finite in the zero-
frequency limit. Since errors of this order are ignored in
our approximation scheme we see that dependence on the
parameter R is removed by this procedure. The drawback
is that by rejecting higher-order terms in the asymptotic
expansion (because of their more singular behavior at the
origin) we lose higher-order correction terms, in powers of
the frequency, in the soft-photon approximation. We
shall return to this point later on.

The integral M'" in Eq. (3.3) may be interpreted as the
contribution corresponding to'photon emission in the final
state. Keeping in mind the results of standard perturba-
tion theory one expects that the amplitude M', corre-

appropriate to the emission of a photon of wave number k
and polarization A, , accompanying the scattering of an
electron with initial and final momenta p and p', respec-
tively. Assuming the photon energy to be small compared
to the energy of the incident electron the dominant contri-
bution to the integral in Eq. (3.1) will come from the re-
gion far from the scattering center, where the potential is
well approximated by the Coulombic form (1.1). The
wave functions in Eq. (3.1) may then be replaced by their
asymptotic forms, derived above in Sec. II B. The domi-
nance of the asymptotic contribution in the soft-photon
limit is made apparent by the observation that the matrix
element is singular in the limit k —+0, and a singularity
can only develop in this case from an infinite range of in-
tegration. We may in fact make use of this feature to sys-
tematize the approximation procedure. That is, we retain
only those contributions to the matrix element which are
singular in the limit k —+0. Noting that singularities
develop from those terms in the integrand with slowly os-
cillating exponentials we may write

(3.2)

with ~' ' taking a similar form

(3.6b)

o"acr.b=a b+ia &((aXb), (3.7)

where a and 1 are vectors whose components commute
with those of a but not necessarily with each other.

Continuing with our discussion of the calculational pro-
cedure let us observe that due to the appearance of the
directional 6 functions in the asymptotic wave functions
the angular integrations required in the expressions (3.3)
and (3.4) are readily performed. With regard to the radial
integrals we recall that only those which converge at the
origin will appear and these are of the form

00

I(s a, b) = lim e (~+ia)rrb+sd» (3.8)
p~o+

with s =0 or 1 and

a = —(p —p' —k.p'),
b =i(y —y') .

We have

I(s;a,b) =(ia) ' ' I (1+s+b);
recall that I (2+b) =(1+.b) I (1+b) and

(3.9a)

(3.9b)

(3.10)

I (1+b) = 1 by, b ((1, — (3.11)

where y =0.5772. . . is the Euler-Mascheroni constant.

B. Result of lowest-order calculation

As a first approximation we keep only the leading term
in the asymptotic form of each wave function. The con-
tribution from the correction terms, of order r ' com-
pared to the leading term, will be included later on. The
influence of the Coulomb tail is then contained in the log-
arithmic contribution to the phase of the wave function.

To construct the factor T;, given T;, one carries out the
transformations k~ —k, p' —+p, p~p'. Furthermore in
the expression for A (p', p;p) given in Eq. (2.27), one re-
places cr by —cr in addition to interchanging p and p.
The net effect of the transformation on A(p', p;p) is to
replace p by p' in the scalar functions F and G in Eq.
(2.27). The forms (3.6a) and (3.6b) involve products of
spin matrices which can be simplified by repeated use of
the identity
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I'(I+i (y —y') ) (3.12)

Introducing the small parameter 5=(p —p')/p we have
the expansion

B(p',p) = 1+iy51n( —,
~

5
~
)+(ym/2)

~

5
~

+iy5(1+y) —y 5 ln ( —,
'

~

5
~

)

+O(5 ln5) . (3.13)

This in turn leads to a modification of the radial integral
through the appearance of the factor

—/y —y'
/

n/2 'I p p
2p

ity it bypasses the need to assume a particular form of po-
tential. ] i

C. A more accurate approximation

It is possible to include still higher-order corrections, of
order 5 and 51n (5), with coefficients which are known
in terms of the on-shell amplitude A (p ', p;p). In order to
do so, however, it will be necessary to introduce a slight
modification of the procedure described above in Sec.
III A since that procedure ignores corrections which
remain finite in the limit 5~0. We see, in fact, that the
integral (3.1) must be transformed in a way which
suppresses the contribution from the interior region
( r &R). To do so we make use of the fact that the poten-
tial V has been assumed to be local so that the commuta-
tor of r with the Hamiltonian

Our first approximation for M'" can now be written as

2m'

W, B(p' p»)(p —p' —p
' k) '

1s

H = ia —V+P+ V (3.17)

x p
' AX' t& (p ', p;p)X . (3.14) [H, r]= ia —.

. Then, writing

(3.18)

M'" = — A (p,p')(p' —p +p.k)2'

xp.&X' & (p', p;p')&, (3.15)

Since terms of order 5 are ignored in this approximation
only. the first two terms in the expansion (3.13) for
B(p',p) need be retained. The expression for M' ' in this
same approximation is

a A, =i [H, r.A, ] (3.19)

in the matrix element (3.1), and making use of the eigen-
value equation (2.1) for the initial and final scattering
states, we find that Eq. (3.1) may be rewritten as

M = i ( W' —W) J d r g' ' r A,g'+'e
P P

+i f d r gz
' (r A, )(a k)@&+'e ' '. (3.20)

in agreement with the transformation rule discussed
above.

Note that to the required accuracy we have

p' &(p —p' —p.k) '=-p' A,(kW' —p'. k)

p A,(p' —p+p. k) '= —p A, (kW —p k)

(3.16a)

(3.16b)

The above approximation for M is then seen to differ
from the standard perturbative result in that here we have
the Coulomb factor B(p',p) =-1+iy5 ln( —,

~

5
~

). [Of
course, the scattering interaction is accounted for nonper-
turbatively through the appearance of the on-shell scatter-
ing amplitude A (p', p;p).] Thus the presence of the
Coulomb tail changes the analytic form of the brems-
strahlung amplitude, introducing a correction of order ln5
to the lowest-order contribution of order 6 '. The devia-
tion from unity of the factor B(p',p) gives a measure of
the numerical significance of the logarithmic terms in the
Coulomb-modified soft-photon approximation. As a
rough indication of the domain in which the modification
may play a role we note that the correction term
y51n(5/2) is of order 0.1 for the set of parameters
Z =40, p/W=v/c =0.5, and kW/p =5=0.05. [Of
course such Coulomb corrections are accounted for in
treatments based on numerical solution of the Dirac equa-
tion, valid for the full range of photon frequencies. The
noteworthy feature of the soft-photon approximation (em-
phasized earlier) is that within its limited domain of valid-

In this form interior contributions are suppressed, to an
extent sufficient for our present purposes, through the ap-
pearance of an additional factor of r in each integrand.
The transformation leading to Eq. (3.20) is of course the
starting point for the introduction of the dipole approxi-
mation in nonrelativistic treatments. Our motivation has
been quite different, however. We do not make the dipole
approximation since v/c is not assumed to be a small pa-
rameter here.

It may now be seen that corrections of higher order in
the frequency may be obtained by applying the approxi-
mation procedure described in Sec. III A to each of the in-

tegrals in Eq. (3.20) after removing the overall factor of
first order in the frequency which appears in each term.
That is, we retain only those contributions to these in-

tegrals which are singular in the zero-frequency limit.
This allows us to include the 1jr correction terms in the
asymptotic wave functions. Due to the appearance of the
additional factor of r in the integrand the radial integrals
will converge when extended in to the origin.

Once again writing M =M'"+M' ', where M'" and
M' ' correspond to photon emission after and before the
scattering, respectively, we find that the rule for con-
structing M' ' from M"' remains just as it was stated in
Sec. III A. We therefore confine our attention in the fol-
lowing to M'" alone. In writing down the results of the
calculation it will be convenient to introduce the abbrevia-
tion
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C =(p —p' —p'. k) 'p' ~ . (3.21)

Actually, the unit vector p
' in this function, as well as in

A (p', p;p), should be thought of as a variable r when act-
ed upon by the operator L= i—rXV, after which we set
r=p'. More simply, we shall interpret L, which appears

, B (p',p)X'M "~ (p ', p;p)y (3.22)

we find

in the operator K = —(cr L+ 1), as —ip 'X V~, acting on
functions of p '. Then, with

r

~ I

M"=C — (p —p' —p' k) ' +io kX"p' C+[K,C]+ W[K, C] —[K,iver kXp'C]
2p 8'

—[J,k p'C] 2i—cr kXp'CK . . (3.23)

Note that this expression is free of long-range Coulomb
effects; these are contained entirely in the multiplicative
factor B in Eq. (3.22). The first term on the right-hand
side (rhs) of order k ', corresponds, when combined with
Eq. (3.22), to the first approximation (3.14). The remain-
ing terms in Eq. (3.23) provide corrections of order k rela-
tive to the first term.

Further reduction of this fairly complicated expression
is carried out in the Appendix. Let us remark here that in
terms of the energy loss parameter 5=(p —p')/p we have
derived an approximation for the bremsstrahlung matrix
which contains, in addition to the usual terms of order
5 ' and 5, terms of order ln5 and 51n (5) representing
the effect of the Coulomb tail. These terms are given ex-
actly, the error being of order 51n5. In the nonrelativistic
limit, v/c «1, the result derived here reduces to one de-
rived earlier using the Schrodinger equation in the dipole
approximation. It should perhaps be emphasized that the
result involves the scattering amplitude and its angular
derivatives. No derivatives with respect to the energy
variable appear so that the approximation remains useful
even in the neighborhood of a resonance. In this sense the
result derived here bears a closer analogy to the
Feshbach-Yennie than to the Low' version of the soft-
photon approximation.
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to the required order. Using the abbreviation
( k p ') =k W' —p' k we readily find

X(k p') '[p'XA, +(p' A, )(p'Xk)(k p') '] . (A2)

The expression ia"X is a spin operator acting on the am-
plitude A. This operation can be effected using the identi-
ty (3.7) and the form (2.27) for A.

Noting that E =I. +o'L and that

[L,C]= [L C]+2[LC] L (A3)

we are left to evaluate L C = —(p'X Vz ) X—:Y. Carry-
ing out this operation we obtain, with k A, =O,

and

Y=2(k p') [2(p' k)(p' A, )+(k.p')(p' A, )

—2(k p') '(p' &)(pXk)') (A4)

[IC,C]= Y —2iX L—iX cr . (A5)

Turning now to the evaluation of [cr Lio .k, X"p C] w'e

note that for any vector function V we have, from the
identity (3.7),

[o L,icr V]"=[LV]+io"[LXV], (A6)
I

where L is understood to operate only on V. Carrying
out these operations we obtain
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APPENDIX

[o"L,io"kXp'C]= X (kXp')+2Cp' k

+i~ [XX(kXp')+ Cp'Xk] .

Finally, we examine the commutator

[K k p'C]=k p'[K C]+[K k p']C

(A7)

(A8)
The expression (3.23) may be put in more explicit form

using the properties of the angular momentum operators
and the functional form (3.21) of C. In this Appendix we
evaluate the various commutators which appear in Eq.
(3.23), starting with [E;C] Since K= —.(I+o"L) we
have

[K,k p'] =[L k p']+2[Lk p'] L+io"kXp' . (A9)

Having previously worked out the first term on the rhs in
Eq. (AS) we turn to the second and write

[K,C]=io .X, " (A1)
We note the relations I, k.p'=2k p', Lk p'= —ip'X k
and

where X=(p' X V~ )C. Since we are dealing with a
correction term the approximation (3.16a) for C is correct

LC = [L,C]+CL

= —iX+CL . (A 10)
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Combining these results we have

[K,k.p']C = (2k p'+icr kXp')C

+2(k Xp') X+ 2iC(k Xp').L . (A 1 1)

To proceed further one would have to specify the form of
the function A (p', p;p) and evaluate the angular deriva-
tives in the operation of L on A, but we shall not do so
here.
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