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The Magnus expansion, to second order, has been used to solve the coupled-channel, symmetrized

impact-parameter equations for electron-atom scattering. Collision integrals are evaluated in the di-

pole approximation, allowing both first- and second-order terms to be written in closed, analytic
form. The numerical work is therefore essentially reduced to a matrix exponentiation for each value

of the impact parameter, which can be efficiently carried out by the well-known diagonalization pro-
cedure. It thus becomes computationally feasible to handle problems involving a large number of
closely coupled states. As a test case, the theory has been applied to electron-impact excitation of
the resonance transitions of Li, Na, and K. The calculated cross sections were found to be in good
agreement with experimental data over most of the intermediate-energy range. Thus far, the present

method appears to be competitive with more sophisticated approaches and is readily applicable to
complex processes, such as electron collisions with atoms in excited states.

I. INTRODUCTION

In the present paper, we consider the theoretical
description of electron-atom collisions, involving many
channels coupled together by strong, long-range (dipole)
forces. This situation is likely to occur, for example, in
the treatment of inelastic electron scattering from excited
atoms, where there are typically a 1arge number of closely
spaced, strongly interacting states. Excitation of the reso-
nance transitions of the alkali-metal atoms represents a
much simpler problem, but one that is nevertheless a good
prototype for the more complex processes of interest. The
objectives of this work are therefore to develop a compu-
tationally practical method for many-channel, close-
coupling problems and to test the theory on the lighter al-
kali metals, for which extensive data exits in the litera-
ture.

Our approach is based upon the Magnus solution ' to
the semiclassical, impact-parameter equations for the sys-
tem. The major advantage of the Magnus expansion is
that it guarantees unitarity, independent of where the
series is truncated, and therefore conserves probability; it
also agrees with both perturbation theory and the sudden
approximation as limiting cases. In order to evaluate the
collisional matrix elements, we make the dipole approxi-
mation, as originally introduced by Seaton and subse-
quently extended and applied to a variety of problems in
atomic collision theory. ' ' Use of the dipole approxi-
mation allows both first- @nd second-order terms to be
given as closed-form, analytic expressions. The numerical
work is therefore essentially reduced to a matrix exponen-
tiation for each value of the impact parameter, which can
be efficiently carried out by the well-known diagonaliza-
tion procedure. Computational efficiency is important
not only for handling a large number of coupled channels,
but also for integrating the scattering equations out to
large impact parameters, as would be necessary, for exam-
ple, in applications involving electron —excited-atom col-
lisions.

The work described in this paper is closely related to
two other theories appearing in the literature. Mandel-
berg' has used the Callaway-Bauer method, ' together
with the dipole approximation, to investigate the excita-
tion of atomic hydrogen by electrons. The Callaway-
Bauer solution turns out to be equivalent to the first-order
term of the Magnus series (see below). Since we include
second-order, time correlation effects, our theory extends
Mandelberg s work, while also differing from it in several
specific ways (e.g. , the treatment of the small-impact-
parameter limit, the implementation of detailed balance).
A much more elaborate theory, referred to as the second-
order diagonalization method, has been developed by Baye
and Heenen' and applied by them to the excitation of hy-
drogen and helium by. both electrons and protons. This
method is also based upon a unitary, exponential expan-
sion, includes second-order effects, and more significantly
retains the full electron-electron Coulomb potential. It is
therefore not limited to dipole interactions as is the
present theory, and can be applied to cases for which opti-
cally forbidden processes are of particular importance.
The drawback to using the full Coulomb interaction is an
enormous increase in numerical complexity, especially in
the evaluation of the second-order matrix elements. To
summarize, the present theory appears to lie between these
other two methods in both complexity and potential accu-
racy.

II. THEORY

We treat the electron-atom collision semiclassically and
take as our starting point the symmetrized impact-
parameter equations, ' " which can be written in matrix
notation as

i' c(p,Z) =LI(p, Z)c(p, Z)

with the interaction matrix defined by
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H„&(p,z) =
1/2 (v

I
v(p, z;r)

I p)e
(U U )1/2

(2)

The incident electron is considered to -move along a
straight-line trajectory, its position being described by the
cylindrical polar coordinates (p,z, @) centered on the tar-
get atom. The Z axis lies parallel to the trajectory, and p
represents the impact parameter [the @ dependence has
been factored out of Eqs. (1) and (2) as in Ref. 17].
c(p,Z) is a column vector whose elements represent the
amplitudes of the internal states (v, )M, . . .) of the target
atom, v and k, are the asymptotic velocity and wave
number in the vth channel, respectively, and V(p, Z;r) is
the interaction between the incident electron and the tar-
get, with internal coordinates denoted collectively by r.
The symmetry in the channel velocities guarantees that
detailed balance is satisfied, a feature missing from the or-
dinary impact-parameter method. The corresponding
cross section for the transition O~v, with the boundary
condition c (Z= —oo, p)=5p, is

Q~=2~ f I
c. (Z= p) I

'pdp .
U0 0

The Magnus solution to Eq. (1) is given by ' (with the
variable p suppressed)

c(Z)=e-' ' c( —oo) (4)

with

ly two separate approximations involved in the use of Eq,
(8). The first is to assume that the dipole term gives the
dominant contribution in the multipole expansion of the
Coulomb potential. Second, it is assumed that only dis-
tant collisions, for which R ~r; (all i), are important.
This latter condition is also consistent with the use of
straight-line trajectories intrinsic to the impact-parameter
approach. Substituting Eqs. (8) and (2) into the first- and
second-order matrices, Eqs. (6) and (7), and collecting
terms, we find

x T"'(p„„),

1 1 4w
A„~(oo, —oo)= — . e

Efl 3

(v
I
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I
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X

)
1/2
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with

and
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(5)
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2
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(8)

with R the position vector of the incident electron (for a
straight-line path R =p +Z ) and the target taken to
have X electrons. It should be noted that there are actual-

The nth term is a sum of integrals of n-fold multiple
commutators of H. The A(") are each anti-Hermitian, so
that Eq. (4) gives a unitary approximation no matter
where the infinite series (S) is truncated. The first-order
term represents instantaneous effects, while the second-
(and higher-) order terms introduce time correlation (re-
calling that time -Z/U along the trajectory). Retaining
only the n =1 term is exactly equivalent to the Callaway-
Bauer method, ' ' as mentioned in the Introduction.

In order to proceed with the evaluation of the A matrix,
we introduce the dipole approximation

1m 2 i(k~ —kv)Z~
Y* (R)

22
2

(12)

where p&„——(k& —k )p and a represents the complete set
of intermediate states. An important feature of the A-
matrix elements is that each term factors into two distinct
parts, one depending on the properties of the target atom
and the other describing the dynamics of the collision.
This results directly from the use of the asymptotic form
of the dipole potential (see also Ref. 12). Thus, while the
factor involving the target will depend upon the particular
atomic system of interest, the dynamical part of the prob-
lem can be solved in general by evaluating the collision in-
tegrals T'" and T' '.

Recalling that R =p +Z, Y)p(R) =(3/4~) (z/R),
and Y)+1(R)=+(3/81r)'/ (p/R ), where we have neglect-
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ed the 4& dependence consistent with Eqs. (1) and (2), we
can integrate Eq. (11) to obtain

( —P1, —Pz)=[T",' (P1,Pz)l*

T"'(P„)=
1/2

ei aim+11/2 p ~ (p~(1+ ~m ~)
(P2 P1)= —[T"', (Pl»2)]*

(13)

in closed form, and with some manipulation the T~~
can be expressed in terms of this J integral. To simplify
the notation, we first set /31 ——p~, and pz ——p~„. ~e also
note that the various m, m' combinations reduce to four
inde endent ex ressions, since T 1 1

——T1 1, T1
~ ~ (2) (2) (2)

2) (2 (2) (2) (2) '(2)T—1, 1 T1, 1 T—1,0 T1,0& and To, —1 T0, 1

Due to certain symmetry relations (see below), only two
cases need be considered: (1) /31 & 0, Pz & 0 and (2)

p1 & pz&0. Using Klarsfeld's results, ' we find for case
(1)

TI', I(P1,Pz) =— (P1+Pz)e

T'1,o(P1 Pz) =
z [1+(P1+Pz)]e

4 2pz

To', 1(P1,Pz)=,[1—(P1+Pz) le
4 2pz

To', o(P1 Pz)=,(P1+pz)e
4 - 2

and for case (2)

(15)

p

—P1pz&1(P1)I1(Pz) l

T'1,o(P1 Pz)= z I ~ [1+(P1+Pz)le
2 p

where E is the modified Bessel function of order m.
Using a contour integration technique, Klarsfeld' has
been able to calculate the integral

iy)XI X —iy2X2
OO e 1 e

($1~72) T 1 2 3yz 2 2 3gz(1+X1) —" (1+Xz )

(14)

which can be most easily derived by making the change of
variables yz 1

———,(X1+Xz), with X =Z/p, in the original
T' ' integral. Equations (15)—(17) have checked for a
variety of cases by comparison with direct numerical in-
tegration of Eq. (12).

Having specified the A matrix, we must now exponen-
tiate it according to Eq. (4). The standard diagonalization
procedure is used for this purpose (see, for example, Ref.
13). Briefly, we first form the Hermitian matrix A =iA,
which is diagonalized by the unitary transformation
UtA'U=A. The elements of A are the eigenvalues (Az)
of A', while U is constructed from the properly ordered,
normalized eigenvectors of 2 '. We can then write
e -"=e '"- = Ue '- Ut, where the elements of e

are given by e 5&&. The major numerical effort is
therefore reduced to the diagonalization of a Hermitian
matrix A ' for each value of the impact parameter p.

Finally, we consider the calculation of the cross section
from Eq. (3). Although the dipole potential of Eq. (8) is
singular as R ~0, the use of the unitary, exponential solu-
tion prevents the cross section from diverging, and, in
principle, no lower cutoff on the impact parameter need
be invoked. ' However, even though the cross section does
indeed remain finite for an arbitrarily small lower limit on
the p integration, it will not in fact converge to the Born.
approximation at high energies. We have therefore
chosen to replace the lower limit of integration in Eq. (3)
by a value of po, determined such that the cross section
calculated by the present method agrees with the Born ap-
proximation at high energies. ' Although the use of a
cutoff is perhaps not entirely satisfactory, our prescription
for specifying its value is at least well defined and rela-
tively easy to implement. Furthermore, for many strong-
coupling cases (see Sec. III) the cross section is only weak-
ly dependent on p0. The unitary property of the Magnus
approximation, of course, obviates the need for any addi-
tional strong-coupling cutoff, as is required in perturba-
tion theory.

III. RESULTS AND DISCUSSION

—/31P2K1(/31 )Io(P2) I,

T0, 1 (P1 P2 )=, I —.
' [1 —(P1 +Pz ) ]e

2 p

+Plpz+0(P1)II (pz) j

TQ Q(p1, pz) = 3i
z [ 4

—(p1+pz)e
p

—P1pz&0(P1 )Io(P»]

where again E0, 41, I0, and I1 are modified Bessell func-
tions. For all other cases we apply the symmetry relations

In this section results are presented for electron-impact
excitation of the transitions I.i(2s~2p), Na(3s —+3p), and
K(4s~4p), which should provide a good testing ground
for the theory. Since we are using a semiclassical ap-
proach, we have concentrated primarily on the
intermediate-energy regime, defined loosely as being above
the ionization threshold but below the region where the
Born approximation becomes valid. For the lighter alkali
metals, this would imply incident energies ) 5 eV, but
somewhat more conservatively the lower limit of the
intermediate-energy range for these atoms is usually taken
to be about 10 eV according to the literature. '

Before describing the calculations, it is useful to consid-
er the main qualitative features of the problem. Excita-
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tion of the resonance transitions of the alkali metals is
dominated by the very strong s-p dipole interaction. Back
coupling (i.e., s —+p —+s) must therefore be taken into ac-
count in order to obtain reasonable results, which in turn
requires a theory that ensures conservation of probability.
The failure of perturbation theory in this regard is demon-
strated by the fact that the Born approximation gives
peak cross sections which are a factor of about 3 too high
for the lighter alkali metals. ' Indirect coupling to inter-
mediate states also proves to be important. Extensive
quantum-mechanical close-coupling calculations have
been carried out ' for Na and K to investigate the effects
of including various intermediate levels. It was found
that by far the most important indirect process is
3s —+3p~3d for Na, and similarly 4s —+4p~3d for K,
which transfers population from the p to the d state,
thereby leading to a sizable reduction in the s~p cross
section. Only minor changes resulted from the addition
of more -states to the close-coupling expansion. In addi-
tion, exchange effects are small at intermediate energies.
The problem is therefore basically controlled by the in-
tense s-p and p-d dipole interactions and should thus be
amenable to the present theoretical treatment.

From the close-coupling results of Refs. 3 and 20, we
know that a three-state expansion is adequate. Our calcu-
lations therefore included the basis states: 2s, 2p, 3d for
Li; 3s, 3p, 3d for Na; and 4s4@,3d for K. Two additional
approximations were made. The first was to consider the
alkali metals to be one-electron systems (i.e., the so-called
frozen core approximation), which eliminates the sums
over i and j in Eqs. (9) and (10). Second, the sum over in-
termediate levels, a, in Eq. (10) was restricted to the same
basis states as were used in the coupled-state expansion.
This latter approximation is justified a posteriori by the

. fact that second-order effects turn out to be small in the
energy range of interest. The numerical input required to
perform the calculations consists of the energy levels, the
dipole matrix elements, and the impact-parameter cutoff,
po. Energy levels and oscillator strengths were taken from
the Natl. Bur. Stand. (U.S.) tables. ' The sign of the
matrix element cannot be obtained from the value of the
oscillator strength; to determine the sign we therefore
used the Bates-Dam gaard method as corrected by
Bebb. The po parameter was found by matching the cal-
culated cross section to the Born approximation at ener-
gies of about 1 keV, the Born values being taken from the
papers of Gallagher and co-workers. ' ' These various
quantities are given in Table I. It is interesting to com-
pare po with the physical size of the atom, which can be

TABLE I. Dipole matrix elements and impact-parameter
cutoff values pp for Li, Na, and K.

estimated from the radial expectation value (r) of the
valence, s electron. From relativistic Hartree-Pock-Slater
calculations, (r) =3.75, 4.02, and 4.94 (in units of the
Bohr radius) for Li, Na, and K, respectively, which are
within a few percent of the po values listed in the table.
Integration over the impact parameter [see Eq. (3)] was
carried out with gradually increasing step size from po to
a value p, , typically -40ao, beyond which we used a
perturbation-theory solution. The range pm„(p & ~ con-
tributed only a few percent to the total integral.

The cross sections are shown in Figs. 1—3, where QB
represent the Born approximation, ' Q2 stands for the
present dipole Magnus approximation (DMA) with a
two-state (s,p) expansion, and Q3 represents the DMA
with the three-state (s,p, d) expansion. Results are given
for both first-order (solid Q2 and Q3 curves) and second-
order (dashed Q2 and Q3 curves) calculations. The other
symbols represent the experimental data, which will be
discussed below. It should be noted that the standard
(nonunitary) impact-parameter solution to Eq. (1) was
found to reproduce the Born approximation (QB) curves
in Figs. 1—3 to —10%, and we have therefore not expli-
citly included these values.
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FIG. 1. Electron-impact excitation cross section for the reso-
nance transition of lithium. (, QB) Born approximation
(Ref. 19); (, Q2) present theory, two-state, first-order;
( ———,Q2) present theory, two-state, second-order; (

Q3) present theory, three-state, first-order; ( ———, Q3)
present theory, three-state, second-order; ( & ) data of
Leep and Gallagher (Ref. 27); (Q) data of Vuskovic, Trajmar,
and Register (Ref. 6).
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FIG. 2. Electron-impact excitation cross section for the reso-
nance transition of sodium. ( X ) data of Enemark
and Gallagher (Ref. 26); ( o ) data of Phelps and Lin
(Ref. 5); all other curves have the same meaning as in Fig. 1.

FIG. 3. Electron-impact excitation cross section for the reso-
nance transition of potassium. ( 0 ) data of Phelps
et al. (Ref. 3); (4) data of Vuskovic and Srivastava (Ref. 4); all
other curves have the same meaning as in Fig. 1.

The results display a number of general features, com-
mon to all three cases. In agreement with our earlier
qualitative discussion, the DMA results lie consistently
below the Born approximation, which makes no allowance
for conservation of probability. Coupling to the inter-
rnediate 3d state leads to a substantial reduction in the
cross section (comparing Q3 with Q2). This effect has
also been studied using the quantum-mechanical close-
coupling method, ' where it was found that including
the 3d state led to a decrease in the cross section of 22%
for Na and 26% for K, both at 10.52 eV. The corre-
sponding values for the DMA are 38% for both Na and
K. The present theory therefore tends to overestimate the
importance of the s~p~d coupling process. Second-
order effects lead to slightly improved results at low ener-
gies but are essentially negligible beyond 10 eV. The
three-state, second-order cross sections are observed to
develop a shoulderlike structure in the low-energy region,
which presumably would be smoothed out by the addition
of higher-order terms.

We now wish to compare the present cross sections
with the experimental data and with other theoretical re-
sults in the literature. Both theory and experiments for
electron-impact excitation of the lighter alkali-metal
atoms at intermediate energies have been reviewed
through 1977.' We have chosen to use the data of Gal-
lagher and co-workers ' ' as a standard, since they ap-
pear to have withstood the test of time; other pre-1977

measurements are summarized in Ref. 1. More recent
data are shown in Figs. 1—3. For K, Chen and Gal-
lagher only gave the optical-excitation cross section,
which included cascade contributions. Phelps et al. also
measured the optical-excitation function, which was
found to be in good agreement with that of Chen and Gal-
lagher, and were able to subtract out cascade effects to ob-
tain the direct cross section, which is the appropriate
quantity for comparison with the theory. The Chen and
Gallagher optical-excitation function is therefore not
shown in Fig. 3. The present theory (as represented by the
Q3 curves) is in good agreement with the data for energies
& 15 eV, while the accuracy deteriorates as one goes to
lower energies. With respect to other theoretical treat-
ments, the most extensive calculations at intermediate en-
ergies are those of Korff et al. for Na and of Phelps
et a/. for K. The rnultistate, close-coupling method was
used in both cases, and good agreement with experiment
was obtained. Several other sets of theoretical cross sec-
tions ' are tabulated and reviewed in Ref. 1 and need
not be reproduced here. In general, our cross sections are
comparable to those calculated by more sophisticated
methods throughout the intermediate-energy range. In
particular, our results are quite close to those obtained in
the Glauber approximation, which bears some similarity
to the semiclassical Magnus approach.

Finally, it is of interest to investigate the effect of vary-
ing the value of po. Calculations were therefore carried
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FIG. 4. Dependence of the sodium excitation cross section on
variations in the impact-parameter cutoff po. The top set of
curves were calculated in the three-state, first-order approxima-
tion, while the lower set are for the three-state, second-order ap-
proximation.

out for Na, using the three-state, first- and second-order
approximations, with variations in po of +25'%/about the
value specified in Table I. The resulting cross sections,
shown in Fig; 4, do not change by more than +10%.
This implies that the results do not depend sensitively on
the details of the interaction at small distances (-po),
which in turn suggests that the use of the asymptotic
form of the dipole interaction is probably not a serious ap-
proximation, at least in the strong-coupling case.

IV. SUMMARY AND CONCLUSIONS

The Magnus approximation, to second order, has been
used to solve the coupled-channel, symmetrized impact-
parameter equations for electron-atom scattering. The
method satisfies unitarity and accounts for a distribution

of probability into the various open channels of the sys-
tem. Retaining only the asymptotic dipole part of the
Coulomb interaction allows the collision integrals to be
written in closed, analytic form. It thus becomes feasible
to handle problems involving a large number of closely
coupled states.

The theory has been applied to the calculation of
electron-impact excitation cross sections for the resonance
transitions of Li, Na, and K. An extensive data base, both
experimental and theoretical, exists for these atoms, mak-
ing possible a detailed evaluation of the present approach.
In addition, many of the characteristics of this fairly sim-
ple problem (e.g., long-range dipole coupling) make it
representative of the more general processes of interest.
The calculated cross sections were found to be in good
agreement with experimental data over most of the
intermediate-energy range. Second-order, time correlation
effects turn out to be small. Much more important is cou-
pling to the intermediate 3d state, although the theory
tends to overestimate the magnitude of this effect.
Nevertheless, at least for the lighter alkali metals, the
present method is competitive with more complex and so-
phisticated approaches.

In its present form the theory can be readily applied to
more complicated processes, such as inelastic electron
scattering from atoms in excited states. This is an impor-
tant area, where, due both to experimental and theoretical
difficulties, relatively little work has been done to date.
For excited atoms, contributions from states lying in the
continuum may become significant. The form of the
second-order A-matrix elements [see Eq. (10)] makes it
straightforward to implicitly account for the continuum

by using the usual closure relation together with an aver-

age excitation energy. As far as improvements and exten-
sions to the theory are concerned, its principal drawback
is the restriction to dipole interactions. A possible ap-
proach to overcome this limitation might be to use the
complete Coulomb interaction in the evaluation of the
first-order A-matrix elements, as has been done by Baye
and Heenen, ' but to retain the asymptotic dipole approxi-
mation for the second-order elements. As long as
second-order effects do not become too large, this type of
hybrid theory should be more accurate and more widely
applicable than the present method without an inordinate
sacrifice in computational efficiency.
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