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In the preceding paper (paper I of this series) the spin-adapted reduced Hamiltonian theory was
developed and applied to the study of the elementary excitations of a test example; the Be atom.
Here this theory is extended in order to obtain other observables: the total energy and the reduced
density matrices for an m-electron system, always working within the two-body space. Preliminary
applications of this formalism produce very satisfactory results.

I. INTRODUCTION

In paper I of this series! the theory of the spin-adapted
reduced Hamiltonian (SRH) matrices were developed.
This theory involves obtaining a finite matrix representa-
tion of the usual many-body Hamiltonian operator in an
m-body space spanned by the eigenfunctions of the spin
operators S? and S, for a chosen symmetry [of the full
configuration-interaction (CI) Hamiltonian matrix]. Then
a reducing mapping is applied which transforms this ma-
trix into the SRH matrix in the two-electron (or one-
electron) space.

One of the crucial points is that all these operations,
usually referred to here as “mapping transformation,” can
be combined into a single algorithm which allows one to
work within the two-electron space.

In paper I of this series! the theory was applied to the
study of the elementary excitations of the beryllium atom
as a test example for other atoms and molecules. Here we
shall study how the SRH theory may be employed in or-
der to obtain information about the total energy and the
electronic density of the system.

These two kinds of observables cannot be obtained from
the SRH matrices in a direct way. The reason for this
difficulty arises from the fact that the reduced density
matrices (RDM) are not elements of an orthogonal set. In
consequence, although the SRH matrix H', in the two-
body space,! can formally be written as

H'=3E D?¥ (1
<z

(where E & is the energy of the eigenstate |.7), and
DZ¥ the corresponding reduced density matrix) it is not
a trivial matter to separate in H' the information concern-
ing a given |.Z) without contamination from the other
states.

The ideal approach would seem to be to look for a
theoretical closed-form solution to this problem, however,
this is not practical. Indeed, we made several different at-
tempts in this direction, but they lead back to the diago-
nalization of the full CI Hamiltonian matrix in the m-
electron space. Thus, in order to-calculate the total energy
and the RDM within the framework of the SRH theory
an indirect approach should be employed. \
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There are two main questions to be investigated. (i)
How do we extract from the SRH matrix H' the informa-
tion about the state of interest? (2) What is the connec-
tion, if any, between the one- and two-body RDM and the
eigenvectors of i’ [quasiparticles (QP)] and of H' [quasi-
geminals (QG)], respectively?

In order to investigate these two questions several ap-
proximations may be considered. Here we report the re-
sults obtained using what seemed to us the most obvious
ideas to be tried.

As in paper I, the test example is the Be atom and the
basis set used is Clementi’s double-zeta one.> In Sec. II,
the independent QP (IQP) and independent QG (IQG) ap-
proximations are studied. In Sec. III the initial H matrix,
its reduced one-body form A, or the SRH matrices H’ and
h' are projected upon different subspaces before being
submitted to the mapping transformation described in pa-
per I, henceforth denoted MT, which leads from H to the
SRH matrices H'. In Sec. IV the N-representability of
the matrices obtained is commented upon. Finally, some
concluding remarks are given in Sec. V.

II. IQP AND IQG APPROXIMATIONS

‘The IQP and IQG approximations can be considered as
extreme ones in this theory. In the IQP approximation
there is no correlation between electrons, while in the IQG
scheme the correlation effects between two electrons are
maximal, but there is no correlation between pairs. In the
first case the QP are considered to be natural orbitals with
occupation number equal to 1 or to 0. Similarly, in the
second scheme the QG are considered to be approximate
natural geminals also with occupation number equal to 1
or 0. In this section these two approximations will be
analyzed with the help of the results obtained in the calcu-
lation of the Be atom.

A. The IQP

The QP are the eigenvectors of the one-body SRH ma-
trix called 4’ in paper I. For the pure-singlet symmetry
these QP have the same form as the states obtained in the
reduced Hamiltonian scheme.’*>~> In the IQP approxi-
mation the states of the Be atom are clearly of the Slater
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determinant type, and the RDS therefore have a very sim-
ple form.

B. The IQG

In order to describe clearly this approximation let us
consider a concrete example: the state | 1234). In it two
electrons occupy orbitals 1 and 2 with spin a and two oth-
ers occupy orbitals 3 and 4 with spin 8. If | 1234) is to
be fully described in terms of bielectronic states we must
consider | 12) and |34), clearly of triplet symmetry, and
| 13), | 14), |23), and |24) with spin projection equal
to zero which may belong either to a singlet or to a triplet
state. If | 1212), of the closed type, is to be described by
bielectronic states then we must consider the two triplets
[12) and |12), the two singlets |11) and |22), and
| 12) and |21) which are configurations belonging either
to a singlet or to a triplet state.

Finally, by multiplying

(Bl;+B}p) (Bl;+Blp)

% vz 19
bipI+olh wipl+plsh .
= 75 5 |0)=]1212)
and
t__pty (gt
(Bj;—Bl;) (Bl;—Blp) 0)
V2 V2
bipl—blph) blpl—blpD .
= 75 75 |0)=—]1212),

it can be inferred that in order to describe a singlet four-
electron state.one must employ three singlet bielectronic
states and three triplet ones. These bielectronic states cor-
respond to the different pairings which are implicit in the
four-electron state. ‘

This rule is easily generalized by arguments of the same
type for any symmetry and any number of electrons and is
basically the procedure followed here to determine the QG
which should be selected. Thus, if the two-body density
matrix of the state |.#") in which configuration |1212)
dominates is to be approximated, the expression giving the
trial reduced density matrix D~ will be

DZL=S |IJ |, )
J

C. VALDEMORO ; 31

where |J) denotes only those QG’s in which one of the
following configurations dominates: |11), |22), |12)
+]21), |12)—]21), |12), |12). When in the state
under study the dominant configuration is of the type
| ijil), then

D=3 |IXJ|+7 3 |K)XK]|, 3)
J K

where |J) represents the QG in which |ii) or |jI)
dominates while |K) represents those with dominant
L), 1ij), il), |iD), i)+ [Hi), [il)— &),
[+ L0y, i) — [ ji).

C. Results

The total energy will be calculated by using the well-
known form

E=tr(HD), (4)

where the H is the initial H in our theory and D is ap-
proximated as previously described in Secs. II A and II B.
In the IQG approximation the QG selected are those
which diagonalize the SRH matrix H’. The results ob-
tained in this way for the six states of lowest energy are
reported in Table 1.

The order number of the state appears in the first
column. The dominant four-electron configuration of the
state considered is given in the second column (the bar
over the number stands for a spin function ). The full
CI (FCI) and the self-consistent-field (SCF) results ob-
tained with the same basis® are reported in the third and
fourth columns, respectively. The results obtained with
the IQP and 1IQG approximations appear in the fifth and
sixth columns, respectively. The seventh column refers to
another approximation which will be studied in Sec. III.

On the whole the IQP results are very close to those ob-
tained within the SCF Hartree-Fock method for which
the basis set of Clementi was optimized. Moreover, for
the states in which an open-orbital configuration dom-
inates (states 2, 4, and 5) the value of the energy with the
IQP approximation is closer to that of the FCI than to the
SCF one.

The value of the energy obtained with the IQG for the
ground-state energy is 0.0825 a.u. lower than that of the
FCI which constitutes the variational limit. This indi-
cates that in this approximation the correlation effects can
be markedly overemphasized.

When the energy values obtained with the IQP and

TABLE 1. Energies in atomic units.

Dominant
No Config. FCI SCF IQP IQG HPH’
1 [ 1212) —14.5872 —14.5724 —14.5632 —14.6697 —14.6081
2 [1213) —14.3014 —14.2787 —14.3168 —14.3805 —14.3472
3 | 1313) —13.9850 —13.9832 —13.9701 —13.9505 —13.9776
4 [122°3) —10.0693 —9.9659 +—10.0040 —10.0143 —11.3627
5 | 1323) —9.5680 —9.5749 —9.5694 —9.5496 —9.5435
6 |2323) —3.5661 —3.6036 —3.6001 —3.5989 —3.6053
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TABLE II. Second-order reduced density matrix of the ground state of the Be atom (some elements).

[11) [21) [3D) [22) [23) Approximation
(11} 0.993 0.015 —0.028 <10* <107 FCI
0.992 0.013 —0.032 <10~* <107* IQP
0.985 0.039 —0.053 <10~* <10~* 1QG
0.990 0.023 —0.039 <10~* <10~* HPH'
(12 0.820 0.374 0.013 0.028
0.895 0.298 0.012 0.004
0.780 0.391 —0.003 0.010
0.823 0.373 0.007 0.009
(13] 0.175 <10~* 0.013
0.100 <10~* <10~*
0.220 <10~* 0.006
0.174 <10~* 0.003
(22| 0.663 0.324
0.808 0.268
0.859 0.242
0.767 0.287
(32] 0.160
0.090
0.068
0.108

IQG approximation are simultaneously compared with
those obtained in the FCI calculation, it can be observed
in Table I that only for the ground state and for state 5
does the FCI have an intermediate value. In fact, while
the IQG value is lower than the FCI in the ground state,
the opposite is true for state 5. On the other hand, for
state 5 the SCF energy is lower than the FCI one. This
indicates that the stabilization provided by the correlation
effects in the ground state is lost for the higher states as
expected and becomes of positive sign in state 5 (the SCF
energy for state 5 is also lower than the FCI one which is
in line with our argument).

Let us now consider the results obtained for the RDM
with those two approximations. For the sake of brevity,
and easier inspection, only the most significant elements
of the upper half of the second-order RDH are given in
Table II. ‘

The notation used in Table II is the following. Let us
suppose that we wish to report the value of the element
(A7) of D¥< according to formula (2), then

DL =3 A IT|y).
J

Now, in the first line of Table II the index y is given in
terms of the spin orbitals involved in it, i.e., |y)=|ij),
while the A index is given in the first column in the same
manner. All the values of a given line (for every element)
correspond to the approximation whose symbol appears in
it on the seventh column (for Table II).

The order of magnitude of the elements and the sign
are correctly given in both approximations. The element
D11 is very accurate and in general the errors are just in
the second decimal and small. The one element for which
the error (40%) is the first decimal is on the D,5,5.

The results for the one-body RDM are reported in
Table III. Here not only the signs and the orders of mag-

nitude but also the values themselves can be very well
compared with those of the FCI. It is also noteworthy
that the IQP and IQG approximations generate nearly the
same one-body RDM which can be considered a good
first-order approximation.

III. PROJECTED SRH MATRICES

The IQG approximation can be understood as describ-
ing an m-body system as if it were an assembly of (5')
identical bielectronic systems 'in different states or
equivalently a bielectronic system in a mixed state of a
very special kind. The correlation between the different
pair states existing in the m-body function is not intro-
duced in the IQG approximation.

In order to improve the results described in Sec. II,
some kind of relaxation should be introduced. Mapping
transformation can be considered not only as a way of re-
moving the contribution from other unwanted symmetries
but also as a relaxation process. This is so because a great
deal of mixing of the transformed matrix occurs in the
augmenting mapping step. In this section the MT will be
used with this in view.

Thus, instead of taking the trace (4) of H D in order to
get the IQG energy, the D H D will be allowed to relax by
a second application of the MT so that a new SRH matrix
H'" will be obtained. In principle this process can be re-
peated as many times as one may wish, but after H” has
been obtained the results repeat themselves. This
noteworthy stability or autocoherence property is in line
with the striking  properties of the MT which were
presented in paper 1.

From the eigenvectors of H'' a corresponding neéw set
of QG is selected in order to approximate D as in the IQG
approximation discussed in Sec. II. In what follows, this
approximation will be denoted by the symbol HPH' (ini-
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TABLE III. First-order reduced density matrix for the
ground state of the Be atom.
1) [2) [3) |4) Approx.
(1] 0.996 0.015 —0.028 0.045 FCI
0.995 0.018 —0.030 0.049 IQP
0.996 0.018 —0.032 0.049 I1QG
0.996 0.015 —0.032 0.050 HPH'
(2] 0.823 0.375 —0.036
0.860 0.310 —0.035
0.863 0.323 —0.036
0.854 0.348 —0.039
(3] 0.176 —0.018
0.141 —0.016
0.137 —0.016
0.145 —0.018
(4| 0.004
0.004
0.004
0.004

tial H projected into a selected subspace of H' prior to
MT). The values obtained for the total energy with this
approximation are given in the last column of Table I.
There is a marked improvement in the results with
respect to the IQG ones. In particular, the energy for the
ground state is only 0.026 11 a.u. lower than that of the
FCI and the relative error, 1.79/1000, can be considered a

C. VALDEMORO

satisfactory result.
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The results obtained with this approximation for the
second-order RDM are reported in Table II. These results
show that the difference with the FCI values is extremely
small except for the elements D,s,5, D,s5,5, and D,5,5
and even these elements are considerably better than those
obtained with the IQP and IQG approximations. Turning
now to Table III it can be seen that the initial matrix
which was already rather good is also improved.

Thus, to introduce relaxation into the IQG picture
through a MT seems to be an adequate procedure, while
the introduction of projectors can be used to separate the
contribution from other eigenstates. The question now is
how to optimize the combination of these two operations.

In what follows, we report the results of other calcula-
tions where other alternative ways of using the MT and
projection steps have been carried out. The different ap-
proximations, tested for the ground state of the Be atom,
can be described as follows.

(i) The initial H is projected by the set of QG’s in
which one of the bielectronic states implicit in the ground
state is dominant. The QG’s used here are those which
diagonalize H. Once this projection of H is done the MT
is carried out to obtain a new H''. From its eigenvectors
a set of QG will be selected in order to approximate D.
This approximation will be called HPH.

(ii) The SRH matrix H' is projected into the selected
subspace by using the QG’s which diagonalize it. After-
wards a MT will again be carried out. The rest of the
procedure is as previously described. This approximation

TABLE IV. Second-order reduced density matrix for the ground state of the Be atom. Other ap-
proximations are shown.

Total energy

| 1D [ 12) | 13) [22) [23) Approx. (a.u.)
(11 0.989 0.024 —0.043 <104 <10* H'PH’ —14.608 24
0.988 0.004 0.028 <10~* <10~* HPH —14.61298
0.994 0.011 0.007 <10~* <10~* HPHPH' —14.57024
0.991 0.017 —0.038 <107* <10~* H'H’ —14.593 67
0.992 0.013 —0.032 <10~* <10™* hPh —14.57004
(21] 0.825 0.370 0.008 0.009
0.854 0.248 0.002 —0.002
0.844 0.345 0.015 —0.002
0.872 0.326 0.007 0.005
0.895 0.296 0.011 0.004
(31 0.172 0.006 0.003
0.145 0.045 0.024
0.153 0.015 0.008
0.124 0.006 0.002
0.100 <10~* 0.002
(22| 0.770 0.285
0.618 0.316
0.602 0.322
0.823 0.262
0.812 0.267
(32] 0.107
0.162
0.172
0.084

0.089
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is called H'PH'. v

(iii) The SRH matrix H' obtained in the HPH approxi-
mation will again be projected into the selected subspace
by using the QG’s which diagonalize H'. After this
operation a MT will be performed. This approximation
will be called HPHPH'.

(iv) The one-body initial reduced A is projected into the
space corresponding to its two lowest eigenvectors for
spin a and spin S, then the MT is carried out in order to
obtain the two-body SRH matrix H'. This approximation
is denoted hPh.

(v) On the SRH matrix H' a second MT is applied.
From the geminals diagonalizing the new SRH matrix a
set is selected to form the RDM. This approximation will
be called H'H'.

The results obtained by using these approximations are
presente/d in Tables IV and V, which have been organized
in a similar way to Tables II and III, respectively. Table
IV collects the values for the most significant elements of
the second-order RDM in the different approximations.
In the last column of this table the total energy in each
approximation is given.

The results obtained with the H'PH' approximation are
very similar for the energy value as well as for the RDM
to those obtained with the HPH' approximation. The
HPH overemphasizes the correlation energy slightly more
than the HPH' and H'PH', but the analysis of the values
for the significant elements of the RDM’s shows that in
some elements the error is lower than in the mentioned
approximations. The energy obtained with the HPHPH’
hardly reaches the SCF one, however the RDM’s are
worth noting. Indeed, the elements D,s5,r and D,5,5
which in all the other approximations except the HPH ap-
peared overestimated show here an inverted tendency.
Moreover in the other elements the error is of the order of

TABLE V. First-order reduced density matrix for the ground
state of the Be-atom. Other approximations are shown.

| 1) [2) |3) |4) Approx.
(1] 0.996 0017  —0.034 0.050 H'PH’
0.998  0.011 0.011 0.041 HPH
0.998  0.004 <10~* 0.042  HPHPH'
0996 0013  —0.032 0.051 H'H
0996 0013  —0.032 0.051 hPh
(2] 0.856 0346  —0.039
0.785 0.368  —0.035
0.799 0399  —0.036
0.891 0308  —0.037
0.899 0299  —0.036
(3] 0.144  —0.017
0213  —0.013
0.199  —0.017
0.108  —0.015
0.101 —0.014
(4] 0.004
0.004
0.004
0.004
0.004
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0.02 which is rather acceptable.

The value obtained for the energy using the H'H' ap-
proximation is really good, as its error is 4X 10~%; on the
other hand, the corresponding RDM’s are poor when
compared with the other approximation achievements.
Finally, the hPh provides the worst results of the set both
from the point of view of the energy and of the RDM’s.

This analysis shows that the approximations HPH and
the two very similar ones H'PH' and HPH’' give very
reasonable results. It seems that both the projections,
those using the eigenvectors of H and those using the
eigenvectors of H', bring in relevant information (or re-
move important contamination) which indicates the need
for further research in this direction.

All the approximations studied in this section are ulti-
mately IQG ones, even hPh where the matrix on which
the MT is performed belongs to the one-body space.
Indeed, the final step is to select the QG from the new set
which diagonalizes the SRH matrix in order to approxi-
mate D with formula (2), the energy with formula (4), and

-the one-body RDM by reduction of D. Thus the improve-

ment of the IQP model is also an open question which is
being studied at present.

IV. THE N-REPRESENTABILITY
AND THE SPIN INDEPENDENCY OF THE RDM

Although the RDM play an important role in our
theory we do not consider the N-representability prob-
lem”~° to be the crucial point to be tackled. Given that
the SRH matrices are clearly N-representable, and can be
developed as an expression involving the RDM corre-
sponding to all the eigenstates of a given symmetry, the
problem in our opinion is shifted to that of separating the
information concerning each eigenstate. Indeed, if this
aim were exactly obtained for a given eigenstate, then the
RDM would be exact and therefore N-representable.

However, while the N-representability of the exact
RDM is evident, that of the approximated RDM’s cannot
be taken for granted. Hence, we have analyzed how well
this property is fulfilled by the one-body RDM of the dif-
ferent approximations tried and previously reported. It
was found that all the approximations gave rise to N-
representable one-body RDM up to a good approxima-
tion. The most unfavorable case occurred for HPH where
an eigenvalue was found to be equal to 1.00485. In the
HPH’ approximation there was an eigenvalue equal to
1.000 11 and in all the other cases the excess over the
value 1, if it occurred, was < 107>, Another property
that needs some comment concerns the way in which the
values of the different elements of the 2-RDM depend
upon the spin of the corresponding bielectronic configura-
tions. The 2-RDM’s obtained from the singlet full CI and
from singlet Slater wave functions shows a spin indepen-
dency of the values of the elements up to the third de-
cimal. On the other hand, our approximated RDM’s were
in most cases spin independent only up to the second de-
cimal. What is meant here by spin independency is that
the values of the different elements depend only upon the
space part of the corresponding bielectronic states, i.e.,
Dy351=D 55 It seems therefore that an averaging upon
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the spin variables should be included as a requirement
into the method. This question has recently been solved
by Karwowski and Duch and in a future publication the
effect of this new requirement upon the RDM and conse-
quently upon the energy will be analyzed.

V. CONCLUDING REMARKS

While in paper I of this series the attention was focused
on the excitation energies of the QG’s and QP’s which,
following similar ideas to those developed in many-body
theory, can be interpreted as being the elementary excita-
tions of our system. Here these same QG and QP lead us
to the evaluation of the total energy and the electronic
density.

Evidently more work is needed in order to optimize this
method, however there are several conclusions which have
already been drawn.

(1) The SRH matrices possess some outstanding formal
properties described in paper I which guarantee that all
the information needed about our system, for a given
symmetry, is contained in them.

(2) In a given reduced, spin-adapted space the eigenvec-
tors of the SRH matrices A’ and H' describe states of one
and two electrons, respectively, which can be considered
“almost independent.” These states give the averaged
properties of our system.
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(3) By exploiting their quasiindependent character,
these states can be used to design a series of approxima-
tions. The optimization of this procedure to generate a
very efficient method for obtaining accurate solutions. In
the future this line of research will be studied fully.

(4) The spin independency, which is an essential proper-
ty of the Hamiltonian when magnetic terms are absent
from it, causes the correct RDM’s to be averaged upon
the spin variables, however our approximation provides
RDM’s which fulfill imperfectly this requirement. In the
future the averaging upon the spin variables will be expli-
citly introduced into the method.

(5) The algorithm, which is being generalized for any
number of electrons and any symmetry, is very economi-
cal both in time and in its needs for machine capacity.
However, these technical questions have not yet been stud-
ied systematically.
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