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Spin-adapted reduced Hamiltonian. I. Elementary excitations
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The spin-adapted pth-order reduced Hamiltonians (SRH) are obtained for an m-electron system,
within the formalism of second quantization. This transformation is applied to the usual many-

body Hamiltonian and involves an augmenting mapping, a spin projection, and a reducing mapping
into the p-body reduced space. These three operations are combined into a sing1e algorithm, al1ow-

ing the work to be carried out within the two-body space. The SRH matrices thus obtained (1) have

the same trace as that of the corresponding full configuration-interaction (CI) matrix, and (2) can be

written as expansions involving the p eigenvalues and the corresponding pth-order reduced density

matrices (RDM) of the I-body system in the chosen spin symmetry. Both of these properties
guarantee that all and only the relevant information about our system is contained in the SRH ma-

trices {and the SRH operators). The excitations of the eigenstates of the 1-SRH and the 2-SRH can
be interpreted as the normal modes (or elementary excitations) of our electronic system in a given

symmetry. A preliminary calculation on the Be atom yields encouraging results when compared
with experiment. In the following paper {paper II of this series) the theory is applied to obtain the
total energy and the reduced density matrices.

I. INTRODUCTION

The interest in the pth-order reduced density matrix
(p-RDM) which has been generated since 1955 (Refs.
1—11) is well known. This interest was due not only to
the important formal properties of these matrices but
mainly because the 2-RDM could serve as a substitute for
the m-body wave functions in computation, thus reducing
the dimensionality of the space in which one had to work,
when studying atoms and molecules.

In 1964 the theorem of Hohenberg and Kohn' initiated
a related trend of work: The search for the density func-
tionals of the energy. ' Recently, the connection between
the density matrix in a finite-dimensional representation
and the general formalism of the density functionals has
been analyzed in detail. '

Another related line of research, that of the reduced
Hamiltonian, was initiated long ago' and pursued with
promising results later on. ' ' The method we present
here can be related to this latter' line of research. It is
based upon obtaining spin-adapted reduced Hamiltonians
using the second-quantization formalism. The spin-
adaptation process and the reduction of the Harniltonian
to the one- or two-body space is performed with the help
of reducing and augmenting mappings found as a natural
consequence of the properties of fermion operators in the
second quantization formalism.

The spin projection can be carried on upon a space
spanned by eigenfunctions of the m-electron S and S,
operators or just of the S, operator. Although the spin
projection is performed in the m-electron space, a con-
densing algorithm has been found which allows one to
work always within the reduced two-body space. '

The eigenvectors of the one-body reduced Hamiltonian
can be considered as the quasiparticles of the system in a

given symmetry while the eigenvectors of the two-body
reduced Hamiltonians are the quasigeminals. The excita-
tion energies of these quasiparticles and quasigeminals can
be interpreted as the elementary excitations of our system.
Here a preliminary calculation is carried out on the beryl-
lium atom, and the agreement obtained with experimen-
tally determined values is very encouraging.

In Sec. II we give a survey of previous theoretical re-
sults. In particu1ar, we give the two mapping relations
which constitute the core of this theory. In Sec. III the
method for obtaining the spin-adapted reduced Hamil-
tonian (SRH) is described. A physical interpretation of
the energy spectra of the SRH matrices together with
some comments upon their form are given in Sec. IV. In
Sec. V we present the results of the calculation comparing
them with experimental data and with the results of an
equivalent full configuration-interaction (CI) calcula-
tion. Some general comments are given in Sec. VI. An
appendix is included in order to render the work self-
contained.

In the following paper (paper II) the use of the SRH in
obtaining reduced density matrices and total energies of
the system will be considered.

II. A SURVEY OF PREVIOUS
THEORETICAL RESULTS

(i) A summary of our notation is given below.
Unless otherwise stated, i,j,k, . . . label one-electron

states; A, ,y, g, . . . label two-electron Slater-determinant
states; A, Q, I, . . . label m-electron (or p-electron with
p )2) eigenfunctions either of S,S, or just of S„
I,J,E, . . . label in general two-electron eigenstates of the
Hamiltonian matrices; and W, W', . . . label either a gen-
eral m-electron state or in particular eigenstates of the full
CI Hamiltonian matrix.
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y ij
Hgy ——gd;J + Vgy,

m —1
/&J

(2)

where e,J. are the one-electron terms and V~& the Coulom-
bic integral corresponding to the scattering of two elec-
trons from

~ y) into (A, ~. (If both electrons have the
same spin the exchange integral is subtracted. )

The quantity d,"J. means

d,',y=(X~b,'b, ~y) . (3)

In second-quantization language, the one-particle reduced
density matrix operator of a state

~

W ) is

p(r, r')=(W ~%' (r)%'(r')
~
W)

—=gd;, P;*(r)PJ(r'). , (4)
i&j

where 4 (r) is the field operator and P;(r) is a spin orbital
function belonging to an orthonormal basis set.

The matrix H in (1) is equivalent to the known reduced
Hamiltonian. ' ' Note that while this matrix is indeed
represented in the two-particle space the operators B~ and

B& should operate over m-electron states.
The general commutation rule for operators (~8) is

['BJ;Bn lp = &t n gd i~j"bj b;+—g 'DÃy 'By 'Bl
i&j A&f

—yP —1D AQP —18tP —18 (5)
I,J

where + corresponds to p even or odd, respectively. By
considering this equation for p =2 and any given m-
electron state

~
W) one has

(W
~
[8,,8„']

~
W) =5„—gdj'(W

~
b,'b,

~
W) .

In our notation this can be rewritten as

D &„y Dl,y 5& y
tr(d~yd~~)— —— —

The main symbols used are the following:
(1,

~
b; bj ~

y) =d,jy, element (i,j ) of the transition I-RDM
from (y) to (A, ~; (A, ~b;b~ ~ y) =d,jy, the same but for
holes; (A

~
Bt,By ~

Q) =D &++, element (A, ,y) of the transi-
tion 2-RDM from

~

Q) to (A ); (A
~
8&By

~

Q) =D zy,
the same as before but for holes.

A p-RDM or a p-electron operator will be denoted as
~D or J'B, respectively.

(~
~
B~Bn

~

P') =D tl is the element (A, Q) of the
transition density matrix (nonreduced) from

~

W') to
~

W). Wherever the meaning is clear, the upper indices,
referring to the bra and ket states, will be omitted.

(ii) The general many-body operator H for systems of a
fixed number of electrons m can be written without expli-
cit mention of the one-electron operators ' as

H =gH „8',8, , (1)
Ay

where Bl„=b;bJ, with i &j (the b operators being the
usual fermion operators).

The quantities H ~& have the form

because D~& D——
&~ and tr(d~yd~~) =tr(dy"d~~)

given that the RDM are symmetrical and d;~j dJ,
As previously mentioned

D,y
—(W ~8',By

~

~) (7)

D ~~= (W
~
8„8,'

~
W) .

The interpretation that can be given to D is that it is
a two-hole reduced density matrix. Note that here

~
W)

can be any kind of state, in particular it may be con-
sidered to be an eigenstate therefore involving superposi-
tion of configurations. Thus this "hole" concept is more
general than the usual one in many-body theory. It as-
sumes that to each state

~
W) corresponds in a unique

way a hole state
~

W ) formed by a superposition of virtu
al configurations Wh. en 8 operates over such a "state"
it operates as an annihilator.

The term tr(d~yd~~) appearing in (6) is a concrete ex-
pression of an "augmenting" mapping. It carries the ma-
trix d from the one-particle space into a matrix D in the
two-electron space whose (A, ,y ) element will be
tr(d~yd~~). Note that D~y can be also considered as the
inner product of the matrices d~~ and d~~. ' This
kind of mapping can, of course, be generalized, therefore
if D++ is used we will have

t (DWWDAQ)

where the augmenting has been performed upon D~~
taking it from the two-electron space into a p-electron
one, that of A and Q.

The inverse mapping is readily obtained ' ' by a re-
peated use of the well-known sum rule g, b; b; =m. It
takes the general form

p I

where the
~

A) and
~
Q) are l-electron configurations.

Evidently this is the finite matrix representation of the in-
tegration upon I-p variables. In the appendix equation
(10) is derived in detail.

III. THE SPIN-ADAPTED
REDUCED HAMILTONIANS

This section is divided into two parts. In part (i) the
theoretical definition of the SRH matrices is given and
the main properties of these matrices are discussed, while
in part (ii) we report an algorithm which permits one to
work always within a reduced space.

(i) Let us close relation (1) by the m-electron configura-
tional states (A

~

and
~
Q), getting

Pi t,o=+H t,yD l„y =tr(HD~+) .
Ay
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The matrix A is identical to that of a full interaction of
configurations (IC). Note that Eq. (11) is an application
of the augmenting mapping (9) upon H.

If (A
i

and
i
II) are eigenfunctions of S and S„the

matrix A will be factored into blocks corresponding to
each of the possible symmetries of our system. By select-
ing a given block one can perform the projection into the
desired symmetry space. To the selected symmetry block
matrix a reducing mapping is applied so as to obtain the
spin-adapted reduced Hamiltonian H'. This new matrix
H' is

g~ ~DAQ
h, O

where the IA, QI are pure symmetry states. We know
that

m=gE~N~~,

y D AQDQA

h, Q

so that the two mappings are contracted into a constant
whose value will depend upon the indices y, k, ,g, m., the
spin symmetry, and, implicitly, upon I and M, where M
is the number of spin orbitals defining the representation
space.

After addition over the index 0 we get

H „'.=gH „g(A i
B',B,B~t.

i
A)

A, , y h

but because of the commutation relation for [B~,B&], pre-
viously seen in (5),

H =EH~ X(A Br 5~~+BQ

where E~ is the energy of eigenstate
i
W) of the spin

symmetry wished for and W the corresponding densi-
ty matrix. Consequently and due to (10)

H'= gE~ QDAnD gg =gE~D~—~ . (12)
h, Q

Expression (12) tells us that the matrix H' can be written
as an expansion of 2-RDM, therefore it contains all the
relevant information about our system. Note that while
the &~~ are orthogonal matrices the 2-RDM D~~ are
not.

Another important property of the mapping performed
is readily seen by taking the trace of H',

trH'=(trA )

Therefore except for the usual scaling factor the trace of
A is conserved. In what follows we will consider that H'
has been renormalized by dividing it by this scale factor.
The matrix H' is what we call a two-electron spin-
adapted reduced Hamiltonian matrix 2-SRH.

Everything that has been done to map A into H' can
be similarly carried through to map A into the I-SRH h',
or equivalently, we can map H' onto h'. Here we have
proceeded in the latter way, therefore we will give the al-
gorithms for H' knowing that

h'=g —,'d~rH~& and trh'=trA (14)
Ay

(ii) In the above we obtained the SRH matrix H' by a
three-step operation involving the application of an aug-
menting mapping, the spin projection, and the application
of a reducing mapping. Here we will show that all these
operations can be contracted into a single algorithm. In
this way all the calculation can be carried on in a two-
body space.

Because of (11) and (10),

After addition over A the three terms inside the large
parentheses give rise to three types of constants, that is,

Hg =gH~r &i;r, 4g+&2;rg, ~ +&3;y—,) de
Ay &sJ

IV. PHYSICAL INTERPRETATION
AND GENERAL FORM OF THE SRH

The SRH matrices H' and h' are representations of the
operators

and

H'=g H grBgBr
Ay

h'=gh;'Jb;bj .

The value and form of the E constants will depend on the
kind of symmetry being considered and upon the level of
approximation employed.

Indeed, if we content ourselves with a projection on the
subspace spanned by the eigenfunctions of the 5, operator
these constants take the form of diagonal matrices whose
elements are given by a combinatorial formula for what-
ever symmetry we consider. This situation changes if we
wish to perform the projection upon a subspace spanned
by the eigenfunctions of the S and the S, operators.

In the Appendix we explain in detail how the E's are
calculated in each case for the singlet symmetry In the.

case of the (S,S,) projection we have explicitly con-
sidered a case of four electrons and an eight-spin-orbital
basis set.

I hQ QhH„D„D„..
A, Q, A, ,y

The practical approach is thus to calculate the overall ef-
fect of

The diagonalization of these operators gives

H '—=g ~1(C'I )tc'I
I

(19)
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h '—=pe,'((t,')tP,' .
i

Now, sn the turbo-particle reduced space we have

[H ~(@I) @J] (~I ~J)(@I)@J=~IJ(@I)@1

(20)

(21)

(i) Let us start by saying that using the algorithm (16)
the properties (13) and (14) were empirically verified.

(ii) Also, as expected, while H' and H' had different
eigenvalues their eigenvectors were nearly the same and
the excitation energies between two given eigenvectors had
the same value. This means that

and, similarly, in the one-particle reduced space we have

[h ', (p,') QJ]=(e,' ej )—(p,') QJ. =e(q(p,') QJ . (22) H ' —H '=c3. .

That is, co,'J and e,'J are the normal modes in these reduced
spaces. Now, we have seen that the H ' and h ' contain all
the information relevant about our system (in the spin-
symmetry selected). Therefore the cozen and the e,'J can be
interpreted as being the elementary excitations of our sys-
tem.

If in (1) we use (5), we obtain another exact form of the
many-body Hamiltonian operator:

H= trH+g—H»B~B~+gh Jb; bj (23)

which makes explicit the term g& H»B~Br. This term
operates upon the holes of the state of our system, it will
therefore be called the holes Hamiltonian and denoted by

H. (H clearly describes the correlation effects of the state
considered. )

The holes Hamiltonian can be written as

H:gH»BgBy: g H»BrBg+trH gh( Jb bj''
If we proceed now with H in a similar way as with H, i.e.,
we obtain the matrix element

A ~n= (A
~

H
~
0)=A ~n+5„ntrH —tr(hd )

and reduce it back to the two-body (or one-body) space,
we will get the corresponding reduced-spin-adapted holes
Hamiltonian matrix H '.

If the physical interpretation about the elementary exci-
tations given above is correct, the holes quasigeminals
(QG) excitation energies should be the same as those of
the corresponding electron (QG). This appears to be con-
firmed numerically by the calculation that will now be re-

ported and whose aim is mainly to gain a qualitative
understanding of the physics behind our formalism and to
confirm its general properties.

The system chosen for this preliminary calculation was
the four-electron Be atom. The starting basis was
Clementi's double zeta, which after a Lowdin orthonor-
malization procedure was transformed into the basis di-
agonalizing the one-electron term of the initial Hamiltoni-
an. Although this basis is not too good for the description
of the excitations it is very convenient from the computa-
tional point of view. It is also acceptable for the study of
the total energy of the Be ground state, which will be con-
sidered in the following paper.

We will now describe the most noteworthy features of
these SRH matrices, their eigenvalues and their eigenvec-
tors.

(iii) An analysis of the matrices, h, without spin projec-
tion and that obtained for the pure singlet symmetry, h',
allowed the following relation to be found:

(trA —2trH )h'=2h+ (24)

As previously mentioned, the normalization used was
such that

V. ELEMENTARY EXCITATIONS

As mentioned previously, the excitation energies of the
QG and the QP can be regarded as normal modes of our
system. That is, the difference of energy between two
given QG or QP states correspond to an excitation energy
of our system. In this section the results of our calcula-
tion are compared with the experimental results.

The first three columns of Table I report, respectively,
the configuration, the designation, and the value of the
singlet level according to experimental results. In the
fourth column the cozJ (and the e,'J. /2) for the pure singlet
symmetry (S,S,) are given. In the last column is present-
ed the difference in energy between the two lowest states
obtained with the full CI calculation. The kind of pro-
motion involved in each elementary excitation value is re-
ported in a shorthand notation next to it. Thus, (number-
ing the one-electron space orbitals from 1 to 4 in the order
of increasing energy and denoting by a bar above the

trh'= trA

trh =trH .

Relation (24) implies that both h' and h have the same
eigenvectors and that

I
EgJ

Eij 2

The eigenvectors of h [and h '(S,S, )], were qualitatively
close to the reference orthonormal basis used, which was
that diagonalizing the original one-electron terms of ki-
netic and attraction energy.

(iv) An interesting feature of the eigenvectors of H' is
that they all have a single dominant bielectronic configu-
ration, while the starting H had rather diffuse eigenvec-
tors, except for the ground state. This is probably a gen-
eral characteristic provided the basis set of reference diag-
onalizes h or, as in our case, is a basis qualitatively close
to it. This concentrated character of the eigenvectors of
H' is particularly helpful in understanding the physical
meaning of the elementary excitations, as will be seen in
Sec. V.
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Configuration

s 2s

Designation

TABLE I. Singlet levels in cm

Level (Ref. 24}

0.00

(S',S, ) CI

1s22s2p

1s 2s3s
s22p~

1$ 2$3p

1$2$ 3d
1s 2s4s

1$ 2s4p

1s22s 12d

1p

]D
's

1p

1D

42 565.3

54 677.2
56432.5

[60 187.0]'

64428. 15
65 245.4

[67228.0]'

74403.2

38 557.72 (1 2 1 3 )

40034.5 (24~34 )T
43839.5 (12—+13 )T
45066.0 (42—+43 )s
45803.5 (22—+23 )s

56531.5 (23—+3 3 )s

66640.4 (2—+3)

62 733.67

IP 75 192.29

'These terms' values were calculated from the series formula but not substantiated by observation.

number that the spin is P), by (12~13)s we mean that the
excitation occurs from the singlet quasigeminal, where the

~

12+21)/W2 configuration dominates, to that where the

~

13+31)/v2 is dominant. The notation (12~13)r
means that the quasigeminals have triplet symmetry with
spin projection S =0. Finally, the notation (2~3)
denotes the ez3/2 quantity. The ellipses appearing in the
table mean that some levels of the experimentally deter-
miried spectrum have been omitted.

The results linked by the bracket in the table have an
average value (arithmetic mean) of 42660.24 cm ' to be
compared with 42565. 3 cm ' which is the value of the
first singlet energy transition experimentally determined.
The following value 56531.5 is close to the experimental
one at 56 432.5 cm '. The monoelectronic excitation
(2~3) may be compared with the value 65 245.4 cm ' al-
though the error here is much larger.

In all these elementary excitations we see that the gemi-
nals involved have a common characteristic: the dom-
inant configurations are of the type

~
i2) in that of lower

energy and
~

i3) in that of the highest one. In other
words, all the elementary excitations correspond to a dom-
inant promotion of an electron from the 2 to the 3 orbital
and the difference between all these excitations comes
from the dominant partner orbital i. The values for the
co,j are lower than the (2~3) monoelectronic elementary
excitation in agreement with the colIective mode character
of the geminal excitations.

Our results also indicate that the dependence on the
quality of the basis set seems to be less strict than in the
full CI method. These two characteristics are probably
due to the fact that the reduced two-electron space is
better described with a given monoelectronic basis set
than the m-electron one. We should also stress at this
point the "average" nature of the reduced Hamiltonian
matrices and therefore of the elementary excitations

described here.
Indeed, the concept of these elementary excitations is

closely connected to that of the well-known elementary
excitations in many-body and solid-state physics. ' Al-

though here neither the temperature nor the lifetime ef-
fects are explicitly considered, all the other characteristics
of the many-body elementary excitations are present:
near-independence, description of the lowest experimental
excitations, average character, etc.

VI. CONCLUDINCx REMARKS

The contraction of the full CI Hamiltonian matrix to a
reduced space while conserving its trace is a very powerful
property of the SRH method described here. The fact
that the reduced spin-adapted Hamiltonian matrices H'
and h' can be expanded in terms of the eigenvalues of the
system and the corresponding reduced matrices is also a
strong theoretical guarantee that all the relevant informa-
tion is contained in them. The preliminary calculation re-
ported here encourages us to think that our interpretation
of the excitation energies of the QCJ and the QP as the ele-
mentary excitations of our system is correct. Indeed, the
fact that the electron-QCr and the holes-QG have similar
excitation energy seems to confirm this view. Moreover,
the fitting of these excitation energies with the lower ex-
perimental ones is unexpectedly good given the nature of
the basis set used. In this connection, we intend to study
the influence of the size and nature of the basis set upon
the spectroscopic information provided by this method.

A simple and general way to calculate the constants ap-
pearing in algorithm (16) for pure symmetry is needed.
This is being developed by Karwowski and Duch in coBa-
boration with the author and will be the subject of a
separate publication.
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Here we have studied the information that can be ob-
tained from the SRH in a direct way. The following pa-
per (paper II) will discuss how to obtain information
about the total energies and the reduced density matrices
with the SRH method.
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APPENDIX

Although here A means a Slater determinant, it is easy to
see that any unitary transformation, in the space generat-
ed by these determinants, leaves this relation invariant.

(b) Having seen this, consider now the identity

(~ b,'b, y&b;~b' g—b;t bj =g B B (A5)
m —1 ~ m —1k &,r

Clearly the factor (A,
~
b;bJ

~
y& takes care of the sign

which may be generated when ordering i and k to form X,
and j and k to form y. This factor vanishes when orbitals
i and j are unoccupied in A, or y, respectively. It also van-
ishes if there is not an orbital k occupied both in A, and y.
Thus, the passage from gk to gz is justified. Now, ac-
cording to (3),

1. Detailed derivation of some results
referred to in the text Bg8

b; bJ =gd~r
m —1

' (A6)

The repeated use of the identity g,. b; b; =m leads to
several relations of interest, particularly to Eq. (10).

(a) Consider the identity

b b
m=gb;b;=gb; b; . (Al)

m=g b;b~bjb; .
~ m —1

l,J

Since b; bj, with i &j, is our definition for B~, one has

(A2)

(A3)

The dividing factor' m —1 for a system originally with m
electrons is due to annihilator b;.

Now, if a fixed order is imposed upon the indices, i.e.,
i &j, then

W iB',B iW&
(W'~b b ~W&=d" =gd"r

m —1

d A,ra W'W
ij Ar

m —1
7.r

(A7)

which for real elements is clearly identical to

d y'A,D WW'
y rA, ~ Ji rA,

m —1 ~ m —1
(A8)

The same analysis yields the general expression [(10) in
the text] as follows.

Now consider p-electron creators and p-electron annihi-
lators such as

2

1= . . QBt,Bt, .1.
m A

p

(A4)

Likewise, for the sums involving configurations A of p
electrons the general relation is

Let us insert 1 between b; and bJ,

~ ~ ~

kl m —p
(A10)

After performing t successive insertions, expression (A9)
becomes

k), k2, . . . , kt

b b . b. bkbk . . bkbk . . bkbkb - b. b .i) l2 ip i 2 2 i Jp J2 l&'

(m —p)(m —p —1) . (m —p t +1)— (Al 1)

Ordering now the indices in the sum, it becomes

(t '. )

(m —p)(m —p —1) . (m —p t +1)—b;b; b;bkbk bkbk . bkbkb; b;b;
k) &k2 ~ « kl

I 2 l& 1 2 t t 2 1 lp l2 l I
(A12)

Denoting by A and Q the configurations with I =t+p
electrons and by X and y the starting configurations of p
electrons, this expression can be cast as

Pa~r &A&np AQ

(A13)
m —p
I —p

Hence by (7),
pDAQ $g)WW

A,r AQpD WW
(A14)r

A, Q m —p
l —p

Note that this scaling factor was incorrectly printed in
Ref. 21.
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Finally,

p l
m —p
l —p

(A15)

which is the form of the scaling factor appearing in (10).
Clearly (A14) can also be derived by direct insertion of
(A4). +3;yi, yi

= M/2 —3 M/2
m/2 —3 m/2

g (A
I B,b; b,B~ I

A) =—QD.r Dyi, jm =K3;yi, yid ij
A A, r

where d yj = (y I b; bJ I
m ) provides the condition that

I
yi ) =+

I j~) with the correct sign coming from the or-
dering of the one-electron orbitals.

The constant K3;yi, yi takes the following values:
(1) if Sy+S;=+ —,',

2. Projection in the S, subspace
(the I I

A & I are of the Slater determinant type

As we have mentioned in Sec. III, we will describe in
detail the determination of the K constants for the singlet
symmetry. For any other symmetry, as will be seen, the
changes to be introduced are obvious and simple.

(i) K~ y . The form of this constant is

K, ., =g(A I
B',B. I

A) =—gn, (A
I B,'B,

I
A) .

A A

The spin of the bielectronic configuration y can take the
values Sy ——0, + 1. Therefore if Sy ——+ 1 the value of
E&.r y will obviously be

M/2 —2 M/2
m/2 —2 m/2

(2) if Sy+S;=+ —,,

E3.y, y,
——

M/2 —2 M/2 —1

m/2 —2 m/2 —1

Therefore the Hamiltonian becomes

H~ ——K(. ~H~

+QLIgy K2 y„yqDyg .—gd Pj~d,j K3 y, y, .
i r J,J

&i;~, +&2;~~, ~
—~&3; i, d-.I. I

I

and writing it all as a function of the initial H, the K con-
stants, and the one-electron reduced density matrices of
the bielectronic states, one has

If the Sr ——0 the value of K~.r r will be

M/2 —1

m/2 —1

(ii) K2.yz q„. In order to calculate this constant, let us
call ~ the dummy set of four electron states in an ordered
form (i.e., I

y) =b; bz~bkbI with i &j &k &l). Using this
we get

2;yq, Am ~ z~ yq, g~= ~ 2-yg yg~ y g
A, v

Evidently the sum over w is a dummy one which has been
used with the sole aim of separating the ordering effects,
and the fact that we must have

I yg ) = +
I

A,m. ), from the
sum over A. The symbol D~y~ is, as we saw in Sec. II,

Dyg ——(g IByBg I
m)

and evidently provides the correct sign and imposes the
previously mentioned equality. The values of the dif-
ferent Kz are given in Table II.

(iii) g, K3 ~ y' j d;J . The values of K3 y jean bc' '

evaluated again -using a dummy index r representing a
three-electron configuration over which we sum. This is
not necessary but renders the argument clearer, thus

TABLE II. Values of Xq.r„r„.

—& II ~y(K2;y. , y.d Jy'd "J'

rrK3'yi ypd ij d jp )

where the substitutions of D" and d r have been per-
formed according to formula (7) and

~J~r —d,J +d Ji

3. Projection in the (S,S, ) subspace

Let us consider the case of four-electron systems in the
pure singlet subspace spanned by eight spin orbitals. The
eigenfunctions of S in this subspace are

(a) six functions of the type
I
ijij ),

(b) twelve functions of the type ( Iiji l l+ Iilij ))/v 2,
(c) a function of the type

1

2v 3
( —

I
Ekj l &+ I

ijk l ) —2
I j« l &

—2 Iilj k) —Ijli k)+
I

kli j )),
Sy+S„=+2

M/2 —4 M/2
, m/2 —4 m/2

S~+S„=+1
M/2 —1 M/2 —3

m/2 —1, Im/2 —3

Sq+Sq ——0

M/2 —2

m/2 —2

(d) a function of the type

—,( I ikj 1)+
I
ij k l l +

Ij li k ) +
I
kli j ) )

with i &j & k & l.
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Note that the sum of the square of any of the determinant
coefficients is 1 for (a), —,

' for (b), and —,
' for (c) and (d).

In order to. render clearer the following development let
us class the bielectronic Slater determinants according to

(i) type ljj &

(ii) type
I
i j

(iii) type
I
ij ),

Characteristics

+—1—3

+ 1

6

I
kli j)

iljk)

TABLE IV. Summary of values for K2, A,g;A, m for various
characteristi. cs.

and if v=
I
i j ) and y =

Ij i ) we will say that v= y.
We have to calculate the three terms which appear i.n

relation (16) and that are generated by

H„'.= g H„D,","D„".'
w, n, x, y

when the A and 0 indices represent the spin-adapted con-
figurations. We will simply call them "configurations"
and it is understood that they are the combinations of
Slater determinants given above. As in the (S, ) approxi-
mation the three terms will be considered separately.

QIIxrJ s;x, &r„

If A, =rr and m is of the type
I
i i ) for any rr the sum

gA(A II1~ I
A) will have the value 6. Of this number

the value 3 comes from the terms where
I
A) = fiij j )

The other 3 units come from the
I
A) of type (b).

If A, =rr and rr is of the type
I
ij ) it is easy to see that

the complementary bielectronic determinant will appear.
(1) Once

Ij iQ providing the value l.
(2) Six times

I
lj) or

I
i l } or

I
k k ) providing in the

whole the value 3.
(3)

I
k l ) or

I
l k ) providing each —,', on the whole for

any m of the type I
ij ) the value of this constant is —', .

If A, =n and rr is of the type fij ) (or fij )), evidently
there will be six complementary possible bielectronic con-
figurations.

(1) One of the type I
ij ) (or

I ij ) ), providing the value

(2) Four of the type
I
i k ) (one space orbital in common

with
I ij )) providing the value 2.

(3) One of the type I
k i ) providing the value

Therefore on the whole this constant is —', .
If A=V then t,he value taken will be —', , where 1 comes

from the sum of the configurations of type (b) and —,
'

from the sum over (c) and (d& types.
The different values are summarized in Table I. The

calculation of this term does not, therefore, offer any dif-
ficulty.

+—1—2

Here also K2 may take several values.
If

I
A,ri)=+

I
ym) and

I
A,ri)~ fij i j) the value will

be +1 where the sign will depend on the relative ordering
ofboth fbi, } and

I
ye. }.

If
I

A,g) is of the type
I
ij i k ) then

I year) must be ei-
ther equal to this state or to

I
iki j). In both cases the

sign will be determined by the relative ordering of both
configurations and the value will be —,

' .
If I

ail, ) is of the type
I
ijk l ), then

I
rry ) must also be

of this same type. The absolute value of this constant is
or —,'. The sign in the case of —,

' will come not only
from the relative ordering of both states but also from the
relative position of the two common indexes. That is,
when, as in the example of the table, we bring both states
into the order:

Iij ki}
filj k)~ Iikl j) .

We see that the common indexes i and k are brought to-
gether to the same positions in both states, but in the first
state there is a minus sign, while in the other there is a +
sign. The overall effect will be a minus sign.

—g IIxrd", '&3; x,j~
A, ,g, l,J

This term involves not only K3 but d,&z~

=(g
I
b; bJ I

y). However, d~zr does not offer any diffi-
culty, thus we mill just focus our attention upon E3.

If
I
Ai) =+ Ijn) and

I
ki)

I
l l k) then K3 ——+2.

If
I
Ai)=+ Ij, rr) and

I
Ai)~ Iil k) (or

I
iki)) then

K3 ——+ —,.
If

I
Ai)~+

I
jm) but

I

A)=+ fkv) and
I
jrr)

TABLE V. Summary of values for K3.~; j for various
characteristics.

TABLE III. Summary of values for K1.q for various
characteristics. +3;~i,jn- Characteristics

6
14
3
10
3
4
3

Characteristics

fA)= frr)~ fii&
I

iE ) =
I

m- )~
I
ij )

fl)= fm&~ fij& or fij)
IA)= frr)

+2
4+——3

2
3

I
«& =+

I
j~&~

I
ik l &

I
li ) =+

I
jrr) ~

I ij k)
f)i &=+

I
kv)

I
&i)~+ fjrr)

'In this particular case one should first order as indicated each
trielectronic state i.e., I

kv) and
I

k v) in order to avoid errors.
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=+
~

k v) then the constant will have the value +2/3.
In Table III we summarize these values. (Note that no

index can ever be repeated inside each determinant. ) Evi-
dently, in general for any symmetry, any m, and any M
the constants will have to be recalculated, however, we ex-

pect a generating formula to exist which would permit a
completely general computation program to be elaborated
without too much difficulty. Here we were just interested
in analyzing the results, therefore we have simplified our
programming task to the utmost.
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