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Truncated diatomic orbitals (TDO) that we define in retaining only one term in the expansions of
diatomic orbitals (DO) which are exact Born-Oppenheimer solutions of the one-electron two-center
problem are proposed as basis functions for describing electronic molecular states of diatomic sys-
tems. Test calculations are performed and compared to the exact values for the electronic energy as
well as for values of the wave function for some states of H,* and HeH?* in order to check the effi-
ciency of the TDO’s as a basis set. TDO’s are then used as basis functions to describe 38 electronic
states of Li,* in the framework of a model-potential method, in the range 2 <R <20 a.u.

I. INTRODUCTION

During the past ten years much work has been done for
the determination, in the framework of pseudopotential
and model-potential methods, of accurate potential-energy
curves for molecular states of diatomic systems with one
active electron such as diatomic alkali-metal ions.!=> The
corresponding wave functions, generally expanded on the
basis of atomic functions, are used in subsequent configu-
ration interaction calculations®~® as well as in explicitly
correlated wave-function methods® for studies of the cor-
responding two-active-electron systems such as alkali-
metal dimers. At this stage, the number of constituent
basis functions for these one-active-electron two-center
wave functions becomes an important parameter to be
considered.

In fact, exact Born-Oppenheimer solutions (called di-
atomic orbitals) for the simplest one-electron diatomic
systems (i.e., two fixed nuclei of charge Z, and Zj,
respectively, separated by a distance R and one electron)
are obtainable on semianalytical forms'®~2° with as high
an accuracy as desired and because of their intrinsic di-
atomic feature they should constitute interesting basis
functions for the approximate treatment of one-active-
electron diatomic systems in the framework of model-
potential methods. In the present paper we propose to use
truncated diatomic orbitals (TDO?’s) instead of the full ex-
pansions of the diatomic orbitals (DO’s), as basis func-
tions for one-electron diatomic problems. The TDOQ’s are
defined as component parts of the DO’s and are much
more tractable than diatomic orbitals in usual diatomic
calculations.

After having defined TDO’s in Sec. II, we used them in
test calculations for the energies as well as for the numeri-
cal values of the wave functions of some molecular states
of H,* and HeH?* in Sec. III. After a recall of the Li,*
problem in the framework of model potential in Sec. IV,
we present and discuss the results obtained on the basis of
TDO’s for nine =, states, nine 3, states, five II, states,
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five I1, states, five A, states, and five A, states of Li,* in
the range 2 <R <20 a.u.

II. DEFINITION OF TRUNCATED DIATOMIC
ORBITALS (TDO)

We construct truncated diatomic orbitals from diatomic
orbitals defined as eigenfunctions in prolate-spheroidal
coordinates of the Schriédinger equation for the movement
of one electron in the field of two fixed nuclei of charge
Z 4 and Zp, respectively, separated by a distance R. This
problem is an exactly soluble one and diatomic orbitals
can be obtained on a semianalytical form with as high an
accuracy as desired. Among the various determination
procedures for DO’s based on semianalytical representa-
tion of the wave function that have appeared in the litera-
ture,'°=2° one of them was proposed by us some ten years
ago.?’ Briefly stated, it may be described as follows.

The following separated form, in prolate-spheroidal
coordinates (1<A< o, —1<pu<+1, 0<d<27), is as-
sumed for diatomic orbitals

where
K
Mu,$)= 3 fEY(u.9), )
k=m

Y (u,¢) are spherical harmonics,

J
AN)=eP*=D[2p(A—1)]"/? zocjf;"(zp(x~1)) :
J=

(3)

Z7(2p(A—1)) are normalized Laguerre polynomials.
The one-electron two-center Schrodinger equation is
then separated in two-coupled matricial equations. The
eigenenergies E = —2p?/R? are obtained from the simul-
taneous resolution of that pair of matricial equations
which is achieved by a Newton-Raphson procedure. The
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expansion coefficients 7k and C; are obtained as the
eigenvector components of these two matrices, respective-

ly,
K

J
S =1, 3 Ci=1.
k=m j=0
It should be noted that diatomic orbitals are named by the
triplet set of quantum numbers {n,,m} in the united
atom labeling of states.

The mathematical form for the TDO’s is deduced from
the expressions (2) and (3) for the DO’s by means of the
following arbitrary choices

fr=1, fI"'=0 V k=l ,

Cn-——l—l=1’ CJ=0 V]#n-—-l-—l.

Then, any truncated diatomic orbital 1, can be written
]
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Vim (At @)= Y™, d)e PA=V[2p (A—1)]"/2
X L0 _(2p(A—1)) .

In fact our arbitrary definition of TDO’s is supported in
some ways by the observations made upon the numerical
values of the coefficients fi’ and C; for the DO’s
{n,,m}: n€{1,2,3}, 1€{0,1,2}, mE€{0,1,2} of H,*
and of HeH?* for 0.2<R <10 au. The coefficient
Cp_;_1 is.often the largest and is always an important
coefficient in the expansion of the function A [Eq. (3)].
Similar conclusions are available for the relative impor-
tance of the coefficient f;” in the expansion of the func-
tion M [Eq. (12)].

The parameter p involved in the formula defining the
TDO’s ¥, [Eq. (4)] is determined from the general pro-
cedure applied in the particular case where the two ma-
trices involved are reduced to one element. p is then a
positive root of the following fourth degree polynomial:

(4)

PPyl4+m?—1
(21+43)21-1)

p*—2(2n —214+m -1)[

-2 [(2;1 —2l4+m—1+4202n -2l +m —1)

+2n —=2l4+m —1)

For a given TDO ,,,, the values of p may be easily
obtained from the Newton method on the whole range of
R starting from a small value R,. The process is initial-
ized by using the value of p deduced from the united-
atom approximation, i.e., p=R(Z,+Zg)/2n as the
starting value for R =R,. The process is then continued
for increasing values of R, using the value of p corre-
sponding to R;_; as a starting value for R;. It is rapidly
convergent.

III. TDO’S AS BASIS FUNCTIONS
FOR SOME TEST CALCULATIONS
FOR H,* AND HeH?**

In order to use the TDO’s 1,, as basis functions for
the determination of the energy of one-electron diatomic
systems, one has to evaluate as usual the energy matrix

" elements

Hy=(¢; | H |¢;),
where
i =¢n,‘lkmk(k’l“’¢)

and

2I+3)21-1)

3R(Z4+2Zp)—(2n =21 4+m —1)

4

n ~Iju_% —2[R(Z4+Zp)+n —(+1)]=m(m +1) ]pz

m 2, m|m
—1+= - mm g
n I+2 +n (l+1)+2|2+ p
R(Z4+Zp)
+2n —24m—12—=4TZ8 o, (5

2

z
H=—ta-—4_=2
T4

as well as the overlap matrix elements
Si= ;) .
This can be achieved without difficulty.

A. H,* ground state

We consider in some detail the results obtained for the
energy as well as for the wave function for the ground
state 23 (1so,) of H,*™ at the equilibrium distance
R =2.0 a.u. We have performed calculations with four
basis sets labeled B1, B2, B3, and B4* which are defined
in Table I. For the basis sets B1—B3 the p values for
each TDO have been obtained as described in Sec. II while
for the B4* basis set the values of p have been determined
so as to minimize the energy. The exact value reported in
Table I corresponds to 36 terms taken into account in Eq.
(1) (k=0,6,2;j =0,9,1). Values of the electronic energy
obtained for each basis set are reported in Table I as well
as the relative difference

o= |E(Bi)“‘Eexact I /E exact -
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TABLE 1. Basis function and corresponding values (in a.u.) of the electronic energy for the wave functions ls,,g and 2p, of H,*

and 1s, of HeH?* at R =2.0 a.u.

Expansion
TDO’s coefficient Electronic energy
Basis set J n / m P ¢ Approximate Exact 8 (%)
H,* B1 1 1 0 0 1.465 895 1 —1.074 424 2.6
Isag ‘
B2 4 1 0 0 1.465470 —0.999 141 —1.087990 1.3
3 2 0 0.488 826 0.036 567
5 4 0 0.116018 0.000078
B3 10 1 0 0 1.465 895 0.997 551 —1.100282 0.2
2 0 0 0.881470 —0.019 882
3 0 0 0.638 639 —0.004 765
4 0 0 0.497 650 —0.015551 —1.102 634
5 0 0 0.405 352 —0.000538
3 2 0 0.488 826 0.060 187
4 2 0 0.568070 0.028 534
5 2 0 0.497 650 0.005716
6 2 0 0.423970 0.001 523
5 4 0 0.116018 0.000096
B4* 4 1 0 0 0.779956 —0.942 678 1.102536 0.01
2 0 0 1.054 893 —0.300198
3 0 0 0.844 943 —0.011443
3 2 0 1.382 545 —0.145286
H,* B5* 5 2 1 0 0.349990 —0.871472 —0.667 369 —0.667 534 0.03
2p,,u 3 1 0 0.461 120 —0.480757
4 1 0 0.613 800 —0.083 888
5 1 0 0.728470 0.022262
4 3 0 0.692171 —0.043315
HeH?*+ B6* 4 1 0 0 2.105 292 0.750277 —2.506 885 —2.512193 0.2
lsg 2 1 0 2.102 257 —0.593016
3 2 0 2.108 842 0.279 606
4 3 0 2.135 845 —0.085070

As shown, good accuracy can be achieved with a reduced

basis of truncated diatomic orbitals.

To further check the quality of the approximate wave

functions

X= z Cilpnilimi(}"’.u’gb)

built up from TDO’s ¥, we have computed their values
along the molecular axis. The expansion coefficients c;
are reported in Table I. Comparison with exact values is
displayed in Table II and Fig. 1(a). A very good agree-
ment is shown for all distances for the wave function cor-
responding to the basis set B4*.

It is worthwhile to compare our results with the recent
single-center ones of Kranz and Steinborn.?® The main
known advantage of single-center expansions of molecular
functions as compared with linear combinations of atomic
functions (LCAO-MO) is that no multicenter integrals
occur in molecular calculations, all the basis functions be-
ing centered at a same point. The main disadvantage is

that usually many such basis functions are needed for a
reasonable accuracy. In fact, for the particular case of di-
atomic calculations, TDO’s expansions would be as easily
tractable as are single-center ones. For the ground state of
H," at R =2.0 a.u., Kranz and Steinborn centered the ex-
pansions at the midpoint of the internuclear axis and they
used a set of orthogonal basis function A. For a given
quality of the energy value obtained, the TDO’s basis set
is largely more compact than the single-center A basis set.
For instance, these authors obtained a value of
—1.100084 a.u. with a set of 70 A functions to be com-
pared to our value of —1.100282 a.u. obtained with a set
of ten TDO’s (B3) (the exact value is —1.102 634 a.u.).

The best value they reported is —1.1022 a.u. obtained
with a set of 160 A functions (one variational parameter)
while we obtained —1.102 536 a.u. with four TDO’s (four
variational parameters).

They reproduced very well the exact values of the wave
function in the bonding region as well as at large distances
with a set of 100 A functions while, as expected, they



2099

TRUNCATED DIATOMIC ORBITALS FOR HOMONUCLEAR AND . ..

(Z—)X—=(2)Xq
(Z=)X=(2)Xe
868 €000 0897100 7788000 ThL 1000 ¥$0021°0 70e8I1°0 0T
TL6 5000 ¥8€ 61070 Ty €100 T¥T 2000 119.LST0 69€5ST1°0 81
061 600°0 8LS 6700 88€070°0 8697000 s 9070 ¥¥8 €070 91
8¥0¥10°0 6£05+0°0 1660€0°0 1687000 9900LT°0 SLT1L9T0 ¥l
LOE 1200 11¥890°0 ¥01 L¥0°0 ¥LET000 LOTTSEO £€86¥€°0 Tl
S107€0°0 S09€01°0 06S 1L0°0 €870000 968 LSY0 €19LSY0 01
11L5000— 85£601°0 690611°0 9LE €000— $S970¥°0 0€090+°0 80
186 $100— 66L¥C1°0 08£6€£1°0 667 €000~ 11979¢€°0 01659€0 90
$08 L000— €0 TST1°0 80T091°0 9L 100°0— LOS SEE0 €STLEEO ¥0
81T €000 Sv961°0 ETE6L0 $£20000— ST861€°0 6500C€°0 4"
609 600°0 £6L€9T°0 1248494 0 00 00 §9€£000°0 W69Y1€°0 LTEVIEO 00
8619000 918¥9¢°0 81985€°0 LL11000— €186L0°0 0660800 (4
L699000— 9¥9 6150 EPETTS0 081200°0— €ETT91°0 €Iv91°0 ¥0—
T150200— L8YOPLO 66609L°0 8€LT000— 996 6¥C°0 YOLTSTO 90—
61TYI00— €509L0°1 TLT060°T 99€700°0— 876 S¥€°0 $678%€°0 80—
6607S0°0 Th6 LLS'T £F8STST 1L20000— 8¥¢ €SH°0 619€S+°0 01—
706000 8E6 1701 9€0100°1 §9T700°0 The68€°0 LLOLBEO [4 5
€€T670°0 696 5890 9€L959°0 6€£LT00°0 €78 1€E°0 ¥806C¢€°0 yi—
€€9610°0 06¥ 0S¥°0 LS80EY'0 02T 7000 €20182°0 £088LT0 12
€55 100 17T S6T°0 8997870 87€ 1000 SYLIETO LI¥ SET0 81—
0L9 L0O0 8I1€61°0 871 S81°0 €0 000°0 055 861°0 LY1861°0 0t~
=Rlichexnilq | 10exyg nY:s souarapIg oexg Sq 0w joexyg RZ z
o5 Q 2z 20T siseq
+:H°H +H uonouUNy IABAN

"Z SIxe Je[nodjow 3y} 3uofe ‘n'e 0'z= ¥ 1¢ ;. HAH Jo °S| pue I Jo "od7 pue &f X suonouny aaem ) Jo sanfep ‘[ ATAV.L



2100 A. ALIKACEM AND M. AUBERT-FRECON 31

04+
0.3+
=z
]
5 0.2-
b4
=2
w
s
g
0.1 1
-2 -1

NUCLEAR DISTANCE (a.u.)

FIG. 1. Normalized wave functions of H,* along the molecular axis for R =2.0 a.u. (a) Isag (a): basis set Bl; (B): basis set B3;
dashed line: basis set B4* and exact. (b) Zpa“ (v): basis set of three TDO’s nonoptimized (m =0; nl =21,31,43); (8): basis set of
. six TDO’s nonoptimized (m =0; nl =21,31,41,51,61,43); dashed line: basis set B5* and exact. See the text and Table I for the defi-
nition of the basis set Bi.
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FIG. 2. Normalized wave function 1s, of HeH?* along the molecular axis for R =2.0 a.u. (a): basis set of the three TDO’s
nonoptimized (m =0; nl =10,21,32); (B): basis set of five TDO’s nonoptimized (m =0, nl =10,20,21,31,32); (v): basis set B6*
(see the text and Table I); dashed line: exact.
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failed in reproducing the cusps of the wave function for
values of the distance corresponding to the position of the
nuclei. Because of the intrinsic “diatomic” feature of the
TDO’s we have been able to reproduce with a good accu-
racy the exact wave functions for all distances.

B. Further results for some molecular states
of H,* and HeH2+

We have performed calculations of the electronic ener-
gy as well as of the wave function for the state >=;} (2po,,)
of H,* and for the ground state 1so of HeH?* at R =2.0
a.u. The corresponding results are presented and com-
pared with the exact ones in Table I for the energies and
in Table II for the wave functions. The basis sets B5*
and B6* used, respectively, for H,* and HeH?* corre-
spond to optimized values of p. For the 23] (2po,) state
of H,* an excellent agreement is displayed for both the
value of the energy and the values of the wave function.
For the ground state of HeH?* a good value of the energy
and a fairly good description of the wave function are ob-
tained. Values of the wave functions 2po, of H,™ and
1s, of HeH?* are displayed in Figs. 1(b) and 2, respec-

tively, together with the corresponding exact values.

Further test results are presented and compared with
the corresponding exact values in Table III for some excit-
ed states of H,* and of HeH?>*. All these results have
been obtained from TDO’s with nonoptimized values of p.
The relative difference 8§ as well as the number of TDO’s
used in the approximate wave functions and the number
of terms taken into account in the exact wave functions
are quoted.

It should be noted that in all our test calculations, our
aim being not to reproduce the known exact values but to
illustrate the use of TDO’s as basis functions, we have not
attempted to make an optimal choice of the various 7,/
(for a given symmetry m) involved in the different basis
sets B*). Our conclusion from all the whole results ob-
tained is that TDO?’s are interesting basis functions for the
description of one-electron diatomic systems.

IV. TDO’S AS BASIS FUNCTIONS
FOR THE DESCRIPTION
OF MOLECULAR STATES OF Lij,*

After having ascertained that TDO’s may be advanta-
geously used to describe true one-electron diatomic sys-

TABLE III. Values of the electronic energy (in a.u.) for some excited states of H,* and HeH?*.

Relative Number of

Energy difference & Number of terms in the

State Approximate Exact (%) TDO’s exact solution
H,* m =0 2s,,g —0.39025 —0.394 88 1.2 13 40
R=1.4 3(1',,‘g —0.22798 —0.228 30 0.15 18 30
2pau —0.608 74 —0.61208 0.5 15 30
3po, —0.246 638 —0.248 64 0.8 14 30
m=1 2pn“ —0.44992 —0.45173 0.4 14 30
R=15 3pn, —0.20575 —0.207 87 1.0 14 36
4f“u —0.12565 —0.12567 0.02 13 48
3dng —0.22500 —0.22501 - 0.005 8 30
4dng —0.12602 —0.126 12 0.07 9 48
5dng —0.08034 —0.08055 0.25 10 40
m=2 3(15‘g —0.21625 —0.216 51 0.12 11 36
R=1.5 4d5g —0.12239 —0.122 60 0.15 11 36
5g5g —0.08008 —0.08008 0.001 13 36
4f5u —0.12495 —0.12499 0.03 14 36
5f5u —0.07993 —0.07999 0.08 14 27
6h5u —0.05557 —0.05559 0.04 15 36
HeH?+ m =0 2p, —1.33907 —1.34518 0.6 25 60
R =2 28, —0.78529 —0.78709 0.2 22 72
3d, —0.57111 —0.57125 0.02 25 54
3ps —0.53262 —0.53663 0.4 21 88
m=1 2pn —0.898 18 —0.899 65 0.2 19 40
R =2 3dpy —0.51238 —0.51261 0.05 20 60
3pn —0.42891 —0.43123 0.5 19 96
m=2 3ds —0.46292 —0.46329 0.08 14 84
R =2 4fs —0.28069 —0.28081 0.05 15 80
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TABLE IV. Values of the electronic energy for various values of the internuclear distance (in a.u.) for some molecular states 2=}

of L12
State
R X 22; 222; 322;“ 422;' 522; 62252r 722; 822;' 9222g+
2 —047414 —0.27194 —0.20983 —0.14978 —0.11921 —0.09314 —0.08037 —0.07690 —0.06322
3 —0.46830 —0.31687 —0.20022 —0.16262 —0.11441 —0.09845 | —0.08085 —0.07425 —0.06594
4 —0.46514 —0.30554 —0.19666 —0.15590 —0.11241 —0.09495 —0.08156 —0.07308 —0.06393
5 —0.44152 —0.28803 —0.19224 —-0.14771 —0.11036 —0.09077 —0.08251 —0.07195 —0.06155
6 —0.41234 —0.27325 —0.18670 —0.14056 —0.10811 —0.08703 —0.08378 —0.07076 —0.05939
7 —0.34830 —0.26149 —0.18053 —0.13459 —0.10578 —0.08550 —0.08382 —0.06962 —0.05888
8 —0.35945 —0.25202 —0.17417 —0.12970 —0.10361 —0.08785 —0.08110 —0.06869 —0.06049
9 —0.33813 —0.24410 —-0.16796 —0.12577 —0.10206 —0.09087 —0.07887 —0.06847 —0.06220
10 —0.32017 —0.23714 —0.16216 —0.12284 —0.10263 —0.09320 —0.07728 —0.06968 —0.06300
11 —0.30525 —-0.23070 —0.15697 —0.12127 —0.10599 —0.09293 —0.07676 —0.07086 —0.06257
12 —0.29299  —0.22453 —0.15258 —0.12163 —0.10847 —0.09141 —0.07731 —0.07960 —0.06171
13 —0.28302 —0.21848 —0.14919 —-0.12315 —0.10860 —0.08968 —0.07796 —0.06963 —0.06076
14 —0.27491 —0.21256 —0.14688 —0.12393 —0.10757 —0.08804 —0.07824 —0.06852 —0.05982
15 —0.268 31 —0.20684 —0.14544 —0.12334 —-0.10618 —0.08662 —0.07807 —0.06744 —0.05893
16 —0.26287 —0.20143 —0.14439 —-0.12172 —0.10473 —0.08546 —0.07748 —0.06643 —0.05815
18 —0.25442 —0.19183 —0.14199 —-0.11722 —-0.10183 —0.08374 —0.07542 —0.06464 —0.05684
20 —0.24810 —0.18410 —0.13837 —0.11270 —0.09900 —0.08234 —0.07290 —0.06312 —0.05584

tems we use them for the description of molecular states
of Li,* considered as a diatomic system with one valence
electron.

A. The Li,* problem

In the framework of a model-potential method, the
equation for the movement of one electron in the field of
two identical alkali-metal Li™ (noted 4 and B) may be

written as follows:
[—$A+27(rs+15;R)—e(R)]$(r4,r5;R)=0,  (6)

where 7 is a molecular model potential defined as:

771 4,15 R)=V(r 1)+ V(rg) 4+ Voot (r4,15;R)+ Ve (R) .
@)

For the interaction terms V(r) describing the interaction
between the ionic core Li™ and the valence electron we
have chosen the parametric form proposed by Klapisch?’

14(Z —)e Vpare ™
Vir)=— - 2 , ®)

where a;, a,, and a; are variational parameters deter-
mined by this author in order to reproduce the atomic en-
ergy spectrum. A very good agreement is displayed for Li

TABLE V. Values of the electronic energy for various values of the internuclear distance (in a.u.) for some molecular states 2=} of

Li2+-
State
R 1237 237 3z 4237 5tz 6= 7z 82z 923+
2 —0.36028 —0.17288 —0.12675 —0.10248 —0.08093 —0.06794 —0.05611 —0.05567 —0.04837
3 —0.33961 —0.16426 —0.12930 —0.09821 —0.08235 —0.06554 —0.05696 —0.05582 —0.04690
4 —0.32332 —0.15801 —0.13388 —0.09530 —0.08500 —0.06397 —0.05858 —0.05603 —0.04596
5 —0.31182 —0.15841 —0.13973 —0.097 48 —0.08726 —0.06578 —0.05955 —0.056 30 —0.04726
6 —0.304 17 —0.17229 —0.13997 —0.104 68 —0.08611 —0.06951 —0.058 63 —0.056 64 —0.04941
7 —0.29902 —0.18752 —0.13747 —0.108 92 —0.084 35 —0.07121 —0.05752 —0.05705 —0.05025
8 —0.29493 —0.19665 —0.13497 —0.11030 —0.08279 —0.07152 —0.05755 —0.05655 —0.05032
9 —0.29091 —0.20062 —0.13280 —0.11016 —0.08148 —0.07112 —0.058 15 —0.05573 —0.04999
10 —0.28661 —0.20149 —0.13089 —0.10922 —0.08036 —0.07036 —0.05886 —0.05505 —0.04945
11 —0.28204 —0.200 69 —0.12915 —0.107 88 —0.07940 —0.069 41 —0.05971 —0.05447 —0.048 81
12 —0.27738 —0.19900 —0.127 50 —0.10635 —0.078 54 —0.068 39 —0.06074 —0.05398 —0.048 12
13 —0.27278 —0.196 84 —0.12591 —0.10477 —0.077 81 —0.067 35 —0.06202 —0.053 60 —0.04743
14 —0.268 37 —0.19447 —0.124 36 —0.10319 —0.07723 —0.066 33 —0.06361 —0.05339 —0.04675
15 —0.26421 —0.19199 —0.12286 —0.10166 —0.07691 —0.06551 —0.06534 —0.05346 —0.04747
16 —0.26035 —0.18951 —0.12143 —0.10020 —0.077 10 —0.06749 —0.06441 —0.05396 —0.048 39
17 —0.25679 —0.18705 —0.12006 —0.09881 —0.07813 —0.06899 —0.06353 —0.05481 —0.04878
18 —0.25351 —0.184 65 —0.11877 —0.09748 —0.08002 —0.069 65 —0.06272 —0.05572 —0.048 77
19 —0.25052 —0.18234 —0.177 56 —0.096 24 —0.08226 —0.069 68 —0.06196 —0.05647 —0.048 57
20 —0.24777 —0.18012 —0.11642 —0.095 06 —0.084 37 —0.069 39 —0.06129 —0.05702 —0.048 28
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between calculated and experimental energy spectrum for Vool represents the whole polarization effects, i.e., each
the following values of the parameters: ionic core Li™" is polarized by the simultaneous electric
field due to the valence electron and due to the other Li™

a;=17.9, a,=10.31, a;=3.898. core. This whole effect appears as a sum of the three

TABLE VIII. Comparative results for the spectroscopic constants R, and D, of some molecular
states of Li,*.

Molecular .
state Method R, (A) D, (V)
X2} 3.1 1.31
Model potential®®® 3.08 1.30
3.09 1.28
Pseudopotential? 3.09 1.30
Frozen-core® 3.16 1.26
SCF+ 3.127 1.280
SCF + core polarization
potential® 3.099 1.293
Valence configuration
+ effective core
potential (ECP)" 3.076 1.314
Present work 3.08 1.30
1.27+0.02
Experimentalk 3.11+0.01 1.2980+0.0007
1.2836+0.0031
223} SCF! 6.88 0.299
Model potential® 6.77 0.30
Frozen-core® 6.88 0.31
Valence configuration
+ ECP" 6.84 0.309
Present work 6.85 0.31
12zF SCFf 10.3 0.01
Model potential® 10 0.01
Frozen-core® 10.0 0.01
Valence configuration
+ ECP" 9.92 0.01
Present work 9.24 0.01
1211, SCF! 4.01 0.23
Model potential® 4.02 0.23
Frozen-core® 4.02 0.25
Valence configuration ‘
+ ECP" 3.987 0.236
Present work 397 . ) 0.26
2211, Frozen-core® 10.32 0.37
Present work 9.59 ‘ 0.41
1°A, Frozen-core® 9.53 0.035
Present work 9.28 0.05

2Reference 31.

"Reference 39 when neglecting V; (see the text).
‘Reference 39 when including V3.
9Reference 4.

*Reference 35.

fReference 36.

8Reference 38.

hReference 41.

iReference 42.

JReference 43.

kReference 44.

IReference 37.
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terms: a valence electron-core polarization term, a core-
core polarization term, and a cross term due to the nonad-
ditivity of the various polarization contributions.
Mathematical forms generally used to take these effects
into account are derived from the asymptotic form of the
molecular potential given by Bottcher and Dalgarno,?®
multiplied by a convenient cutoff function in order to
avoid divergence at small values of the distance. As a
first step, we have neglected all these polarization effects
in our present calculations on Li,"™ arguing that Li is a
light atom with not much of a polarizable core.

V... represents the core-core interaction apart from the
polarization terms already considered in V. For values
of R such that the overlap between the core wave func-
tions is small, the interactions between the two Lit is
largely dominated by the long-range charge-charge term
1/R. For smaller values of R, exchange effects are to be
taken into account. Such short-range interactions have
been included either in an empirical way?® or in a theoreti-
cal one® In our present calculations ¥V, has been re-
stricted to the predominant term 1/R.

B. Calculations and results

The molecular potential 7~ [Eq. (7)] being defined for
Li,*, we solved Eq. (6) written in prolate-spheroidal coor-
dinates on the basis of TDO’s. The values of p for each
basis function 1,,, are derived from Eq. (5) with
y4 A =Z B = 3.

We have paid particular attention to the choice of the
various n,l in building up the basis sets for a given sym-
metry m. After some systematic investigations we have
adopted the following automatic procedure.

(i) First we add TDO’s with increasing [ values (by a
step of 2 for homonuclear cases) until the numerical
values of the eigenenergies of interest are stabilized (to a
chosen precision).

(ii) Then for each [ value (starting from the smallest) we
add TDO’s with increasing n values until the numerical
stabilization of the eigenvalues of interest.

Calculations have been performed for the nine lowest-
lying states of symmetry =, and of symmetry =, the five
lowest-lying states of symmetry II;, and of symmetry IT,,
the five lowest-lying states of symmetry A, and of sym-
metry A,, in the range 2.0 <R <20 a.u. of internuclear
distances. Results for the electronic energy are presented
in Table IV for the 23/} states, in Table V for the 23]
states, in Table VI for the Hg 4 States, and in Table VII
for the A .« states. The number of TDO’s used for states
of a glven symmetry are also quoted. Some comparative
results about the quantities R, and D, (in A and eV,
respectively, for ease of comparison) are gathered in Table
VIIIL.

Several theoretical investigations of the ground state
X232} of Li* have been performed recently’!—*"* in-
cluding model potential, pseudopotential, and ab initio
calculations. As shown in Table VIII our determinations
for R, and D, are in good agreement with recent litera-
ture ones. We pay some further attention to the compar-
ison between our results and the very recent ones reported
by Henriet and Masnou-Seeuws®” for a lot of =, , states
of Li,*. These authors included core-core polanzatlon ef-
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fects (i.e, —ay ¢ /R* where a,,+ is the static dipolar po-
larizability of the core Li*) in the molecular potential ¥~
[Eq. (7)] for any value of R and they performed two types
of calculations: one in taking into account the cross po-
larization term (noted V3 in their paper), the other in
neglecting it. As we have done, they represented the
valence electron-core interactions through the Klapisch
potential. They solved the Li,* problem with a set of 134
prolate-spheroidal generalized Slater functions. Then, our
present values for the total energy corrected by the core-
core polarization term

Er(R)=€(R)—a, ., /R*

are directly comparable to their results corresponding to
V3=0. As a matter of fact, when comparing the two sets
of results for various values of R,* it appears that they
are in very good agreement. It should be noted that the
correction due to the cross polarization term V5 is seen to
be small for Li,* and it decreases with increasing values
of R4

A good agreement with the literature results including
ab initio,**>*! model potential,?! and frozen-core method
ones® is displayed for R, and D, of the first excited
222+ state as well as for the dissociation energy of the
ﬁrst excited 123} state, while our value for R, is smaller
by an amount of roughly 10%.

For the first excited state 2II, present values of R, and
D, are in reasonable agreement with previous determina-
tions.333=3641 For the states 221, and leg we compare
our results with the correspondmg frozen-core method

E(a.u)

01

-01 4

-0.2

N-
)]
=
2

20

R(a.u)
FIG. 3. Potential energy curves for the ten lowest-lying states

of Li2+ .
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ones given by Miiller and Jungen:* They are in fairly
good agreement for R, while present values are signifi-
cantly larger than previous ones for D,.

For the remaining states a direct comparison may be
made for nuclear separations between 2 and 20 a.u. with
the tables of results given by Miiller and Jungen for a
large number of states: six 3. states, five >3} states,
five °I1, states, four *Il, states, four A, states, and three
2A, states. Our conclusion is that the two sets of results
are in fairly good agreement. The curves for the total en-
ergy of the ten lowest-lying molecular states of Li,* are
drawn in Fig. 3.

V. CONCLUSION

We have defined truncated diatomic orbitals (TDO’s) in
retaining only one term in the expansions of the eigen-
functions (in prolate-spheroidal coordinates) of one-
electron diatomic systems and we have presented a simple

A. ALIKACEM AND M. AUBERT-FRECON 31

procedure to determine the parameter involved in their
mathematical form. Test calculations for some exactly
known molecular states of H,* and HeH?* have shown
that compact basis sets of TDO’s provide good approxi-
mations of the exact values of the eigenenergies as well as
of the exact values of the wave functions.

We have then described 38 electronic states of Li,* in
the framework of a model potential method, using TDO’s
as basis functions. Again, compact basis sets are suffi-
cient to achieve a good accuracy. Preliminary results of a
similar work now in progress for LiH*, Na,*, and
NHe®* corroborate this result. The number of basis func-
tions needed to approximate wave functions of effective
one-electron diatomic systems is a very sensitive criterion
for us because we have undertaken to use these approxi-
mate functions in Pluvinage’s method® to determine ex-
plicitly correlated functions as well as in usual configura-
tion interaction approach to describe molecular states of
effective two-electron diatomic species.
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