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Truncated diatomic orbitals (TDO) that we define in retaining only one term in the expansions of
diatomic orbitals (DO) which are exact Born-Oppenheimer solutions of the one-electron two-center
problem are proposed as basis functions for describing electronic molecular states of diatomic sys-
tems. Test calculations are performed and compared to the exact values for the electronic energy as
well as for values of the wave function for some states of H2+ and HeH + in order to check the effi-
ciency of the TDO's as a basis set. TDQ's are then used as basis functions to describe 38 electronic
states of Li2+ in the framework of a model-potential method, in the range 2 (R (20 a.u.

I. INTRODUCTION

During the past ten years much work has been done for
the determination, in the framework of pseudopotential
and model-potential methods, of accurate potential-energy
curves for molecular states of diatomic systems with one
active electron such as diatomic alkali-metal ions. ' The
corresponding wave functions, generally expanded on the
basis of atomic functions, are used in subsequent configu-
ration interaction calculations as well as in explicitly
correlated wave-function methods for studies of the cor-
responding two-active-electron systems such as alkali-
metal dimers. At this stage, the number of constituent
basis functions for these one-active-electron two-center
wave functions becomes an important parameter to be
considered.

In fact, exact Born-Oppenheimer solutions (called di-
atomic orbitals) for the simplest one-electron diatomic
systems (i.e., two fixed nuclei of charge Zz and Zz,
respectively, separated by a distance R and one electron)
are obtainable on semianalytical forms' with as high
an accuracy as desired and because of their intrinsic di-
atomic feature they should constitute interesting basis
functions for the approximate treatment of one-active-
electron diatomic systems in the framework of model-
potential methods. In the present paper we propose to use
truncated diatomic orbitals (TDO's) instead of the full ex-
pansions of the diatomic orbitals (DO' s), as basis func-
tions for one-electron diatomic problems. The TDO's are
defined as component parts of the DO's and are much
more tractable than diatomic orbitals in usual diatomic
calculations.

After having defined TDO's in Sec. II, we used them in
test calculations for the energies as well as for the numeri-
cal values of the wave functions of some molecular states
of H2+ and HeH + in Sec. III. After a recall of the Li2+
problem in the framework of model potential in Sec. IV,
we present and discuss the results obtained on the basis of
TDO's for nine Xe states, nine X„states, five II~ states,

five II„states, five hs states, and five 4„states of Li2 in
the range 2 &R & 20 a.u.

II. DEFINITION OF TRUNCATED DIATOMIC
ORBITALS (TDO)

N(A, ,p, g) =M(p, g)A(A, ),
where

M(p, p)= Q fk Yk (P,p),
k=m

Yk (p„P) are spherical harmonics,

(2)

A(A, )=e ~' "[2p(A, —1)j g CJ.WJ (2p(A, —1)) .

W~ (2p(A, —1)) are normalized Laguerre polynomials.
The one-electron two-center Schrodinger equation is

then separated in two-coupled matricial equations. The
eigenenergies E = —2p /R are obtained from the sirnul-
taneous resolution of that pair of matricial equations
which is achieved by a Newton-Raphson procedure. The

We construct truncated diatomic orbitals from diatomic
orbitals defined as eigenfunctions in prolate-spheroidal
coordinates of the Schrodinger equation for the movement
of one electron in the field of two fixed nuclei of charge
Zz and Z&, respectively, separated by a distance R. This
problem is an exactly soluble one and diatomic orbitals
can be obtained on a semianalytica1 form with as high an
accuracy as desired. Among the various determination
procedures for DO's based on semianalytical representa-
tion of the wave function that have appeared in the litera-
ture, ' one of them was proposed by us some ten years
ago. Briefly stated, it may be described as follows.

The following separated form, in prolate-spheroidal
coordinates (1&A, (oo, —1(p(+1, 0&/&2@), is as-
sumed for diatomic orbitals
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expansion coefficients f~ and CJ are obtained as the
eigenvector components of these two matrices, respective-
ly

K J
(fttt)2 1 g Cz

j=0
It should be noted that diatomic orbitals are named by the
triplet set of quantum numbers In, l, mI in the united
atom labeling of states.

The mathematical form for the TDO's is deduced from
the expressions (2) and (3) for the DO's by means of the
following arbitrary choices

C„ i i ——1, CJ ——0 Vj&n —I —1.
Then, any truncated diatomic orbital P„i can be written

f„i (&,p, P)= Fi (hatt, P)e ~'" "[2p(A,—1)]

x W„ i,(2p(A, —1)) .

In fact our arbitrary definition of TDO's is supported in
some ways by the observations made upon the numerical
values of the coefficients fk and CJ for the DO' s
In, l, m I: n G I 1,2, 3I, l & I0, 1,2I, m C [0,1,21 of Hz+
and of HeH + for 0.2 (R & 10 a.u. The coefficient
C„ i i is.often the largest and is always an important
coefficient in the expansion of the function A [Eq. (3)].
Similar conclusions are available for the relative impor-
tance of the coefficient fi in the expansion of the func-
tion I [Eq. (12)].

The parameter p involved in the formula defining the
TDO's P„i~ [Eq. (4)] is determined from the general pro-
cedure applied in the particular case where the two ma-
trices involved are reduced to one element. p is then a
positive root of the following fourth degree polynomial:

1 +l+m —1 a 17l +17l+m —13)
(21 +3)(21—1) (2l +3)(21—1)

—2 (2n —2l +I—1) +2(2n —2l +m —1) n —l+
2

—2[R (Z„+Z& )+n —(l + 1) ]—m (m + 1) .p

+(2n —2l+m —1) 3R(Z&+Zzt) —(2n —2l+m —1) n —l+ +n (I+1) + — +1 p2 2 2

R(Zg+Zzt)
+(Zn —2l +m —1)

2
=0.

For a given TDO g„i, the values of p may be easily
obtained from the Newton method on the whole range of
R starting from a small value Ro. The process is initial-
ized by using the value of p deduced from the united-
atom approximation, i.e., p =R (Zz+Zzt )/2n as the
starting value for R =Ro. The process is then continued
for increasing values of R, using the value of p corre-
sponding to R; i as a starting value for R;. It is rapidly
convergent.

III. TOO'S AS BASIS FUNCTIONS
FOR SOME TEST CALCULATIONS

FOR H2+ AND HeH~+

In order to use the TDO's f„i~ as basis functions for
the determination of the energy of one-electron diatomic
systems, one has to evaluate as usual the energy matrix

'

elements

where

as well as the overlap matrix elements

This can be achieved without difficulty.

A. Hq+ ground state

We consider in some detail the results obtained for the
energy as well as for the wave function for the ground
state Xg+( ls cd ) of Hz+ at the equilibrium distance
R =2.0 a.u. We have performed calculations with four
basis sets labeled Bl, 82, 83, and 84 which are defined
in Table I. For the basis sets 81 83 the p values —for
each TDO have been obtained as described in Sec. II while
for the 84 basis set the values of itt have been determined
so as to minimize the energy. The exact value reported in
Table I corresponds to 36 terms taken into account in Eq.
(1) (k =0,6,2;j=0,9, 1). Values of the electronic energy
obtained for each basis set are reported in Table I as well
as the relative difference

~=
I E(Bi ) Eexact I ~Eexact
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TABLE I. Basis function and corresponding values (in a.u.}of the electronic energy for the wave functions 1s and 2p of H&
g Q

and 1s of HeH + at R =2.0 a.u.

H, +

Basis set

1 0 0

TDO's
l nz P

1.465 895

Expansion
coefficient

cg

Electronic energy
Approximate Exact

—1.074424 2.6

1s

1.465 470
0.488 826
0.116018

—0.999 141
0.036 567
0.000078

—1.087 990 1.3

10 1.465 895
0.881 470
0.638 639
0.497 650
0.405 352
0.488 826
0.568 070
0.497 650
0.423 970
0.116018

0.997 551
—0.019882
—0.004 765
—0.015 551
—0.000 538

0.060 187
0.028 534
0.005 716
0.001 523
0.000096

—1.100282

—1.102 634

0.2

B4 0.779 956
1.054 893
0.844 943
1.382 545

—0.942 678
—0.300 198
—0.011443
—0.145 286

1.102 536 0.01

0
0
0
0
0

0.349 990
0.461 120

0.613 800
0.728 470
0.692 171

—0.871 472
—0.480 757
—0.083 888

0.022 262
—0.043 315

—0.667 369 —0.667 534 0.03

HeH +

1s
2.105 292
2.102 257
2.108 842
2.135 845

0.750 277
—0.593 016

0.279 606
—0.085 070

—2.506 885 —2.512 193 0.2

As shown, good accuracy can be achieved with a reduced
basis of truncated diatomic orbitals.

To further check the quality of the approximate wave
functions

X= gc;g„(, .(A, ,p, g)

built up from TDO's P, we have computed their values
along the molecular axis. The expansion coefficients c;
are reported in Table I. Comparison with exact values is
displayed in Table II and Fig. 1(a). A very good agree-
ment is shown for all distances for the wave function cor-
responding to the basis set 84*.

It is worthwhile to compare our results with the recent
single-center ones of Kranz and Steinborn. The main
known advantage of single-center expansions of molecular
functions as compared with linear combinations of atomic
functions (I.CAO-MQ) is that no multicenter integrals
occur in molecular calculations, all the basis functions be-
ing centered at a same point. The main disadvantage is

that usually many such basis functions are needed for a
reasonable accuracy. In fact, for the particular case of di-
atomic calculations, TDG's expansions would be as easily
tractable as are single-center ones. For the ground state of
H2+ at R =2.0 a.u. , Kranz and Steinborn centered the ex-
pansions at the midpoint of the internuclear axis and they
used a set of orthogonal basis function A. For a given
quality of the energy value obtained, the TDO's basis set
is largely more compact than the single-center A basis set.
For instance, these authors obtained a value of
—1.100084 a.u. with a set of 70 A functions to be com-
pared to our value of —l. 100282 a.u. obtained with a set
of ten TDO's (83) (the exact value is —1.102 634 a.u.).

The best value they reported is —1.1022 a.u. obtained
with a set of 160 A functions (one variational parameter)
while we obtained —1.102 536 a.u. with four TDQ's (four
variational parameters).

They reproduced very well the exact values of the wave
function in the bonding region as well as at large distances
with a set of 100 A functions while, as expected, they
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FIG. 1. Normalized wave functions of H2 along the molecular axis for R =2.0 a.u. (a) ls (a): basis set Bl; (P): basis set B3;
dashed line: basis set 84* and exact. (b) 2p (v): basis set of three TDO's nonoptimized (m =0; nl =21,31,43};(5): basis set of

Q

six TDO's nonoptimized (I =0; nl =21,31,41,51,61,43); dashed line: basis set 8 5 and exact. See the text and Table I for the defi-
nition of the basis set Bi.
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FIG. 2. Normalized wave function 1s of HeH + along the molecular axis for R =2.0 a.u. (a}: basis set of the three TDO's
nonoptimized (m =0; nl = 1 , 01,232); (13): basis set of five TDCYs nonoptimized (m =0, nl =10,20, 21,31,32); (v): basis set B6
(see the text and Table I};dashed line: exact.
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failed in reproducing the cusps of the wave function for
values of the distance corresponding to the position of the
nuclei. Because of the intrinsic "diatomic" feature of the
TDO's we have been able to reproduce with a good accu-
racy the exact wave functions for all distances.

B. Further results for some molecular states
of H2+ and HeH +

We have performed calculations of the electronic ener-

gy as well as of the wave function for the state X„+(2pcr„)
of Hz+ and for the ground state 1 scr of HeH + at R =2.0
a.u. The corresponding results are presented and com-
pared with the exact ones in Table I for the energies and
in Table II for the wave functions. The basis sets B5'
and 86' used, respectively, for Hz+ and HeH + corre-
spond to optimized values of p. For the X„+(Zpo„) state
of H2+ an excellent agreement is displayed for both the
value of the energy and the values of the wave function.
For the ground state of HeH + a good value of the energy
and a fairly good description of the wave function are ob-
tained. Values of the wave functions 2po„of H2+ and
ls of HeH + are displayed in Figs. 1(b) and 2, respec-

tively, together with the corresponding exact values.
Further test results are presented and compared with

the corresponding exact values in Table DI for some excit-
ed states of Hz+ and of HeH +. All these results have
been obtained from TDO's with nonoptimized values of p.
The relative difference 5 as well as the number of TDO's
used in the approximate wave functions and the number
of terms taken into account in the exact wave functions
are quoted.

It should be noted that in all our test calculations, our
aim being not to reproduce the known exact values but to
illustrate the use of TDO's as basis functions, we have not
attempted to make an optimal choice of the various n, l
(for a given symmetry m) involved in the different basis
sets 8'*'. Our conclusion from all the whole results ob-
tained is that TDO's are interesting basis functions for the
description of one-electron diatomic systems.

IV. TDO'S AS BASIS FUNCTIONS
FOR THE DESCRIPTION

OF MOLECULAR STATES OF Lip+

After having ascertained that TDO's may be advanta-
geously used to describe true one-electron diatomic sys-

TABLE III. Values of the electronic energy (in a.u. ) for some excited states of H2+ and HeH +.

H2+ m=0
R =1.4

m=1
R =1.5

m =2
R =1.5

State

2$~
g

3d
S

2p~

3p~

2pn„

3prr„

4fn„
3d~
4dp

5dg
g

3dg
g

4dg
g

505
g

4'„
5f5„
6hg

Energy
Approximate

—0.39025
—0.227 98
—0.608 74
—0.246 68

—0.449 92
—0.205 75
—0.125 65
—0.225 00
—0.12602
—0.080 34

—0.216 25
—0.122 39
—0.08008
—0.124 95
—0.079 93
—0.055 57

Exact

—0.39488
—0.228 30
—0.61208
—0.248 64

—0.451 73
—0.207 87
—0.125 67
—0.225 01
—0.126 12
—0.080 55

—0.216 51
—0.12260
—0.08008
—0.124 99
—0.079 99
—0.055 59

Relative
difference 5

(%)

1.2

0.15

0.5
0.8

0.4
1.0
0.02

0.005

0.07

0.25

0.12

0.15

0.001

0.03

0.08

0.04

Number of
TDO's

13

18

15

14

14

14

13

8

9
10

11

11

13

14

14

15

Number of
terms in the

exact solution

40

30

30

30

30

36

48

30

48

40

36

36

36

36

27

36

HeH + m=0
R=2

m =2
R=2

2p~
2$~
3d~
3p~

2pn
3dg
3pn

3dg
4'

—1.33907
—0.785 29
—0.571 11
—0,532 62

—0.898 18
—0.512 38
—0.428 91

—0.462 92
—0.280 69

—1.345 18
—0.787 09
—0.571 25
—0.536 63

—0.899 65
—0.512 61
—0.431 23

—0.463 29
—0.280 81

0.6
0.2
0.02
0.4

0.2
0.05
0.5

0.08
0.05

25
22
25
21

19
20
19

14
15

60
72
54
88

40
60
96

84
80
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TABLE IV. Values of the electronic energy for various values of the internuclear distance (in a.u. ) for some molecular states ~X~+

of Li2.

te

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
18
20

X'X+

—0.474 14
—0.468 30
—0.465 14
—0.441 52
—0.412 34
—0.348 30
—0.359 45
—0.338 13
—0.320 17
—0.305 25
—0.292 99
—0.283 02
—0.274 91
—0.268 31
—0.262 87
—0.25442
—0.248 10

—0.271 94
—0.31687
—0.305 54
—0.288 03
—0.273 25
—0.261 49
—0.252 02
—0.244 10
—0.237 14
—0.230 70
—0.224 53
—0.218 48
—0.212 56
—0.206 84
—0.201 43
—0.191 83
—0.184 10

3X
—0.209 83
—0.200 22
—0.19666
—0.192 24
—0.186 70
—0.18053
—0.174 17
—0.16796
—0.162 16
—0.15697
—0.152 58
—0.149 19
—0.146 88
—0.145 44

0.144 39
—0.141 99
—0.138 37

42X +

—0.149 78
—0.162 62
—0.155 90
—0.147 71
—0.140 56
—0.13459
—0.129 70
—0.125 77
—0.122 84
—0.121 27
—0.121 63
—0.123 15
—0.123 93
—0.123 34
—0.121 72
—0.11722
—0.11270

5 X+

—0.11921
—0.11441
—0.11241
—0.11036
—0.108 11
—0.105 78
—0.103 61
—0.102 06
—0.102 63
—0.105 99
—0.108 47
—0.108 60
—0.107 57
—0.106 18
—0.104 73
—0.101 83
—0.09900

62X+

—0.093 14
—0.098 45
—O.Q94 95
—Q.090 77
—0.087 03
—0.085 50
—0.087 85
—0.090 87
—0.093 20
—0.092 93
—0.091 41
—0.089 68
—0.088 04
—0.086 62
—0.085 46
—0.083 74
—0.082 34

—0.080 37
—0.080 85
—O.Q81 56
—0.082 51
—0.083 78
—0.083 82
—0.081 10
—0.078 87
—0.077 28
—0.076 76
—0.077 31
—0.077 96
—0.078 24
—0.078 07
—0.077 48
—0.075 42
—0.072 90

8 X+

—0.076 90
—0.074 25
—0.073 08
—0.071 95
—0.070 76
—0.069 62
—0.068 69
—0.068 47
—0.069 68
—0.070 86
—0.079 60
—0.069 63
—0.068 52
—0.067 44
—0.06643
—0.064 64
—0.063 12

9 X+

—0.063 22
—0.065 94
—0.063 93
—0.061 55
—0.059 39
—0.058 88
—0.06049
—0.062 20
—0.063 00
—0.062 57
—0.061 71
—0.060 76
—0.059 82
—0.058 93
—0.058 15
—0.056 84
—0.055 84

tems we use them for the description of molecular states
of Li2+ considered as a diatomic system with one valence
electron.

A. The Li2+ pmblem

In the framework of a model-potential method, the
equation for the movement of one electron in the field of
two identical alkali-metal Li+ (noted A and 8) may be
written as follows:

[——,
' b.+ F (r„+r&.,R) —e(R)]P(r„,r+, R)=0,

where 7 is a molecular model potential defined as:

7 (r~, r~,'R) = V(rz )+ V(rz)+ V„,~(rz, r&,R)+ V, ,(R) .

For the interaction terms V(r) describing the interaction
between the ionic core Li+ and the valence electron we
have chosen the parametric form proposed by Klapisch

1+(Z —1)e ' +a2reV(r)=—

where a~, a2, and a3 are variational parameters deter-
mined by this author in order to reproduce the atomic en-
ergy spectrum. A very good agreement is displayed for Li

TABLE V. Values of the electronic energy for various values of the internuclear distance (in a.u. ) for some molecular states X+ of
Liz+.

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

—0.36028
—0.339 61
—0.323 32
—0.31182
—0.304 17
—0.299 02
—0.294 93
—0.290 91
—0.286 61
—0.28204
—0.277 38
—0.272 78
—0.268 37
—0.264 21
—0.260 35
—0.256 79
—0.253 51
—0.250 52
—0.247 77

2 X+

—0.172 88
—0.16426
—0.158 01
—0.15841
—0.172 29
—0.187 52
—0.19665
—0.200 62
—0.201 49
—0.200 69
—0.19900
—0.19684
—0.19447

0.19199
—0.189 51
—0.18705
—0.184 65
—0.182 34
—0.180 12

3X
—0.126 7S
—0.129 30
—0.133 88
—0.13973
—0.13997
—0.13747
—0.13497
—0.132 80
—0.13089
—0.129 15
—0.127 50
—0.125 91
—0.124 36
—0.122 86
—0.121 43
—0.12006
—0.11877
—0.17756
—0.11642

4'X+

—0.102 48
—0.098 21
—0.095 30
—0.097 48
—0.10468
—0.108 92
—0.11030
—0.11016
—0.10922
—0.107 88
—0.10635
—0.104 77
—0.103 19
—0.101 66
—0.10020
—0.098 81
—0.09748
—0.096 24
—0.095 06

5 X+

—0.080 93
—0.082 35
—0.085 00
—0.087 26
—0.086 11
—0.084 35
—0.082 79
—0.081 48
—0.080 36
—0.079 40
—0.078 54
—0.077 81
—0.077 23
—0.076 91
—0.077 10
—0.078 13
—0.080 02
—0.082 26
—0.084 37

62X+

—0.067 94
—0.065 54
—0.063 97
—0.065 78
—0.069 51
—0.071 21
—0.071 52
—0.071 12
—0.070 36
—0.069 41
—0.068 39
—0.067 35
—0.066 33
—0.065 51
—0.067 49
—0.068 99
—0.069 65
—0.069 68
—0.069 39

7 X+

—0.056 11
—0.056 96
—0.058 58
—0.059 55
—0.058 63
—0.057 52
—0.057 55
—0.058 15
—0.058 86
—0.059 71
—0.060 74
—0.062 02
—0.063 61
—0.065 34
—0.06441
—0.063 53
—0.062 72
—0.061 96
—0.061 29

8 X+

—0.05S 67
—0.055 82
—0.05603
—0.056 30
—0.056 64
—0.057 05
—0.056 55
—0.055 73
—0.055 05
—0.054 47
—O.OS3 98
—0.053 60
—0.053 39
—0.053 46
—0.053 96
—0.054 81
—0.055 72
—0.05647
—0.057 02

9X„+

—0.048 37
—0.046 90
—0.045 96
—0.047 26
—0.049 41
—0.050 25
—0.050 32
—0.049 99
—0.049 45
—0.048 81
—0.048 12
—0.047 43
—0.046 75
—0.047 47
—0.048 39
—0.048 78
—0.048 77
—0.048 57
—0.048 28
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between calculated and experimental energy spectrum for
the following values of the parameters:

o.)
——7.9, u2 ——10.31, o.3

——3.898 .

Vp, ~ represents the whole polarization effects, i.e., each
ionic core Li+ is polarized by the simultaneous electric
field due to the valence electron and due to the other Li+
core. This whole effect appears as a sum of the three

TABLE VIII. Comparative results for the spectroscopic constants R, and D, of some molecular
states of Li,+.

Molecular
state Method

Model potential

Pseudopotential
Frozen-core'
SCF+
SCF + core polarization

potentialg
Valence configuration

+ effective core
potential (ECP)"
Present work

Experimental'"'"

R, (A)

3.1

3.08
3.09
3.09
3.16
3.127

3.099

3.076
3.08

3.11+0.01

D, (ev)

1.31
1.30
1.28
1.30
1.26
1.280

1.293

1.314
1.30

I.27+0.02
1.2980+0.0007
1.2836+0.0031

22++ SCF'
Model potential'
Frozen-core'
Valence configuration

+ ECP"
Present work

6.88
6.77
6.88

6.84
6.85

0.299
0.30
0.31

0.309
0.31

1 Xu+ SCFf
Model potential'
Frozen-core'
Valence configuration

+ ECP"
Present work

10.3
10
10.0

9.92
9.24

0.01
0.01
0.01

0.01
0.01

SCF'
Model potential'
Frozen-core'
Valence configuration

+ ECP"
Present work

4.01
4.02
4.02

3.987
3.97

0.23
0.23
0.25

0.236
0.26

2'rr. Frozen-core'
Present work
Frozen-core'
Present work

10.32
9.59
9.53
9.28

0.37
0.41
0.035
0.05

'Reference 31.
Reference 39 when neglecting V3 (see the text).

'Reference 39 when including V3.
Reference 4.

'Reference 35.
Reference 36.

gReference 38.
"Reference 41.
'Reference 42.
'Reference 43.
"Reference 44.
'Reference 37.
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terms: a valence electron-core polarization term, a core-
core polarization term, and a cross term due to the nonad-
ditivity of the various polarization contributions.
Mathematical forms generally used to take these effects
into account are derived from the asymptotic form of the
molecular potential given by Bottcher and Dalgarno,
multiplied by a convenient cutoff function in order to
avoid divergence at small values of the distance. As a
first step, we have neglected all these polarization effects
in our present calculations on L12 arguing that Li is a
light atom with not much of a polarizable core.

V, , represents the core-core interaction apart from the
polarization terms already considered in VP,I. For values
of R such that the overlap between the core wave func-
tions is small, the i.nteractions between the two Li+ is
largely dominated by the long-range charge-charge term
1/R. For smaller values of R, exchange effects are to be
taken into account. Such short-range interactions have
been included either in an empirical way or in a theoreti-
cal one. In our present calculations V, , has been re-
stricted to the predominant term 1/R.

B. Calculations and results

The molecular potential F [Eq. (7)] being defined for
Li2+, we solved Eq. (6) written in prolate-spheroidal coor-
dinates on the basis of TDO's. The values of p for each
basis function g„~~ are derived from Eq. (5) with
ZA ZB

We have paid particular attention to the choice of the
various n, l in building up the basis sets for a given sym-
metry m. After some systematic investigations we have
adopted the following automatic procedure

(i) First we add TDO's with increasing I values (by a
step of 2 for homonuclear cases) until the numerical
values of the eigenenergies of interest are stabilized (to a
chosen precision).

(ii) Then for each i value (starting from the smallest) we
add TDO's with increasing n values until the numerical
stabilization of the eigenvalues of interest.

Calculations have been performed for the nine lowest-
lying states of symmetry Xg and of symmetry X„,the five
lowest-lying states of symmetry IIg, and of symmetry II„,
the five lowest-lying states of symmetry b.g and of sym-
metry 5„, in the range 2.0&A &20 a.u. of internuclear
distances. Results for the electronic energy are presented
in Table IV for the Xg+ states, in Table V for the X~+

states, in Table VI for the IIg„states, and in Table VII
for the b,g „states. The number of TDO's used for states
of a given symmetry are also quoted. Some comparative
results about the quantities R, and D, (in A and eV,
respectively, for ease of comparison) are gathered in Table
VIII.

Several theoretical investigations of the ground state
X Xg+ of Liz+ have been performed recently ' "' in-
cluding model potential, pseudopotential, and ab initio
calculations. As shown in Table VIII our detern1inations
for R, and D, are in good agreement with recent litera-
ture ones. %'e pay some further attention to the compar-
ison between our results and the very recent ones reported
by Henriet and Masnou-Seeuws for a lot of Xg „states
of Li2+. These authors included core-core polarization ef-

E(a.u. )

01-

-01I-

-0.2-

2 6 14 20
R(a.u. )

FIG. 3. Potential energy curves for the ten lowest-lying states
of Li2+.

10

fects (i.e., —a,+/R where a„,+ is the static dipolar po-
larizability of the core Li+) in the molecular potential /
[Eq. (7)] for any value of R and they performed two types
of calculations: one in taking into account the cross po-
larization term (noted V3 in their paper), the other in
neglecting it. As we have done, they represented the
valence electron-core interactions through the Klapisch
potential. They solved the Liz+ problem with a set of 134
prolate-spheroidal generalized Slater functions. Then, our
present values for the total energy corrected by the core-
core polarization term

ET(R) =e(R) —nz,.+/R

are directly comparable to their results corresponding to
V3 ——0. As a matter of fact, when comparing the two sets
of results for various values of R, it appears that they
are in very good agreement. It should be noted that the
correction due to the cross polarization term V3 is seen to
be small for Li2+ and it decreases with increasing values
of Z.4'

A good agreement with the literature results including
ab initio, ' model potential, ' and frozen-core method
ones is displayed for R, and D, of the first excited
22Xg+ state as well as for the dissociation energy of the
first excited 1 X~+ state, while our value for R, is smaller
by an amount of roughly 10%.

For the first excited state II„present values of R, and
D, are in reasonable agreement with previous determina-
tions. ' ' ' For the states 2 II„and 1 Ag we compare
our results with the corresponding frozen-core method
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ones given by Muller and Jungen: They are in fairly
good agreement for E, while present values are signifi-
cantly larger than previous ones for D, .

For the remaining. states a direct comparison may be
made for nuclear separations between 2 and 20 a.u. with
the tables of results given by Miiller and Jungen for a
large number of states: six Xs+ states, five X„+ states,
five II„states, four II& states, four A~ states, and three
h„states. Our conclusion is that the two sets of results

are in fairly good agreement. The curves for the total en-

ergy of the ten lowest-lying molecular states of Liz+ are
drawn in Fig. 3.

V. CONCLUSION

We have defined truncated diatomic orbitals (TDO's) in
retaining only one term in the expansions of the eigen-
functions (in prolate-spheroidal coordinates) of one-
electron diatomic systems and. we have presented a simple

procedure to determine the parameter involved in their
mathematical form. Test calculations for some exactly
known molecular states of H2+ and HeH + have shown
that compact basis sets of TDO's provide good approxi-
mations of the exact values of the eigenenergies as well as
of the exact values of the wave functions.

We have then described 38 electronic states of Li2+ in
the framework of a model potential method, using TOO's
as basis functions. Again, compact basis sets are suffi-
cient to achieve a good accuracy. Preliminary results of a
similar work now in progress for LiH+, Na2+, and
NHe + corroborate this result. The number of basis func-
tions needed to approximate wave functions of effective
one-electron diatomic systems is a very sensitive criterion
for us because we have undertaken to use these approxi-
mate functions in Pluvinage's method to determine ex-
plicitly correlated functions as well as in usual configura-
tion interaction approach to describe molecular states of
effective two-electron diatomic species.
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