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Energy-level shifts in atoms between metallic planes
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The vacuum fluctuations of the electric field will shift the energy levels of an atom between two
neutral, conducting planes. We have calculated these shifts in hydrogen atoms, and numerical
values for the shifts of the lowest levels are given.

I. INTRODUCTION

Modifications of the quantum Auctuations in the vacu-
um due to boundaries have recently attracted a lot of in-
terest. ' Since the original work of Casimir on the elec-
tromagnetic zero-point energy between two parallel, per-
fectly conducting planes the role of vacuum fluctuations
in quantum-field theories has changed dramatically.
Despite the fact that the tiny Casimir force between neu-
tral conductors is one of the few macroscopic manifesta-
tions of vacuum fluctuations and a fascinating test of
quantum concepts, these phenomena have been regarded
by many as a mere curiosity. The fundamental impor-
tance of the vacuum structure first came to light in the
wake of the spectacular developments in elementary parti-
cle physics over the last two decades.

One of the key concepts which lead to the unified
theory of electromagnetic and weak interactions is spon-
taneous symmetry breaking, which can be regarded as a
vacuum condensation phenomenon. In the presence of an
external field the effective potential can develop a non-
trivial minimum which gives a scalar field a nonvanishing
vacuum expectation value, thus breaking the symmetry.
This is analogous to the Casimir effect where the one-loop
effective potential, which is the vacuum energy, changes
from its vanishing free-space value because the propaga-
tors are modified by the presence of the boundaries.

More directly related to the Casimir effect are the cal-
culations of the vacuum energy and fermion condensate
in hadron models. The hadrons are pictured as "bags" or
cavities in the vacuum, the inside and outside being
associated with different phases of the quantum-
chromodynamic (QCD) vacuum. Finally, it has long been
clear that vacuum fluctuations play an important role in
field theories on curved background spaces, ' which serve
as a prelude to fully quantized theories of gravity and also
are important in cosmology and unification schemes.

One attempt in this direction are the recently revitalized
Kaluza-Klein theories, which try to account for gauge
symmetries simply as spatial symmetries of extra, com-
pact dimensions. The vacuum energy associated with
these dimensions are a priori enormous, and a detailed
understanding of the vacuum structure of the theory
seems to be required in order to explain the observed
smallness of the cosmological constant, as well as other
features of the Kaluza-Klein scenario.

It should be clear from the above that not only the vac-

uum energy but all aspects of vacuum fluctuations are of
physical importance and should be studied. Even the in-
vestigations of the original Casimir configuration are defi-
cient in this respect. We intend to try to remedy this situ-
ation by shifting attention from the global properties pre-
viously studied, to the local variation of the field fiuctua-
tions between the planes.

From a practical point of view, the electromagnetic
field fluctuations are easier to observe experimentally than
those of other theories. The Casimir force between two
plates has been found to be in agreement with direct mea-
surements. %'e propose instead to use an atom placed be-
tween the plates as a sensitive local probe of the field fluc-
tuations. As a first step in this direction we have recently
calculated the electromagnetic field fluctuations outside
one conducting plane and their perturbations of the ener-
gy levels of a nearby atom. ' The results are in agreement
with a similar calculation by Power and Thirunamachan-
dran, "who have developed a general formalism for quan-
tum electrodynamics (QED) in a cavity In add. ition, they
have applied this formalism to the investigation of spon-
taneous emission by an excited atom in the presence of a
conducting wall. Closely related work on spontaneous
emission from atoms in conducting cavities was recently
discussed by Kleppner, ' and is currently under experi-
mental investigation by Vaidyanathan et al. '

Here we will consider the effects of the electromagnetic
vacuum fluctuations on an atom placed between two con-
ducting parallel planes. We will first explicitly calculate
how the electric and magnetic field fluctuations vary be-
tween the planes. In contrast to the energy density whose
constant value is known from the value of the Casimir
force, the field fluctuations are found in the next section
to depend strongly on the distance from the planes and
actually diverge when one approaches one of the planes.
This result is obtained under the assumption that the
planes are perfectly conducting at all frequencies. Techni-
cal aspects of these mode sum calculations can be found
in the Appendix.

The energy-level shifts of one atom placed in this fluc-
tuating field is calculated in Sec. III. %'e find that when
the atom is close to one of the plates the interaction ener-
gy is simply. , the one corresponding to the classical dipole-
dipole interaction. %'e explicitly exhibit this by also cal-
culating the classical interaction of a dipole with two neu-
tral plates by the method of images.

Numerical values for the shifts of the lowest levels of
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hydrogen are given in Sec. IV, where we also provide the
atomic matrix elements necessary for calculating the shift
of an arbitrary energy level.

survive, and the energy is therefore quantized

co=[kT+(nm/L) ]'i (2.6)

II. VACUUM FLUCTUATIONS
The normalization factor N in the potentials (2.4) is deter-
mined by the normalization condition

Two perfectly conducting plates are placed in the x-y
plane at z=O and z =L; see Fig. 1. If n is the unit vector
normal to the planes, the electric and magnetic fields will
satisfy the usual boundary conditions at both plates

j d'x A„g (x) A,„, (x)=4m 5gg5„„5(kT—k'T),

which gives
' 1/2

(2.7)

n XE=n.8=0 . {2.1)
1

L
(2.8a)

%e choose to work in the Coulomb gauge so that the elec-
tromagnetic potential A" satisfies V A =0. For our prob-
lem we can then also choose A =0, so that in the vacuum
between the plates we have

for n=O, and
'

]./2
2

kT L
(2.8b)

E= —A, B=VXA. (2.2)

Akk, (» =V XUk~, (x» (2.3a)

while the transverse magnetic modes can be written as

Akj, (x)=VX[VXUkj, (x)], (2.3b)

where the potentials are

Uk~ (x)=Ne, sin{kR)e (2.4a)

It is convenient to expand the vector potential in terms of
its transverse electric eigenmodes (E,=O) and transverse
magnetic eigenmodes {8,=0). Because of symmetry the
wave vector k=(k„,k~, k, ) can be decomposed in a trans-
verse wave vector kT ——(k„,k~) and a longitudinal part
k =k, . These wave numbers can be used to label the
solutions of the wave equation.

The transverse electric modes which respect the boun-
dary condition {2.1) can be written as

for n~O.
Hence the vector potential is given by

A(x t)= g g I
X=@,M =O

X [a„k A„k (x)e '"'+c.c.] . (2.9)

We now promote this classical field to a field operator by
canonical quantization. This is achieved as usual by turn-
ing the Fourier coefficients in (2.9) into operators satisfy-
ing the commutation relation

[a,„, ,a„j, ]=4m. 5qq 5„„5(kT—k'T ), (2.10)

all other commutators being zero. The operator a„I,
A, f

(a„& ) creates (destroys) a photon of polarization A, and"T
wave vector (kT, nn/L). The vacuum state

~
0) is de-

fined by

UMkt, (x)= . e,cos(kR)e"'"'
lM

(2.4b) a„'„ ~n)=0, (2.11)

and x=(xT,R) =(x,y, z).
Only a discrete set of longitudinal wave numbers

k=, n=0, 1,2, . . . ,L ' (2.5)

which means that there are no real photons present in this
state. This implies that (Q

~

E
~
0)=(0

~

B
~

0) =0 as
expected in a vacuum.

However, it is now straightforward to verify that the
fluctuation of the transverse component of the electric
field is given by

(Er(R, t) ET(R, r')) —= (Q
i
ET(R, t) E„(R,r')

i
0)

d kgI 2
(~+k'/~)

(2m )

Xsin (kR)e'""

(2.12)

FICx. 1. Electromagnetic field is confined between two per-
fectly conducting parallel plates with separation 1..

In order to make this integral well defined we employ
Schwinger s method of imaginary time splitting, i.e., let
t' —t =i~. As shown in the Appendix, in the limit ~—+0
we obtain
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where 0=m R /L and the function

2

(2.13)

field fluctuations. Since this is of no physical interest it
can be dropped and we obtain the renormalized fluctua-
tions due solely to the presence of the plates

(2.15)

I'(8)=
sin 0 sin L9

(2.14)

is displayed in Fig. 2.
The first term in (2.13) is a divergence due to the free

The fluctuation in the longitudinal component of the field
is calculated in a similar way, while taking care to include
the TEM mode (n =0) with its special normalization
(2.8a):

(E,(x, t)E,(x,t'=t+ir)) = disco e '+ —g (co —k /co)cos (kA)e4~L 0 L „

(2.16)

A similar calculation of the fluctuations in the magnetic
field gives

(2.17)

and the vector normal to the plates nz =(0,n).
Remembering that Tz, must be symmetric and traceless
(at least in the absence of conformal anomalies which is
the case here), the unique tensor is therefore by (2.18)

The energy density in the region between the plates is
therefore

(2.18)

(:T~„..) = (gp, 4n„n„) . —
72OL, '

Reading off the pressure on one of the plates

T )=-
240I. ' ' (2.20)

Notice that while the field fluctuations vary between the
plates, the energy density is a constant. A simple argu-
ment will now give us the entire energy-momentum ten-
sor. The only geometrical objects present in our problem,
from which we can construct physical tensors, are the
metric g» with nonvanishing elements g;; =1=—goo, (:E,':)= (:E„':)= +O(Z'/L'), (2.21)

we see that this result is in complete agreement with
Casimir's result. "

The field fluctuations close to one plate are obtained by
expanding (2.15) and (2.16) in powers of R for small
values of' 8,

2

&:E,':&=&:E.':&+
36OI. ' (2.22)

40—
The results for one plate are now obtained by letting L, go
to infinity.

III. ENERGY-LEVEL SHIFTS

20-

10-

0 0 TC

2

FICx. 2. Function F(0)=3/sin 0—2/sin 0 which describes
the field fluctuations between the plates.

As discussed in the Introduction the alteration of the
mode structure of the vacuum due to the plates can be
detected by an atom placed between the plates. %'e regard
the atom as a local probe of the field fluctuations calculat-
ed in the preceding section. The change of the spectrum
of the atom in the presence of the plates can be used to
read off the fluctuations as a function of position between
the plates.

The fluctuations in the magnetic field 8 will cause a
perturbation of the energy eigenstates proportional to
eB/m, where m is the electron mass, while the fluctua-
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tions in the electric field cause a perturbation er E. Since
the atomic radius r is of the order (um) ', where
a=e /4m= $37 is the fine-structure constant, we can ig-
nore the magnetic perturbation in the following.

Furthermore, since the vacuum expectation values of
the fields vanish, there will be no shift of the energy levels
to first order in perturbation theory. In second order the
fluctuating electric field contributes a shift

he„=e
m, k

I (n Ir Efmk) I

E —6 —COk
(3.1)

()) 2~ I (n Ir H fn', k) fz

n', k COk
(3.3)

where cok is the energy of the photon in the kth radiation
mode.

If in the summation over allowed atomic states
I
m)

we isolate the states
I
n') degenerate in energy with the

state
I

n ) under consideration, we can write

ae„=ae„'"+we„'", (3.2)

with

2

y[(l(n Ix ln')
64m.I.

+ I
&n Iy In' & I' )F

+2 I ( n
I
z

I

n')
I
'F+ ] (3.9)

due to the degenerate states
I

n ' ) . These give rise to a
permanent electric dipole moment p=er of the atom, and
we will in a moment see that he'„" represents the interac-
tion energy between the dipole and its images in the
planes. For atoms without permanent dipole moments,
however, only the second term (3.4) contributes to the lev-
el shifts.

Let us first study b, e„' ' near one of the plates. Since the
mode sum (3.4) is dominated by the terms with coR —1,
we will find cok »e„—e~ in a region sufficiently near the

t pl~t~. In this region the two terms b.e'„" and b,e
therefore take the same form. Using completeness of the
atomic states, we find

2

4e„=— [(n
I
(x'+y')

I
n)F

64~1.

m (&n'), k

I &n fr.Efm, k) I'
(3.4) +2(n

I

z'
I
n )F+], (3.10)

The first sum (3.3) can be separated into a product of an
atomic factor and a radiation factor

he'„"= —e'gg I (n fx, I

n') I'g

I
&II

I
E,

I
k& I

'
E; /co (3.6)

can be evaluated by the same techniques used to calculate
the field fiuctuations. As shown in the Appendix we ob-
tain

F (R)
(E„/co) = (Ey/co) = +

3~2~3 64~L 3 (3.7a)

(3.5)

where the first summation is over the three spatial direc-
tions.

The radiation factors

U(d)=
3 [p p' —3(p n)(p' n)],

8md
(3.11)

where d is the distance between p and p'. Summing over
all images, we find

2
V= — [(x +y )F +2z F+], (3.12)

64m.L,

where in spherical coordinates the matrix elements can be
found in the literature. ' This- result is simply the
quantum-mechanical version of the classical interaction
energy V between an atomic dipole p and its induced im-
ages in the plates. A simple image construction suffices
to calculate V. Thus, the two primary images of p in the
plates will themselves induce new dipoles in the opposite
plate and so on ad infinitum. Notice that the induced di-
pole is oriented so that the field lines are normal to the
image plane, as required by the boundary conditions. The
interaction energy U of p with any of these images p' is
given by

F+(R)
3m w 32+1. (3.7b)

with

F+(R)=(L/R) +g(3,R/L)+g(3, —RL/)+ $2(3),

(3.8)

where the g functions are defined in the Appendix.
Ignoring the free field divergence as usual, we are left

with the energy-level shift

I (n fx; fm) I'
&m —~n

(3.13)A; =2e
m (@n)

This part of the energy-level shift can now be written in

in complete agreement with the corresponding quantum-
mechanica 1 expression (3.10).

In the opposite limit ~k &&e„—e away from the
plates, we can ignore cok in the denominator of Eq. (3.4)
for b.e'„'. Factoring out' the radiation contribution
(:E;(R)E~(R):) which was calculated in Sec. II, we see
that the shifts are determined by the zero-frequency elec-
tric dipole polarizabilities

I
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the diagonal basis of atomic states as

+a,[F(8)++]J . (3.14)

ied by creating highly excited atoms. The outer electron
is typically excited to n =30, and the atom can be treated
as an excited hydrogen atom. The accidental degeneracy
in the hydrogen spectrum causes it to have a permanent
dipole moment, and both the terms (3.9) and (3.14) must
be taken into consideration.

In the limit l.~ co we recover the expression valid for an
atom outside one plate

32 R
(3.15)

as first derived by Casimir and Polder. '

The sum of the polarizabilities a; for hydrogenlike
atoms has recently been determined analytically by
Leutwyler' and Voloshin' in connection with the
energy-level shifts in charmonium due to vacuum fluctua-
tions in the chromoelectric field. Their results can be
written as

IV. NUMERICAL RESULTS

n'
+x

~

n') (n'
~ x+ )F

For not too highly excited atoms the dipole-dipole term
(3.9) will dominate the energy-level shift. We will now
numerically evaluate the shifts of the lowest levels of hy-
drogen. It is convenient to consider this perturbation to
be given by the matrix elements of the operator

+Ay +a, =16' ~nI (3.16) +2z
~

n') (n'
~

zF ], (4.1)
where a =(am) is the Bohr radius and the dimension-
less numbers Agj are of order one. For n= 1 we recover
the usual second-order Stark shift of the ground state

9 a
b, e'joo —— 9na—(:E:)= — [F(8)——'] .L4 45 (3.17)

We see that at least for low values of n, the dipole-dipole
term (3.9) dominates the energy-level shift b,e„, provided
the atom has a permanent dipole moment. For atoms
without permanent dipole moments, the Casimir-Polder
term (3.14) gives the full energy-level shift in atoms far
from both plates.

As we shall see in the next section the matrix elements
in (3.9) increase with the radial quantum number n only
as n For suffic. iently high n we can therefore not ignore
tPe Casimir-Polder term (3.14) which grows like n, even
if we are studying hydrogen atoms with permanent dipole
moments.

This is relevant to experiments now in progress, ' '
where the interactions of matter with the vacuum is stud-

where x+ ——(x+iy) lv 2, and the sum extends over the de-
generate members of the multiplet.

The level shifts are given by

be„"'=—
3 (n

~

8
~
n)

64m.I. (4.2)

in a basis where 8'is diagonal.
In an arbitrary basis we must diagonalize the matrix

representing 8'. Although the matrix elements of 8'are
simpler in parabolic coordinates, 8 turns out to be more
diagonal in the spherical basis, which we shall therefore
use. An explicit calculation shows that 8'is nondiagonal
only between states with the same azimuthal quantum
number m and with orbital angular momentum t differ-
ing by At =+2.

For the diagonal matrix elements of W we find

2 —2

(n, l, m
I

W ~n, l, m)= '„a n — [(1 —1+m )F +2(l —m )F ](21 —1)(21+ 1) +

[(1 +31+m +2)F +2(l +21 —m +1)F+] (4.3)

while the nondiagonal matrix elements are given by

(4.4)
2 t2 1 /2

j', n, 1 —2,m
~

8'
~
n, l, m ) = , a n — —(1—m )[(1—1) —m ] (2F+ F) . —

(21 —1)(21+1) (21 —3)(21 —1)
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Because of parity invariance JY does not contribute to the
shift of the ground state, which therefore is given entirely
by (3.17), which can be written as

he&oo= —(6.5X10 eV)(a/L) [E(8) +]—. (4.5)

For the n =2 multiplet there is no mixing of states and
the energy-level shifts can be read off directly from (4.3):

-100--

-200--

-500-™

f 210)

f 200)

—100--

-200-, -

-500--
b ez'oo ———18a A (F+ +F ),
~&2&0= —18a AI'+,(I) 2

Ag&&'I ———9a AI'(1)

where we have introduced

(4.6)
—1000--

-2000--

-5000--

-1000--

—2000-

—5000--

I3-&
f 321)

f 310)
f 3+)

A=
64mL, 16I.

(4.7)

+F ) ', V 2(2F—+ E)—
81

—', v 2(2F+ F) —', (4F++—F )
(4.8)

In the n=3 multiplet the states
~
300) and

~

320) will
mix. The secular matrix is FICx. 3. Splittings due to the dipole-dipole interaction of the

n =2 and n =3 multiplets in hydrogen in the rniddle between the
plates in units of /{3)Aa2.

with eigenvalues

b, e3'+ ————,' a A [4F++3F
+(16F+—8F+F +9F )'i ] . (4.9)

which is rather small. In terms of the Lamb shift, which
is roughly given by

a4
~~Lamb- a

We denote the corresponding eigenstates by
~
3+ ) and

The other levels within the n=3 multiplet do not mix
and are given by (4.3):

b, e3'&o ————,a A (4E++F ),
EE3]]— 4 a A (6F+ + 15F )

a~{",, = ", a'A (2E—+—F ),
4e», ————,a AI'(]) 81 2

In order to display these shifts graphically we must
choose a value of R. Taking for simplicity R =L/2,
where, by the way, the Casimir-Polder term is minimal,
we find

E+(R =L/2) =2(7+1)g(3),
where g(3)=1.202. . . . This gives for the n=2 levels in
units of g(3)Aa:

ae' '= —5O4, ae, = —288, Se „=—1O8,(&) (&) (1)

and for the n = 3 levels,

ke3+ = —81(25+&241) ke3Io= —3078

663]$
= —1863$ AE32] = —89 1 ~ AE'322 = —486

These shifts are shown in Fig. 3.
The magnitude of the dipole-dipole splittings is set by

the quantity

a A = (a/L) =(1.70 eV)(a/L)16a

the magnitude of our splittings are

he„'"=n (a/aL)3her, b

he„' '=n (a/aL)4heL, b.
When the atom is at a distance R ~&L from either plate,
then R enters these expressions instead of the plate
separation L. Hence for low n the plate separation must
be much less than 137 atomic radii for the wall-induced
vacuum fluctuations to be larger than the Lamb shift.
However, in view of the fact that shifts much smaller
than the Lamb shift are detectable with present technolo-
gy, and excitations to n=30 (n 10 ) a—lready are attain-
able, ' we are hopeful that these wall-induced shifts will
be seen. An experiment designed for this purpose is in
progress "

V. DISCUSSION AND CONCLUSION

The attractive Casimir force between two conducting,
parallel plates or walls is now a well-known, macroscopic
manifestation of the quantum-mechanical vacuum fluc-
tuations of the electromagnetic field. It is usually ob-
tained by just calculating the regularized, total energy of
the field.

We have here taken a more microscopic point of view
and calculated how the field fluctuations vary between the
plates It is show. n that the local properties of the vacuum
field fluctuations can in principle be mapped out by
measuring the energy-level shifts of an atom placed be-
tween the walls.
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For hydrogen atoms between, but not too close to the
plates, there are two contributing terms to the energy-level
shifts. If the atom is not highly excited the shift is dom-
inated by the induced dipole-dipole interaction which de-
creases with the plate separation L like I. , but increases
with the principal quantum number n only as n . We
have explicitly calculated the shifts of the lowest levels
and supplied the formulas necessary for calculating the
shift of an arbitrary level.

For sufficiently high n, however, the Casimir-Polder
term, which decreases with the plate separation like I.
but increases with n like n, must be included. This part
of the shift is given in terms of the polarizabilities of the
atom.

Our results are obviously somewhat unrealistic. We
have considered the electromagnetic field between a pair
of parallel walls which are assumed to be perfectly con-
ducting at all frequencies and perfectly plane. Such ideal
walls probably do not exist. For real walls in the labora-
tory our results could be modified, but we will not consid-
er these problems here. Questions of the same nature
have been discussed in connection with "murium, " which
is an electron bound by its image charge to a waH, and the
effects of vacuum fluctuations on this system. '

The generalization of our work to the' finite-
temperature regime is straightforward. The atom would
now in addition be subject to stimulated emission by
blackbody radiation. Since we know from the calculations
of Fierz ' and Mehra that the Casimir force between the
plates changes rapidly with increasing temperature, we ex-

pect the same to be true for the local-field fluctuations.
For plate distances less than 1 pm the temperature effects
can be ignored even at room temperature.
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k3
(E,'(R))=, + a,'———a,' r (e,8).

2~L, ~3

Expanding X+(e,8) in powers of e, we find

X+(e,8)= ———,
' (1+1)+—S+(8)— [+, +F(8)]

+O(e ), (A5)

where

S~(8)= —, + 1

sin 0
(A6)

F(8)=
sin 0 sin 0

(A7)

d kz-f 1+ sin (kR)e
(2~) co

00

g k [1—cos(2kR)]
n=1

X f de —+—e ' (AS)
co k
k

and

Now using these expressions in (A2) and (A4) we obtain
the desired results, given by Eqs. (2.15) and (2.16).

The dipole-dipole interaction is determined by the radi-
ation factors (3.5),

APPENDIX

We start by calculating the transverse field fluctuations
given by (2.12). Using co =kr+(enli. ), we find

(Er(R)) = g sin (kR) f dc@(co +k )e "' (Al)
2n.L, „ k

r

00

8,—+ —8, g [1—cos(2kR)]e
4~L,

(A2)

00f dc' cOe

00

+ 'g k [1+cos(2kR ) ]
n=1

co kx dM
k

These expressions can be rewritten in terms of the X+ in-
troduced in (A3):

where A, =m./L„@=A,~, 0=A,R, and

j. — 1 1
X+(e,8) —= , +—,e +c.c. (A3)

~ET&o&=, &,
' f" "" 1+ ' r (x8)4J-' ' & x'

The longitudinal field fluctuations given by (2.16) similar-
ly reduce to

(A9)f "deaf (x) 'a,r (e,8)——
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(E, /a&) = —I dx f (x)+—X (e,8)
Imz)(

~~ 27t+28

(A10)

where f+(x)=X+(x,6)/x .
It is convenient to study the analytically continued

function

X+(z,8)
f+ (z,p):

Z

~e choose the contour of integration shown in Fig. 4.
Since the integral over C& vanishes when p~ oo, we ob-
tain

&c -2m —26

FIG. 4. Contour chosen to evaluate the integrals which deter-
mine the radiation factor in the dipole-dipole interaction term.

r

+~,p = 1 —e p dz +z,++2,&/ Res +z,p
poles

z+0

13y inserting the expansions (AS) in f+ (z,p) and performing the integral over C„we find

lim(1 —e «') ' Jc dz f+(zp)= 3
—

2
(1+1)+ S++O(e) .1 1

p 3 c~ 3e 4e

It is also straightforward to verify that

lim(1 —e ~~') '2' g Resf+(z p)= —
2 Ig(3)+ —,

' [g(3, RL/) +g(3, —R/I )+(I./R) jj,1

P 3 p,l„am
z~O

(A12)

where the g functions are defined as

g(s)= g
n=l &

00

g(s, a)= g
0 (n +a)'

Putting it all together we finally obtain the results (3.7a)
and (3.7b).
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