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New form of the time-energy uncertainty relation
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A new form of the time-energy uncertainty principle is presented. It has the form
7 AE ) 3m.5' /25, where ~ is the average lifetime of a decaying state, and AE is the energy spread of
the state computed from bE~=(E2) —(E)~. The particular state for which the above relationship
becomes an equality is identified, and it is proved that all other states give a greater ~DE product.
This general result should have a wide range of applications.

I. INTRODUCTION

The usual form of the Heisenberg uncertainty principle'
states that it is not possible at a particular instant of time
t to measure two incompatible observables (that is, observ-
ables whose operators do not commute) to arbitrary accu-
racy. For a state described by the ket

~
f(t) ), the uncer-

tainty hA in the measurement of an observable 3 is nor-
mally computed as

aa =((a') —(w )')'",

(2")=(ll(t)
/

3"
f
@(t)) .

(la)

(lb)

The uncertainty principle for position x and momentum

p„ is then

b, x bp„& —,
'

i ([x,p ]) i
= —,',

where we are using atomic units (A'=1).
An analogous principle for time and energy was sug-

gested by Heisenberg, but it is clear that a time-energy un-
certainty principle must take a form different from Eq.
(2). In nonrelativistic quantum mechanics time is a pa-
rameter, rather than an observable with a corresponding
Hermitian operator. The fundamental problem ' with at-
tempting to construct a satisfactory time operator is that
a continuous spectrum for t ( —Oc &t & ao) would imply a
similar result for the spectrum of H. But the spectrum of
H is known to be bounded from below. A number of for-
mulations of the time-energy uncertainty principle have
been presented, and we shall briefly review that work here.

One of the earliest versions"' stated that if the energy
of a system is measured in a time At, the uncertainty AE
in the result must satisfy

AEht& —,
' . (3)

In 1961 Aharonov and Bohm disputed this conclusion,
and a spirited controversy ensued between Fock and
those authors. The controversy has been reviewed by
Vorontsov. Today it is generally agreed that Aharonov
and Bohm were correct, and the energy of a system can be
measured with arbitrary precision and speed. ' Perhaps

the final word on this subject is the recent paper by
Aharonov and Safko. "

A more satisfactory version of the uncertainty principle
is that of Mandelstam and Tamm. ' ' If the Hamiltoni-
an H is not an explicit function of time, then for any Her-
mitian operator 2 it can be shown that

5A b E & —,
'

~
( [A,H] )

~

= —,
'

~

d ( A ) /dt
~

(4)

Here we have followed standard notation in writing
AE =AH. This can be rewritten in a form resembling Eq.
(3):

~g AE& —,
'

r„=aay~d(W)ddt
~

.

(sa)

(5b)

The interpretation of Eq (5) is .that the state
~
P(t) ) has a

distribution of 3 values, and ~z is the time required for
the center (3 ) of the distribution to move an amount
equal to its width AA. Note that ~~ does not represent a
dispersion in t values; in fact, ~z may vary as t changes.

The time-of-arrival version' ' of the uncertainty prin-
ciple is also widely known. An observer located at a fixed
value of x watches a wave packet pass. If the energy
spread of the packet is AE, it will pass the observer over a
time period b, t such that Eq. (3) is obeyed. Wigner' has
given a simple mathematical formulation of this version.
The energy spread hE is computed from Eq. (1) in the
usual way. To compute b t the expectation values of t and
t are calculated from the expression

f f f ~y(x,y, z, t) ~'t"dydzdt

f f f~q~2'dydzdt

and then Eq. (la) is used. Note that the integrals are car-
ried out over the full range of y, z, and t for a fixed value
of x.

A number of other formulations of the time-energy un-
certainty principle have also been published. These in-
clude versions based upon the construction of a time
operator, ' or an inverse time operator, ' as well as
ones based upon the equivalent-width method, the dif-
fraction in time phenomenon, " and relativistic quantum
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mechanics. ' One other version, which is closely related
to the work in this paper, involves the lifetime of a decay-
ing state. This is normally stated that the average life-
time ~ of a state with an energy spread AE obeys the
equality rb,E= —,. (We shall review this relationship in
detail in the following section. ) The problem with this
version is that hE is not computed from Eq. (1), but rath-
er represents the half-width at half maximum of a
I.orentzian distribution. For certain applications of the
Heisenberg time-energy uncertainty principle it would be
useful to have a version which relates the average lifetime
r to an energy spread hE given by Eq. (1). We construct
such a version in this paper. The result is a much more
general form of the time-energy uncertainty principle
based upon the lifetime of a decaying state.

II. THEORY

f(E)=(E~P) . (8b)

[The spectrum of H is bounded from below, so the in-
tegral in Eq (8a) s. hould properly run from E~;„ to oo.
We shall write all such integrals from —ao to Oo, with the
understanding that f(E)=0 for E &E;„.] Since

~ P) is
normalized to 1, it must be true that

1=f dEP(E), (9a)

P(E)=
~ f(E)

~

' . (9b)

The function P(E) is a probability density function; it is
properly normalized and P(E))0 for all E. The time
dependence of the kets ~E) is well known, and it is
straightforward to show that

(P
~
P(t) ) = f dEP(E)exp( iEt), (10—)

where we shall use the notation
~
P) =

~
P(t =0)). The

observable time behavior of the system is given by the
"nondecay probability"

Q(t)= [ &y~y(t)& )'
=

I && I
exp( —tHt)14'& I

'.
A number of properties of Q(t) have been reviewed by
Fonda et al. s We note that Q(t) is uniquely determined
by P(E).

The function Q(t) decays from one at t =0 to zero at
t = Oo. The probability that the system has not decayed at
time t is Q(t), and the probability that the system decays
between t and t +dt is given by —Q'(t)dt. Consequently,
the average lifetime of the decaying state is

%'e consider a system with Hamiltonian H. For simpli-
city we assume that the energy spectrum of H is continu-
ous (the result derived here is valid if H also has a discrete
spectrum). The complete set of energy eigenfunctions

~

E ) of H has the properties that H
~

E ) =E
~

E ) and

(E'
~

E)—g(E

A decaying state
~
P) can be expanded in terms of the

complete set
~
E) as

i P) = f dE f(E)
i
E), (8a)

r= —f dt tQ'(t)

=f Q(t)dt,

where the last line was obtained by an integration by
parts.

The standard form of the time-energy relationship
based upon a decaying state is obtained by assuming
that P(E) is a Lorentzian distribution,

P(E)=(I'/2m)/[E +(I /2) 1 (13)

with a half-width at half maximum of 5E=I /2. For
this case Q (t)=exp( —I t) and ~= 1/I . Consequently,

~5E = —,
'

(14)
It must be emphasized that the energy spread 5E is not
computed from Eq. (1). In fact, for the probability densi-
ty function (PDF) given in Eq. (13) it is not possible to
compute bE from Eq. (1) because the integral for (E )
does not converge. It is also important to note that the
Lorentzian distribution in Eq. (13) is not consistent with
the fact that the spectrum of H is bounded from below.
The consequence of this for any real system is that the ex-
ponential decay law breaks down at very short and very
long times.

We wish to look at a more general class of PDF's for
which (E ) exists and examine the product ~ b,E, com-
puted from Eqs. (12) and (1), respectively. We shall see
that this product gives a new form of the time-energy un-
certainty principle. We note that if P(E) is not Lorentzi-
an, Q(t) cannot be purely exponential. ' In addition,
the nondecay probability Q(t) computed from some of
the PDF's considered here oscillates with time. Thus,
there are "unphysical" regions where Q'(t) & 0. This
behavior is seen in the well-known phenomenon of quan-
tum beats. '

The energy matrix elements can be computed directly
from P(E):

(E")=(y ~H"
~ y&

=f dE E"P(E) . , (15)

It is also possible to obtain an expression for the average
lifetime r in terms of P(E). Combining Eqs. (10) and (11)
we obtain

(17)

We are now in a position to write down the product ~ AE
in terms of P(E). For simplicity we assume that the zero
of energy is chosen so that (E)=0. Then hE= (E &'

and
1/2S(P)=~~E=~f' dEP(E)' f dEP(E)E'

Q(t)= f dE'f dEP(E')P(E)cos[(E E')t] . (16)—
If we substitute this into Eq. (12) and carry out the in-
tegral over t first, we obtain

fdE P. (E)

where we have used the identity'

f cos(kt)dt =+5(k) . (18)
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(E'),=X-'(E'), ,

I(T)=I(P) .

(20a)

(20b)

Consequently, if we choose A, = (E )p, then (E ) T
——1.

Thus, it is possible to restrict our search to PDF s with
mean zero and variance one.

The problem can be restated as follows. We wish to
find the PDF P (E) which minimizes the functional

I(P)= f dE[P(E)] (21)

subject to the conditions P (E) & 0,

f dE P(E)=1, (22a)

f dE P (E)E=0, (22b)

f" dEP(E)E'=1.
This minimization problem also occurs in nonparametric
statistics, and the solution has been published.

(22c)

It is interesting that the problem has reduced to one in-
volving the probability density function (PDF) P(E) rath-
er than the probability amplitude f(E) defined in Eq. (8).
We shall prove below that there is a function P(E) which
gives a minimum value for I (P).

First, however, it is possible to simplify Eq. (19) some-
what. Consider the function T(E)=XP(AE). This is a
properly normalized PDF with mean zero which has the
properties

Before presenting the result it is instructive to consider
a few simple examples for P(E). These are given in Table
I along with the corresponding nondecay probability and
the product r AE. It is seen that (contrary to our expecta-
tion) the Gaussian form of P (E) does not give the
minimum product. In fact, the functional I(P) is mini-
mized by the truncated parabola shown as the third exam-
ple.

We give here a simple proof that the truncated parabola
P(E) given in Table I is the unique continuous function
which minimizes I(P) and satisfies the conditions in Eq.
(22). Suppose some other function R(E) satisfies Eq.
(22). We shall show that I(P) &I(R) with equality only if
P(E)=R (E) except on a set of measure zero (so that a
continuous R equals P everywhere). Let

f (E)=R (E)—P(E) .

Then

(23)

I(R)=I(P +f)=I(P)+I(f)+2f dE P(E)f(E) .

(24)

From Eq. (21) it is clear that I (f) & 0, and, in fact,
I (f) & 0 unless f(E)=0 for all E outside a set of measure
zero. Hence it is only necessary to show that the integral
in Eq. (24) is nonnegative. To do this let g(E) denote the
parabola without truncation

g(E)=[3(5)'/ /20](1 —E'/5), —a) &E& a) .

TABLE I. Simple examples of P(E). The P(E) functions
satisfy the conditions given in Eq. (22). Q(tl was computed
from P(E) using Eqs. (10) and {11),and the product ~DE was
computed from Eq. (21).

Note that g(E)=P(E) for
~

E
~

&(5)'/. Since both
R (E) and P(E) obey the conditions in Eq. (22), it must be
true that

Gaussian

P(E)=(2') ' exp( —E /2), —oo &E & oo

Q(t) =exp( t )—
r AE=(m)'~ /2=0. 886

f dE f(E)E"=0 for n =0, 1,2 .

Consequently,

f dE f (E)g(E)

(26)

Step function

(3)&/&/6
~
E

~

& 3&/2

0, ~E( &3'

Q(t) sin2(31/2r )/(31/2t )2

~DE=~3'~ /6=0. 907

, ,dEf(E)g(E)+ f dEf(E)g(E)

+ f „,rIE f(E)g(E) . (27)

The last two integrals are less than or equal to zero, be-
cause in the range

~

E
~

& 5', g (E) & 0 and
f(E)=R(E)&0. There'fore, the first integral, which is
identical to the integral in Eq. (24), is nonnegative. This
completes the proof.

Truncated parabola

[3(5)' /20](1 E /5),
~

E
~

&5'—
IO, iEi)5

III. DISCUSSION

The time-energy uncertainty principle derived here can
be written

Q (t) =(9/z )(sinz —z cosz) where z =5'/2t ~DE & 3m5'~'/25, (28)

~ aE =3~5'"y25=0. 8&3
where the energy spread AE is computed from Eq (15) or.
Eq. (1), and the average lifetime r can be calculated from
Eq. (12) or Eq. (17). This very general result can be used
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to estimate the lifetime of decaying states. It should be
particularly useful when continuum states are approxi-
mated by a technique such as box normalization. For
such a case the calculation of AE is,straightforward. %'e
are presently using this procedure in our calculation of
the lowest Hz resonance to obtain estimates of the energy
width and lifetime of the resonance.
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